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Abstract: Simultaneous Localisation and Mapping (SLAM) is the key 
technology of mobile robot navigation. In this field, visual SLAM (VSLAM) 
has become a research hotspot in recent years. This article discusses the Lidar 
and visual SLAM algorithms, including: introduction on commonly used 
solutions and improvements of the Lidar SLAM algorithm and exploring 
related difficulties, the characteristics of monocular, binocular and RGB-D 
cameras in VSLAM, the ORB-SLAM2 system based on the feature extraction 
method, the LSD-SLAM system based on the direct method, and 
comprehensively understanding and comparing the advantages and 
disadvantages between Lidar SLAM and visual SLAM, trying to fully utilise 
the two systems’ advantages to implement better abilities of autonomous 
localisation, path planning and obstacle avoidance. Finally, the conclusion 
section discusses the development direction of multi-sensor fusion SLAM and 
the intelligent application of mobile robots in multiple fields. 
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1 Introduction 

In terms of autonomous navigation and localisation, mobile robots have three major 
problems: 1) Where am I?; 2) Where am I going?; 3) How should I get there? (Leonard  
et al., 1992; Durrant-Whyte, 2005). These problems generated three research directions, 
namely, the localisation problem, the perception problem of the target position and the 
path planning problem.  

SLAM technology enables the robot to navigate its own location in an unknown 
environment. Achieved by installing sensors, robot during movement can read its 
surroundings information and construct navigational maps accordingly (Chen and Zhang, 
2005; Csorba, 1997). 

Although the research on autonomous mobile robots has become a research hot topic 
in the high-tech field, there are still very few autonomous mobile robots in our daily 
lives. Most recent research papers are based on one single type of sensor, such as Lidar 
SLAM or VSLAM algorithms. Algorithm based on Lidar SLAM is already well 
developed, but VSLAM is not. 

SLAM algorithm has significant theoretical meanings and a wide range of 
applications. In self-driving field, SLAM achieves precise localising and navigation 
through three-dimension modelling with Lidar and Global Positioning System (GPS). In 
terms of military use, robots developed by SLAM are working in hazardous areas. In our 
daily lives, service robots powered by SLAM are capable of walking on their own 
without hitting any obstacles. 

Based on different sensors, SLAM has different names. When the sensor is Lidar, we 
call it, Lidar SLAM. When the sensor changes to a camera, we call it VSLAM. 

As intelligent robots gradually enter our lives, our lives become easier and more 
convenient; however, simple robot cannot achieve self-walking. At this time, Lidar can 
help robot higher intelligent level, which can access the robot’s surrounding information. 
With powerful navigation algorithm SLAM, the information sensors scanned is passed 
on to robots and helps them to walk. There are many Lidar commonly used for SLAM, 
such as SICK, Velodyne, the SLAMTEC’s RPLIDAR and Leishen. 
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VSLAM is majorly achieved by using cameras. According to different task, cameras 
are classified to three major branches: Monocular, Stereo Vision and RGB-D. 

Exploiting a single camera to do SLAM algorithm is called monocular SLAM. 
Correspondingly, Stereo Vision SLAM is carrying multiple cameras, among them 
binocular camera is the most widely used sensor. SLAM combining monocular camera 
and infrared sensor is called RGB-D SLAM. 

2 Key technology 

2.1 Lidar SLAM algorithm 

Lidar are divided into single-mode and multiple-mode, and they have their own merits of 
angular resolution and accuracy. Also, the implement method has its own advantages and 
disadvantages. The most important problem for SLAM is localisation, which can be 
solved by probability method and non-probability method. In current situation, the most 
occurred problems are solved by probability-based method whose basis is Bayesian 
estimation. It is a filter combined with Kalman filter and particle filter. For non-
possibility method is based on graph-based optimisation. 

1) Kalman filter: Kalman filter is the process where the system collects input and 
output data to achieve optimisation. The assumption of Kalman filter is that state 
noise and observation noise obey Gaussian distribution (Wu et al., 2007; Yavuz  
et al., 2009; Wei and Zuo, 2009; Kang et al., 2010; Wang et al., 2013). In addition, 
the assumption above is also saying that the system is described by linear state 
equations. However, non-linear systems widely exist in applications, so the extended 
Kalman filter, a method specifically built for non-linear system, was proposed: non-
linear system can be transferred to linear system by applying first derivative based 
on Taylor's theorem in order to achieve an approximated system model. If system’s 
non-linear degree is high, error of linearisation will increase, so errors may occur 
when constructing a map. Therefore, EKF is not suitable for SLAM research in 
large-scale surroundings. 

