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Abstract: Multiple sequence alignment (MSA) is an NP-complete problem
that is a challenging area from bioinformatics. Implementation of hidden
Markov model (HMM) is one of the most effective approach for executing
MSA, that performs training and testing of the sequence data so as to
obtain alignment scores with accuracy. The training of HMM is again an
NP-hard problem, hence it requires the implementation of metaheuristic
methods. Proposed work presents a bi-level artificial bee colony (BL-ABC)
algorithm to train hidden Markov models (HMMs) for MSA of proteins,
i.e., BLABC-HMM. The trained stochastic model created by BL-ABC
basically yields position-dependent probability matrices at higher prediction
ratios. The performance of proposed algorithm is compared with the
competitive state-of-the-art algorithms and different variants of particle swarm
optimisation (PSO) algorithm on protein benchmark datasets from pfam and
BAliBase database, and BLABC-HMM is found yielding better alignment
scores and prediction accuracy.
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1 Introduction

Multiple sequence alignment (MSA) is an intricate and substantial technique useful
to discover functional, structural and evolutionary information in biological sequences
and species. MSA acts as a strong factor in extrapolation of secondary and tertiary
structure, building of phylogenetic tree and distinguishing the conserved domain. The
laboratory tests with expensive apparatus are not efficient at time and cost factors. In
fact, they are likely to have investigational, machinery and manual errors. Therefore,
numerous computational efforts are carried out since last two decades in order to
cultivate softwares for executing quality alignments at time and space efficiency.
MSA is basically a technique of ordering the sequence molecules by introducing
gaps in such a manner that the columns may obtain maximum number of identical
molecules (i.e., nucleotides for DNA, RNA and amino acids for protein). MSA is an
NP-complete problem therefore several approaches have been established to resolve it.
These approaches are approximately categorised in four classes:

1 progressive approach

2 exact approach

3 consistency-based approach

4 iterative approach.

Progressive approaches as the name suggests progressively perform the alignment.
The alignment is built up by beginning with the utmost identical sequences and then
progressively aligning more distant sequences or groups. ClustalW (Thompson et al.,
1994) is the most prevalent software based on progressive approaches. They have
the drawback of being reliant on primarily provided alignment and scoring pattern.
Additional established approaches in this category include MultAlin (Corpet, 1998),
MUSCLE (Edgar, 2004), PileUp (Devereux et al., 1984) and MATCH-BOX (Depiereux
et al., 1997). The working of exact approaches follows dynamic programming (DP)
method (Needleman and Wunsch, 1970). In DP, the shortest track is explored in a
weighted direct acyclic graph. The former results are intended for finest alignment,
starting from smaller sub-sequences to construct the best likely alignment. DP is
unsuccessful for lengthy and large number of sequences (Lipman et al., 1989; Carillo
and Lipman, 1988). Consistency-based approaches aim to attain the maximum consensus
optimum pairwise alignment. Most widespread softwares in this category are T-coffee
(Notredame et al., 2000) and DIALIGN (Subramanian et al., 2005). Consistency-based
approaches have been revealed to be the most outperforming approach with respect
to accuracy. But this accuracy expenses a very high complexity of time. An iterative
algorithm initiates with a random alignment and iteratively enhances it up, until the
algorithmic stopping criteria are met. These approaches include simulated annealing
(SA) (Kim et al., 1994), hidden Markov model (HMM) training (Eddy, 1995; Lytynoja
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and Milinkovitch, 2003; Rasmussen and Krink, 2003), evolutionary algorithms and
swarm intelligence (SI) Blum and Merkle (2008) techniques. In general, iterative
algorithms are deficient at speed and consistency, Bucak and Uslan (2011) proposed
work belongs from this category.

Proposed algorithm bi-level ABC trains HMM for sequence alignment of protein
sequences, by employing ABC algorithm in two levels. In first level, it determines
estimation parameters and model length. The optimal results of level 1 containing
model length and trained parameters then move towards level 2 for constructing
a trained HMM of transition and emission probabilities. The results of proposed
algorithm are compared with state-of-the-art algorithms and our previously developed
algorithm variants. BLABC-HMM is found outperforming than all compared algorithms,
confirmed by statistical testing.