Unscented Kalman filter, UKF, is a method of approximating non-linear distribution 
with sampling method by applying conditional Gaussian distribution to test 
probability density. Its advantage is that it does not need to calculate Jacobian 
matrix, and it has better performance than EKF. Unscented Kalman filter uses 
sampling method to approximate non-linear distribution. Most of solutions use 
Kalman filter, since it has advantages on convergence and implementing difficulties. 
However, this method only considers the influence of previous frame. Once data 
association errors occur, whole SLAM system will be affected. 

2) Particle filter: Particle filter, a novel filter, effectively removes constraints of linear 
assumption and the assumptions of sensor Gaussian noise. It plays an important role 
in mobile robots’ localisation and mapping. It is good at approximating any 
probability distribution and calculate simply and efficiently (Arulampalam et al., 
2002). However, it cannot achieve the desired effect, when it comes to high-
dimension problems. 
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Murphy et al. found that under the condition where robot moving routine is known, 
probability between signpost locations is conditionally independent. Consequently, 
they pointed out Rao-Blackwellised which is the theoretical basis for particle  
filter to solve SLAM problems. In order to test the possibilities by applying Rao-
Blackwellised Particle Filter (RBPF) to solve SLAM problems, Montemerlo et al. 
(2002) done some relative application practices, and pointed out a Fast-SLAM 
solution. 

This method estimates robot routine by applying improved particle filter. Each 
particle maintains one approximation state and one individual feature location 
information set, as shown in Figure 1. Each trajectory of the robot corresponds to a 
particle. Robot’s state is predicted by N particle, each feature is estimated by 
Extended Kalman Filter (EKF), and each particles maintains M EKF (Thrun et al., 
2001). Comparing with other methods, this method reduces sampling space, which 
significantly reduces complexity and improves calculation speed. High precision 
means it has better accuracy and robustness. This method, therefore, can apply to 
situations where the posterior density function is unknown, non-linear or non-
Gaussian conditions. However, this method also has some defects. In order to avoid 
divergence, more particles are needed in experiments, and divergence is closely 
related to data association. As a novel SLAM algorithm, particle filter still needs to 
be consummated and improved. 

Figure 1 Robot SLAM algorithm based on RBPF 

 

3) Graph-based optimisation: Lu and Milios (1997) first proposed graph-based 
optimisation. In their articles, two-dimensional map which was created by Lidar is 
taken as an example, and the influence of all frames is taken into consideration to 
form a spatial constraint relationships. Compared with filter method which only 
considers the influence of previous frame, if a random moment between x0 and x1 

occurs an error, the later posture is difficult to correct. However, as surrounding’s 
size increases, the posture error rate increases. Therefore, filter method is not 
suitable to estimate posture in big surroundings. But graph-based optimisation  
can optimise all frames to calculate correct postures. Graph-based optimisation 
estimates the trajectory of the entire robot, and continuously optimises the linear  
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points in order to minimise the errors. Since the precision after optimising multiple 
times is significantly higher than filter method, it is suitable for applying to estimate 
posture in big scenario. But the efficiency will be reduced accordingly. Graph-based 
optimisation generally optimises graphs which are constructed by SLAM front-end 
estimation and loop closure detection. So, graph-based optimisation is also called 
back-end optimisation.  

Considering that most application situations of robots are non-linear systems, posture 
graph can be solved by non-linear least squares. Basic idea of nonlinear least squares is 
that given a non-linear system with nonlinear state equations we need to find optimal 
solution in order to minimise the error of estimates (observations). Also, in order to find 
the target function of nonlinear least squares, we assume that the error obeys Gaussian 
distribution. 

2.2 VSLAM Algorithm  

VSLAM is constituted by Visual Odometry (VO) and optimised back-end. Visual 
Odometry is also called front-end, and its main function is to approximately estimate 
camera’s movement according to adjacent frames information. The movement trail can 
be used for back-end’s initial values. Since feature extraction method operates stably and 
is not suitable for the change of surroundings, feature extraction method is the most often 
used solution in Visual Odometry (Gao et al., 2017). The back-end optimisation is 
similar to the laser optimisation algorithm, which will not be repeated in this article.  