The classification of the work is as follows: Section 2 presents the details of
the ABC algorithm and HMM for MSA. Section 3 presents the details of proposed
bi-level artificial bee colony (BL-ABC) algorithm and its step-by-step procedure to train
the HMM for MSA. Section 4 contain the information about experimental setup and
benchmark datasets. The results are discussed in Section 5 and concluded in Section 6.

2 Introduction and objectives

2.1 Artificial bee colony algorithm

The recent development of nature-inspired swarm-intelligence-based metaheuristic
algorithms enthused many scientific communities to develop and solve complex
optimisation problems by using natural metaphors. Artificial bee colony (ABC) is
one such recently developed population-based algorithm used to solve many NP-hard,
continuous, large-scale combinatorial and numerical optimisation problems. ABC
algorithm was first introduced by Karaboga in 2005, which is inspired from the foraging
behaviour of real-honey bees and it is used to solve both continuous and discrete
optimisation problems. Karaboga considered an intelligent and foraging behaviour of
real honey bees to solve multimodal and multidimensional optimisation problems.

The algorithmic configuration of ABC is based on natural foraging behaviour of
real honeybee swarm. Generally there are three kinds of honeybee groups determined
towards the food search criteria, namely as follows:

1 Employed bees: Every individual exploited food sources are associated with the
employed bee memory.

2 Onlooker bees: In bee hive with a certain probability onlooker bee analyses the
waggle dance performed by employed bee and collects all the information
regarding nectar amount of the food sources.

3 Scouts bee: Without any assistance, scout bees explores the entire search space
and randomly find out the new food sources.

The ABC is uniformly divided into two equal halves, where first half constitutes
artificial employed bees and second half constitutes artificial onlooker bees. Since, each
and every individual food source is linked to an individual employed bee, therefore
the number of employed bees will be equal to the number of food sources. Several
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employed bees, who abandon their depleted food sources transforms into the scouts bee
and explores the environment in search of new food sources. The search process is
carried out in three main steps:

• Initialise

• REPEAT

a Movement of employed and onlooker bees towards their selected food
sources and evaluating there nectar amounts.

b Movement of scout bees in the environment. to search the new food sources
(solutions).

c Memorise all the best possible food sources (solutions) achieved so far.

• UNTIL (requirements are fulfilled).

Every cycle of the search is processed using three main steps: first, movement of
employed and onlooker bee directed towards the food sources and evaluating their
fitness value, i.e., nectar amount is calculated and then determining the movement of
scouts bee to randomly search the possible food sources. The position of food source
defines the possible solution for the optimised problem and the amount of nectar with
respect to the quality of solution linked with it. In onlooker bee phase, with certain
probability onlooker bee choose their food sources on the basis of the information
gain from the employed bee and to accomplish this purpose a fitness-based selection
technique is used to place the onlooker bee on food by using ‘roulette wheel selection’
method. Scouts are bees basically perturbed to find any kind of food sources and this
type of behaviour typifies the low average quality (fitness) of food source (solution) and
the low search costs.

2.2 HMM for MSA

HMM is one of the highly prevalent and accurate modelling techniques for MSA
proposed by Krogh et al. (1994). MSAs are modelled by training of HMMs, which
is an NP-hard problem. MSA is basically a technique of arranging the elements of a
row (i.e., sequence) in such a way that it may result in maximum number of matches
in columns. The more the number of matches in a column are, the more increment
in alignment score will be. A MSA is presented by Figure 1 for a sub-sequence of
PHYLIP nucleotide sequences taken from EMBL‐EBI services. The left most part in
the figure is the sequence ID of each sequences, which stays unique and right most
part contains the length of the aligned sequence. A few columns with symbol ‘-’ are
observable in the sequence. This symbol is named as gap which determines the state of
sequence, i.e., insertion or deletion. It means a sub-sequence has been inserted or deleted
due to the mutation, a genetic process. The columns containing coloured columns show
the relation between sequences, i.e., sequences in column colour dark blue are 100%
identical sequences, whereas sequences in column colour light blue are 70% identical
sequences, and sequences in column colour light green are sequences with less than
70% of similarity or no similarity. The sequences with highest match in the figure are
known as the match state sequences, whereas the sequences with gaps are in insertion
or deletion state. These states build HMM, by giving the classification of match, insert
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and delete states. HMMs are trained to know the states pattern of a specific family,
known as profile HMM.

Figure 1 Multiple sequence alignment (see online version for colours)

Figure 2 Profile HMM structure for MSA (see online version for colours)

Usually HMM training is performed by Baum-Welch algorithm (Rabiner, 1989). Other
meta-heuristic available are evolutionary algorithms (Slimane et al., 1996), simulating
annealing (Kim et al., 1994) and SI-based algorithms (Rasmussen and Krink, 2003).
Structure for developing a profile HMM of length four is presented by Figure 2. It
is build-up of three hidden states: match (M), insertion (I), deletion (D), and o + 2
additional states. Number of observables states remains o and number of dummy states is
two, i.e., start and end. The lowest line (with rectangular shapes) in figure characterises
a sequence with four match states. Middle line (with rhombus shapes) displays the
insertion states, whereas, top most line (with circular structure) illustrates deletion states.
Connection probability between the states is known as transition probability pij . Each
column represents a match state and every match or insert states excretes a symbol ηm,
ηm ∈ the set of all 26 amino acids for protein alignment (namely set AA). There is
a delete state consistent to every match state. Delete states are known as silent states
because they do not excrete any symbol. Also, the dummy states ‘begin’ and ‘end’ do
not excrete any symbol, hence delete states. Permissible transition in insertion states can
happen from the state insert to insert, hence insert states can contain several adjacent
columns.The trained HMM yields the trained sequence sets in form of MSA, known
as a profile HMM. Profile HMM is expedient in aligning the sequences of the group.
Transition from state ta to tb is expressed by transition probability matrix, as below:

pab = P (tb | ta), (1 ≤ a ≤ b ≤ n)

for
3∑

c=1

pac = 1 ∀a = 1, 2, . . . , n (1)

here c represents any state out from the three states match (M), insert (I) and delete (D).
The emission probability matrix ebc is:

ebc = eb(ηc) = P (ηc | tb), (1 ≤ b ≤ n, ηc ∈ AA)
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where
27∑
c=1

eac = 1 ∀a = 1, 2, . . . n (2)

here c is the number of emission symbol, which is equal to the number of elements in
AA (27 here).

A trained HMM model ξ is obtained by employing the training set (namely
S) containing N aligned sequences, i.e., S = (S1, S2, ..., SN ). Transition and
emission probability matrices obtained for trained HMM, deliver the maximum values of
probabilities of S created from ξ, i.e., P (S | ξ). The comprehensive training procedure
is explicated as follows:

Step 1 Length ascertainment of profile HMM: The frequent strategy concerning the
ascertainment of length of HMM remains to approximate the normal length
of nonaligned sequences. Model surgery is applied to modify the length after
training (Krogh et al., 1994).

Step 2 Update of estimation parameters: Transition and emission probabilities are the
estimation parameters that are updated by Baum-Welch algorithm in general.
The process is performed by training over the aligned/unaligned sequences.

Step 3 Assessment of alignment quality: Throughout the training process,
assessment of model is performed by calculating the log-likelihood score
(LLS). It is the measure of evaluating the quality of alignment.

LLS (S, ξ) =
1

N

N∑
i=1

log2
P (Si | ξ)
P (Si | ξr)

(3)

here ξr stands for the null-hypothesis model, a random model. The
normalised score for tth method is evaluated through:

µscore =
S(t)− Savg

SD
∀t = 1, 2, ...,M (4)

here µscore stands for the normalised score, Savg is the average score of all
the M methods’ score and S(t) is the score from tth method.

Step 4 Creation of profile HMM: The trained model ξ acts as the profile HMM, that
aims the groups of nonaligned sequences. For q nonaligned sequences
displayed as: Q = (Q1, Q2, ..., Qq), the structure of procedure is:

1 The trained model ξ yields the maximum probable state track MPs,
attained through Viterbi algorithm, for nonaligned sequences Qs,
∀s = 1, 2, ..., q.

2 This track provides linked emitted symbols, i.e., a gap is excreted by a
delete state, whereas an amino acid is excreted by an insert state.