1) Feature extraction method: Monocular visual SLAM system, MonoSLAM, was first 
pointed out by Davision et al. (2007), which uses Extended Kalman Filter as back-
end, and tracks the sparse feature points on the front end. After this monocular visual 
SLAM which is based on key frame is developed. The most representative key frame 
in visual SLAM is parallel tracking and mapping (PTAM) which is pointed out by 
Klein and Murray (2007). PTAM is a simple and effective method to extract key 
frame, which implements tracking and constructing graph simultaneously, and it is 
the first time using non-linear optimisation as back-end. Mur-Artal et al. (2015) 
extends and improves PTAM, creatively pointing out three threads monocular 
VSLAM system consisted of two threads PTAM. The entire system is completed 
around ORB features, so it is called ORB-SLAM. The entire SLAM processes can 
be divided into tracking thread which real-time tracks feature point, optimising 
thread for partial bundle adjustment and loop closure detecting and optimising thread 
of global pose graph. Also, applying identical ORB feature to the three threads above 
makes them interact with each other, which diminishes the accumulated errors when 
constructing the graph, and guarantees the global consistence between motion 
trajectory and map. What the ORB-SLAM2 system improved on this basis is that it 
becomes applicable to monocular, binocular, and RGB-D modes, and has good 
versatility. ORB-SLAM2 algorithm framework is shown in Figure 2. 
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Figure 2 ORB-SLAM2 algorithm framework 

 

ORB-SLAM2 system is built with four parallel threads: tracking, local mapping, loop 
closure detecting and global BA optimising. Among them, the fourth thread executes 
after having the confirmation of the previous thread. Specific explanation for the four 
threads: 1) tracking: pre-processes the input to get features at the location of significant 
key point. 2) local mapping: executes partial BA to achieve local map’s regulation and 
optimisation. 3) loop closure detecting: this thread is divided into two steps: first, cycle 
inspection and verification; second, cyclically correction and optimisation of the posture 
map. Compared with monocular ORB-SLAM camera which might result scale drift, 
stereo/depth information makes the scale observable. Geometry verification and target 
optimisation are no longer needed while system deals with scale drift issues. Also, based 
on rigid body transformation instead of similarity, the global BA optimisation of the 
fourth thread is executed after the posture graph. 4) global BA: after the optimising of 
posture graphs, optimised system structure and motion result can be calculated by 
executing global BA. This system embeds a DBoM2-based position recognition model 
used for relocation, which can effectively avoid tracking failures, like occlusion. This 
system applies scenes graph re-initialisation and loop closure detection, etc. This system 
applies ORB feature to localising and constructing map, also it has good scale invariance 
and ideal rotation invariance. Besides, it can promptly extract features to match, so that it 
can meet the requirements of real-time operation.  

Since the monocular camera shoots the two-dimension projection of a three-
dimension object, which is a single picture; however, the movement and trajectory 
estimated by moving camera have uncertainties, so it cannot have the real depth for all 
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objects. This may result in disadvantages of low accuracy for three-dimensional 
constructions. At this time, binocular camera and RGB-D become useful. However, 
based on binocular camera current situation, computing power becomes the major 
problem, but SLAM based on RGB-D camera can capture depth information directly. 
This significantly reduces the difficulty of three-dimensional constructions. Henry et al. 
(2014a) first pointed out a method to complete three-dimensional construction in in-door 
environment by applying RGB-D camera. First, SIFT feature can be extracted in RGB 
picture, and then depth information can be found in depth image according to the feature 
point. Second, Random Sample Consensus, RANSAC, is applied to match 3D feature 
points with samples to calculate camera’s posture and rigid body motion transformation. 
RANSAC is suitable for situations with wrong data, which can deal with wrong matching 
data, and then Iterative Closest Point (ICP) algorithm is used to calculate a more precise 
posture applying initial values. RGB-D SLAM usually uses the ICP algorithm to estimate 
the postures and optimise the motion transferring matrix of the camera. Zhu and Liu 
(2018) gave the basic process of ICP algorithm as follows: 

1) Read point sets P1, P2. 

2) Find closest pair. Search for the point which is closest to P1 in P2 to form a closest 
pair; filter all closest pairs in the two-point sets.  

3) According to the two-point pair sets, calculate two coordinates of centre of gravity.  