3 Whenever complete probable state paths are obtained for all sequences,
the aligned sequences can be obtained.
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Step 5 Alignment score evaluation: The quality of an alignment is evaluated at the
basis of alignment scores of the alignments, i.e., sum-of-pairs score (SoPS)
and similarity score (SS). The sequences that do not have reference
alignment are evaluated by SS scheme and the sequences with reference
alignments, are evaluated at SoPS . The SS scheme is expressed as:

SS =
N−1∑
i=1

N∑
j=i+1

score(Si, Sj) (5)

here N is the number of sequences. The formulation of the models of affine
gap penalty contain GP as resultant gap penalty, Go gap open penalty and
GE as extension gap penalty along with number of gaps GL for a single gap
opening series:

GP = Go + (GL − 1) ∗GE (6)

All the gap penalties of all strings are added for the final gap penalty.
Resultant alignment score is formulated by:

Resultant alignment score = Alignment score−
∑

GP (7)

For a sequence set with N sequences containing ‘a’ columns in test set and
‘b’ columns in the reference set, the SoPS is represented as:

SoPS =

∑a
i=1 Si∑b
j=1 Sj

(8)

here Sj is the alignment score for the jth column in reference set and Si is
the alignment score for the ith column of test set, formulated as:

Si =
N∑

j=1,j ̸=k

N∑
k=1

pijk (9)

For the ith column, the function between any two residues from Si1, Si2, ...,
Sim results in pijk = 1 if residues Sij and Sik are aligned with each other in
the reference alignment, otherwise the results becomes pijk = 0.

3 Construction of profile HMM by BL-ABC algorithm

The training of HMM is performed in two levels by proposed BL-ABC algorithm.
Level 1 employs discrete version of ABC algorithm for determination of model length,
whereas level 2 is implemented on the optimal length parameters obtained from level 2.
The model length is re-estimated by σ and κ, so as to enhance the diversity and to
prevent trapping in local optima. Problem formulated in ABC architecture for HMM
contains the following terms:
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• Bee: Each Bee represents a profile corresponding to an alignment and its
transition and emission probability matrix. Hence, every bee has a path built-of
match (M), insert (I) and delete (D) states. Insertions comes in form of emitting
states and deletions as non-emitting states.

• Optimal solution: The parameters providing most suitable transition and emission
matrices that produce highest probabilities, are the optimal solutions.

The objective formulation is:

F = max(LLS) (10)

where LLS is calculated by equation (3) and is equal to the minimisation of negative
of the function f . Further, the fitness is evaluated for the objective function by:

Fitness =

{
1

1+F if F ≥ 0

1 + abs(F ) if F < 0

}
(11)

here abs stands for the absolute value. For t iterations, drand for generating discrete
random variable, h employed, h onlooker bees, X position, C cost, F1 fitness, n.X as
the new bee position, nc.F for the fitness of cth bee, pop as population, EB as employed
bees phase, OB as observer bees phase and SB as scout bees phase, step by step process
of BL-ABC is as follows:

Step 1 Initially the parameter values are determined for levels 1 and 2.

Step 2 Iterative process gets initiated:

for c = 1, 2, ..., t

EB()

OB()

SB()

endfor

Step 3 The process begin for the loop of level 1.

Level 1

Step 4 The loop firstly enters in the employed bees phase for determination of the
model length.

EB()

Step 5 Position update.

Here, length of the model for level 1 is initially determined by:

mj
1l(i) = ljavg + int(rand ∗ (ljmax − ljavg)) (12)
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here mj
1l(i): model length for ith bee and jth training sequence set from first

training set; ljavg: average sequence length; and l
j
max: highest length of

sequence from unaligned sequences. One bee is additionally added to the
group that serves as the profile acquired from Baum-Welch algorithm. The
jth training set of ith bee, presents a profile with specific model length.
e = drand(1, 2, ..., h), e ̸= c, ∀c = 1, 2, ..., h

n.X = popc.X + P ∗ (popc.X − pope.X) (13)

Step 6 Length modification with φ and ψ.

Length modification gets started for enhancing the matching between the
model and the inserted sequences. For this, population normalisation is
performed by modifying the length of the model related to each profile
using the model surgery parameters φ and ψ. If a specific column contains
delete in more than half of the paths, then that position is dismissed from
the model with the help of φ parameters. Whereas, if a specific xth column
contains more than half of the paths, then the average number of insertions
namely y is calculated. Now, after xth position, y new positions are created
with ψ parameter. The process is repeated until the process completion. The
training parameters are updated after each normalisation, subject to the
transition and emission probability constraints, as shown in equations (1)
and (2).

Step 7 Cost evaluation.

Step 8 Evaluate new bee cost n.C by:

n.C = LLS(n.X) (14)

Step 9 Now the loop enters into the onlooker bees phase.

OB()

Step 10 Fitness evaluation.

Evaluate the fitness by equation (11), further determine F1c, i.e.,

F1c = Fitness(popc)

c = Roulette wheel selection(F1c)

e = drand(1, 2, ..., h), e ̸= c ∀c = 1, 2, ..., h

Step 11 Probability measure.

Evaluate the probability for the selection of food source at popc by:

probc =
nc.F∑h
e=1 ne.F

(15)

Step 12 Position update.
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Update the new bee position n.X by equation (13).

Step 13 Length modification.

Apply step 6.

Step 14 Cost evaluation.

Step 15 Evaluate the new bee cost n.C by equation (14).

Step 16 Loop now enters into scout bees phase.

SB()

Step 17 Determination of popc.X .

popc.X = [drand(1, 2, ..., p)]1×h ∀c = 1, 2, ..., h

Step 18 Length modification.

Apply step 6.

Step 19 Determination of popc.C.

popc.C is obtained by:

popc.C = LLS(popc.X), (popc.LimitCount > Limit) (16)

Level 2

Step 20 Extract the model length for all bees from level 1 and employ it for profile
length of level 2.

Step 21 The loop for level 2, enters into the employed bees phase for determination
of the model length.

EB()

Step 22 For the predetermined length from level 1 is applied at the profile length,
for the optimal parameters of level 2.

b = rand(1, 2, ..., h), e ̸= c, ∀c = 1, 2, ..., h

n.X = popc.X + P ∗ (popc.X − pope.X) (17)

Step 23 Update n.C by equation (14).

Step 24 Onlooker bees phase starts.

OB()

Step 25 Evaluate the fitness by equation (11) for F1c, i.e.,

F1c = Fitness(popc)

c = Roulettewheelselection(F1c)

e = rand(1, 2, ..., h), e ̸= c ∀c = 1, 2, ..., h
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Step 26 Evaluate the probability for the selection of food source at popc by equation
(15).

Step 27 Update the new bee position n.X by equation (13).

Step 28 Evaluate the new bee cost n.C by equation (14).

Step 29 The loop now enters into scout bees phase.

SB()

Step 30 Position determination.

popc.X = [rand(1, 2, ..., p)]1×h ∀c = 1, 2, ..., h

Step 31 popc.C is obtained by equation (16).

The training dataset (Ts) are separated into two parts for both the levels in order
to carry out cross training, whereas if training sets are not available, then same
sequences can be used in both the levels. This helps in sustaining the model structure
and ensuring the most advantageous compression from HMM. The trained model
can now be implemented to find out the best MSA of new nonaligned sequence.
The probability P (unaligned sequences|HMM) is evaluated by Viterbi/forward
algorithm by obtaining the ideal track regarding the best alignment. The strategy
taken up in Yoon and Vaidyanathan (2008) was to create a typical profile followed
by measuring the maximum distance between the matching amino acids/nucleotides,
whereas TLPSO-HMM was implemented to train the HMM in Lalwani et al. (2015).
Proposed work is different in the profile HMM construction method, i.e., BL-ABC
constructs the conventional profile HMM here. This helps in obtaining finer estimation
parameters, finer training, better HMM profile as compared to Baum-Welch as shown
in next section.

4 Experimental setup

4.1 Benchmark dataset

The performance of BL-ABC has been evaluated on two benchmark datasets from
protein families, i.e., sequence set P1 and P2. Sequence sets P1 do not contain the
reference sets, whereas P2 contains them. The details of P1 and P2 datasets are
presented by in Table 1. Dataset P1 is drawn from pfam (Sonnhammer et al., 1997),
whereas P2 is drawn from BAliBase database (Thompson et al., 1999). P1 was randomly
spawned by Rose (Stoye and Evers, 1998; Sun et al., 2012). The sequence sets of P1

are separated into training and validation sets, i.e., Ts and Vs. 150 sequences are taken
in Ts, that are divided into half-half parts for levels 1 and 2 respectively. Rest of the
sequences are taken as the validation set, whereas, P2 is not separated into Ts and
Vs due to limited quantity sequences. lavg , lmin and lmax stand for average, minimum
and maximum sequence lengths respectively. Here, APSI stands for average sequence
identity, a measure of similarity between sequences. The scoring scheme employed for
dataset P1 is SS [equation (5)] and SoPS [equation (8)] for dataset P2.
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Table 1 Benchmark datasets of protein families