4) According to the new point set, calculate the translation matrix t and rotation  
matrix R. 

5) Using R, t, to calculate P2’ which is a new point set after the motion. 

6) Calculate twice the absolute value of the difference between the sum of squared 
distances from P2 to P2’. If the absolute value is less than the threshold, it is 
convergence, and stops iterating; otherwise repeat 1–6 steps, until the error is 
convergence.  

Among genetic algorithm, RANSAC and ICP, etc., since ICP can directly deal with 
images depth information, and does not need to make any hypotheses and segments for 
the features of the object, ICP is the most widely used algorithm. After choosing the 
initial values, the algorithm has better convergence so that it can get global optimal 
values and achieve relatively precise results. That is the reason it becomes the main depth 
image matching algorithm (Li et al., 2009).  

Although feature extraction method has many advantages, the process of extracting 
the feature points is time consuming. Also only applying feature extraction method under 
real environment where there are few feature points, like a completely white wall, it will 
ignore useful image information, resulting in imprecise calculations of camera’s 
movements. 

1) Direct method: According to the number of pixels, direct method can be classified 
into three kinds: sparse, dense and semi-dense. For example, there is a space point of 
a known position. When P is from sparse key point, it is called sparse direct method, 
which can quickly calculate camera’s posture. Since this method only uses hundreds 
of pixels instead of calculating descriptors, it can only calculate the sparse 
reconstruction. When P is from parts of pixels, it is called semi-dense direct method. 
This method changes previous key points to pixels with obvious gradients ignoring 
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the position with little gradient changes. In this way, it can reconstruct a semi-dense 
map. When P is from whole pixels, it is called dense direct method which can 
reconstruct the complete map. However, dense direct method needs to use GPU 
programming, so it has relatively high demands for the hardware.  

Many people have been committed to the study of the direct method. Irani and Anandan 
(1999) gave a detailed and in-depth description of the direct method. Silveira et al. 
(2008) applied the direct method to visual SLAM and described the main advantages and 
limitations of the method. Subsequently, Forster et al. (2014) proposed the visual mileage 
calculation method based on the sparse monocular camera method (SVO for short). The 
precision of this algorithm has good robustness, is improved, and faster than current 
methods. This sparse method diminishes the demand of movement estimation feature 
extraction and robustness matching technology, and it is suitable for the condition that 
state estimation of mini car in GPS refusal environment. Right after this, Engel et al. 
(2014) proposed a large-scale direct SLAM, LSD-SLAM. This algorithm is composed by 
three parts: tracking link, depth map estimation and map optimisation, shown in Figure 3. 
In the algorithm, tracking link continuously tracks new camera images using image data 
from previous moment in initial process, so that it can calculate camera’s posture at 
current moment. In depth estimation process, tracking frame refreshes the used key 
frame. If the algorithm chooses not to adopt, then optimise current frame. By filtering 
multiple unit pixels, doing small baseline stereo contrast, and applying staggered space 
regularisation method, the depth information can be optimised. If camera’s movement 
speed is fast which makes distance of the movement far, then the current key frame will 
be optimised by the projection points of historical key frames. The relative distance and 
angle of the current key frame are weighted and combined, the depth map data is scaled, 
and the average inverse depth is normalised to 1. Based on this, the new generated frame 
will replace current key frame. When the reference tracking key is replaced, it will add to 
the global map in the process of map optimisation. For the not adopted frame, they will 
be used to deal with current frame’s data. In order to detect loop closure and scale drift, a 
method will be applied, which will use two images with different scale in algorithm 
(function) sim (3) to align, so that scale drift will be detected, and make estimation to the 
loop closure similarity transformation (including to the previews key frame). Comparing 
to the other methods, it can reconstruct the pose map of the key frame and the semi-dense 
and highly accurate 3D map of the environment in real time. Usenko et al. (2016) 
proposed a noble stereo camera direct vision-inertial odometer localisation method using 
vision and inertial data’s complementarity to improve the precise of three-dimensional 
map reconstructions. 

Newcombe et al. (2011) reconstructed a three-dimensional model by combining all 
depth information and image information which are all from Kinect into observation 
sense in real time, so that it can obtain the global maps. Specially, it allows to reconstruct 
the dense maps in real time, which makes a huge progress in AR field. Henry et al. 
(2012) adopted Joint Optimisation Algorithm. This algorithm makes RGB-D camera can 
be used in in-door mobile robot field. Kerl et al. (2014) proposed a VSLAM method 
which is based on direct dense RGB-D camera. This method has two kinds of errors: 
luminosity error and depth error, and it uses G2O optimisation library to calculate the 
best camera posture and uses entropy method to choose key frame for loop closure 
detection. This significantly reduces the path error. 
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Figure 3 LSD-SLAM algorithm framework 

 

Direct Method is faster than feature extraction method in executing time perspective, and 
it does not need to extract image features. However, direct method is easy to make error 
because of lighting environment, when grey level is constant. Feature extraction method 
will not reconstruct the map successfully, when camera doing rapid motion makes images 
blur so that the feature points loses. But Direct Method does not need feature point to 
obtain useful data, it uses prime gradient data to solve the camera rotation matrix (Henry 
et al., 2014b). Also, the prime gradient leads the optimisation’s direction, which requires 
the camera’s movement cannot be too large, so that the right posture can be calculated by 
most of the prime gradients. 

3 Perspectives 

After more than 30 years of research and hard work on SLAM system (including 
VSLAM) algorithms by predecessors, the SLAM (including VSLAM) system with Lidar 
and camera as the main sensor has been developed by leaps and bounds. Because of the 
limitations of indoor operation environment, GPS cannot be used to limit the localisation 
error, but SLAM has opened a door for the development of indoor robotics. Lidar SLAM 
already have a relatively mature method, but the high cost is always the primary issue 
(Wu and Sun, 2010). Low-priced VSLAM has become a popular research topic in recent 
years. No matter what kind of sensors is used alone, there are some certain defects. 
Therefore, multiple sensor fusion technology combining Lidar sensor, vision sensor and 
Inertial Measurement Unit (IMU) (Zhang, 2017; Lai et al., 2017)  has been developed, 
which not only can achieve the cooperative operation between various sensors, but also 
can improve the robustness. The researches and applications of multi-sensor fusion 
technology will bring a broader space to the fields of self-driving, robotics, augmented 
reality and virtual reality. Besides, SLAM also can be combined with deep learning to 
process images (Zhao et al., 2017), generate environmental semantic map, and improve 
the robot's human-computer interaction capabilities. This can boost intelligence level to a 
higher ground. 
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4 Conclusions 

Lidar sensors’ advantages are wide visual range, high precision which can measure the 
angle and distance of surrounding obstacles precisely, so that it can help robots to avoid 
obstacle, but the price of Lidar is expensive. In contrast, camera has advantages, like 
lower cost, lightweight, easy to install, convenient and flexible, can extract plenty of 
scenes information; therefore, visual SLAM becomes popular for SLAM researchers 
these years. Visual SLAM and density reconstruction use little CPU. It provides enough 
capability for application’s logic and processing of other sensors. By providing the 
situational awareness of robots or drones, depth camera can help solving SLAM 
problems better. 

The performance of visual SLAM depends on the environment it is situated in. The 
ideal conditions are: 

1) The light is enough and remains unchanged. Cameras must identify some features in 
the environment. Generally, a much more characteristic field of vision, like plenty of 
objects or geometric figures, can help to achieve the desired results. The worst 
scenarios include blank walls, floors or cellings. If there are reflective surfaces, like 
mirrors or glass, errors probably will occur. Also, direct sunlight will affect cameras’ 
determination, which will influence the precision of the mapping. 

2) When most parts in the environment remain unchanged, VSLAM works the best.  
If people or objects are moving, the performance of VSLAM will be influenced less 
or more. If the entire environment is moving, then VSLAM will not work at all. 

3) When the major work of cameras is transforming, not rotation, VSLAM works the 
best. When cameras have to rotate, VSLAM works better for the slow rotation.  

4) When a VSLAM system starts, cameras must stand still, and cameras need to have 
sufficient visual features. Sometimes, blank wall, floor, or celling may block 
cameras’ sight. This may mean the VSLAM system cannot be successfully 
initialised. 

Lidar and cameras have their advantages and disadvantages. It is easy for cameras  
to identify the identical objects. If cameras tell Lidar that the object in two frames  
before and after is the same object, the Lidar can calculate the object’s velocity and 
displacement between the two frames. Therefore, identifying and tracking can be easily 
implemented, so that more applicable and more precise maps can be achieved. 
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