Dataset Name Ts Vs lavg(lmin, lmax)

P1 G5 75 127 79 (67, 88)
CagY M 75 399 31 (24, 35)
Interferon 75 225 164 (23, 200)
Biopterin H 75 193 170 (13, 359)

Dataset Name N APSI (%) lavg(lmin, lmax)

P2 1aboA 5 <25 59 (49, 80)
1idy 5 <25 54 (49, 58)
451c 5 20–40 78 (70, 87)
1krn 5 >35 78 (66, 82)
1bbt3 5 <25 176 (149, 192)
kinase 5 <25 270 (263, 276)
1pii 4 20–40 252 (247, 259)
5ptp 5 >35 232 (222, 245)
gal4 5 <25 362 (335, 395)
1ajsA 4 <25 370 (358, 387)
glg 5 20–40 468 (438, 486)
1taq 5 >35 865 (806, 928)

4.2 Parameter settings

The parameters setting for BL-ABC, performed in MATLAB programming environment
is as follows: limit = 20, no. of onlookers = 15, no. of function evaluations = 2,000,
population size = 50, and dimension = no. of sequence sets. Similarly, SS method
parameters are: Alignment scores evaluated from BLOSUM62 matrix: Go = –11 and
GE = –2.

5 Experimental results and discussion

The performance of BL-ABC is tested against the particle swarm optimisation (PSO)
algorithm variants and competitive state-of-art algorithms (Rasmussen and Krink, 2003).
Tables 2 and 3 outline the simulation outcomes for protein sequence sets P1 and P2.
The results included in comparison are taken from the several PSO algorithm variants
namely standard PSO (SPSO), quantum-behaved PSO (QPSO) and diversity maintained
QPSO (DMQPSO), as well as from the state-of-art algorithm, i.e., ClustalW (CW) and
Baum-Welch (BW). The result included in comparison with proposed BL-ABC, are
taken from Sun et al. (2012).The evaluation criteria are average LLS, SS and SoPS and
µscore for Ts and Vs. The characters in bold faced letter represent the best results in
respective category. Table 2 shows the comparative results of proposed BLABC-HMM
at the grounds of LLS and SS for dataset P1, whereas Figure 3 presents the µscore

comparison. Table 3 presents the similar kind of comparison for dataset P2.
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Table 2 Comparison for HMM LLS and SS for P1 dataset

Protein Algorithm LLS (TS) LLS (VS) SS

G5 SPSO 101.45 141.45 176
QPSO 154.94 154.94 229

DMQPSO 173.94 173.94 230
ClustalW - - 189

Baum-Welch 103.146 78.357 192
BLABC-HMM 197.18 197.18 242

CagY M SPSO 20.090 20.090 –120
QPSO 28.255 20.255 –106

DMQPSO 31.649 31.649 –103
ClustalW - - –142

Baum-Welch 11.178 12.832 –138
BLABC-HMM 36.67 36.67 –97.03

Interferon SPSO 141.736 95.736 3,772
QPSO 179.549 179.549 4,136

DMQPSO 188.63 188.63 4,835
ClustalW - - 3,226

Baum-Welch 158.314 102.652 3,294
BLABC-HMM 203.437 203.437 4,983

Biopterin H SPSO 179.521 162.292 3,924
QPSO 179.549 179.549 4,328

DMQPSO 201.284 188.63 4,926
ClustalW - - 4,015

Baum-Welch 162.431 171.281 4,113
BLABC-HMM 242.18 222.01 5,092

Table 3 Comparison for HMM LLS and SoPs for dataset P2

Protein Algorithms LLS µscore SoPS µscore

1aboA SPSO 63.8205 –0.5818 0.6974 –0.5696
QPSO 84.2931 0.4118 0.7519 0.3254

DMQPSO 86.1835 0.5036 0.7728 0.6686
ClustalW - - 0.7140 –0.2970

Baum-Welch 46.3814 –1.4283 0.6418 –1.4826
BLABC-HMM 98.3612 1.0947 0.8146 1.3551

1idy SPSO 59.7932 –0.4693 0.5658 –1.0009
QPSO 71.4864 0.1893 0.7763 0.4892

DMQPSO 80.5751 0.7012 0.8158 0.7688
ClustalW - - 0.705 –0.0156

Baum-Welch 42.0576 –1.4683 0.5132 –1.3734
BLABC-HMM 86.7142 1.0470 0.8671 1.1319
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Table 3 Comparison for HMM LLS and SoPs for dataset P2 (continued)

Protein Algorithms LLS µscore SoPS µscore

451c SPSO 89.1605 0.6481 0.4519 –4.6011
QPSO 106.3024 1.4801 0.5027 –3.7669

DMQPSO 90.3075 0.7038 0.6301 –1.6748
ClustalW - - 0.7190 –0.2149

Baum-Welch 68.3522 –0.3619 0.3989 –5.4715
BLABC-HMM 98.9841 1.1249 0.8042 1.1843

1krn SPSO 81.9846 0.7806 0.7863 0.5600
QPSO 103.6417 2.0005 0.9585 1.7790

DMQPSO 110.5327 2.3886 0.9968 2.0501
ClustalW - - 1.0000 2.0728

Baum-Welch 69.0222 0.0505 0.8182 0.7858
BLABC-HMM 121.7531 3.0206 1.0000 2.0728

1bbt3 SPSO 169.2160 4.5337 0.6219 –1.8094
QPSO 211.4329 6.5828 0.7146 –0.2871

DMQPSO 236.8514 7.8165 0.7253 –0.1114
ClustalW - - 0.6380 –1.5450

Baum-Welch 172.3816 4.6874 0.5347 –3.2414
BLABC-HMM 303.9867 11.0751 0.8751 2.3486

kinase SPSO 211.2745 8.0630 0.3061 –2.8395
QPSO 356.8937 16.2652 0.5753 –0.9337

DMQPSO 403.8526 18.9102 0.6053 –0.7214
ClustalW - - 0.7360 0.2039

Baum-Welch 214.9693 8.2711 0.2268 –3.4008
BLABC-HMM 3498.9931 324.2690 30.8036 30.6824

1pii SPSO 277.0576 9.7680 0.2738 –7.5259
QPSO 328.1439 12.2476 0.6372 –1.5582

DMQPSO 310.1645 11.3749 0.7064 –0.4218
ClustalW - - 0.8640 2.1663

Baum-Welch 213.0459 6.6611 0.1647 –9.3175
BLABC-HMM 403.6541 15.9126 0.8542 2.0054

5ptp SPSO 311.5647 13.7120 0.6831 –0.1706
QPSO 428.8537 20.3184 0.8572 1.0619

DMQPSO 504.1372 24.5588 0.9074 1.4172
ClustalW - - 0.9660 1.8321

Baum-Welch 266.5928 11.1789 0.6053 –0.7214
BLABC-HMM 605.4531 30.2655 0.9434 1.6721

gal4 SPSO 389.3147 15.2166 0.3185 –6.7918
QPSO 484.5218 19.8377 0.5294 –3.3284

DMQPSO 567.3841 23.8595 0.5784 –2.5238
ClustalW - - 0.4830 –4.0904

Baum-Welch 347.2819 13.1765 0.2017 –8.7099
BLABC-HMM 623.2317 26.5702 0.7081 –0.3939

1ajsA SPSO 381.6639 17.6604 0.3245 –2.7092
QPSO 483.7352 23.4096 0.5914 –0.8198

DMQPSO 536.2753 26.3690 0.6031 –0.7369
ClustalW - - 0.5710 –0.9642

Baum-Welch 326.4896 14.5526 0.2864 –2.9789
BLABC-HMM 587.0945 29.2314 0.7107 0.0248
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Table 3 Comparison for HMM LLS and SoPs for dataset P2 (continued)

Protein Algorithms LLS µscore SoPS µscore

glg SPSO 395.1211 15.4984 0.6684 –1.0458
QPSO 486.5318 19.9352 0.8569 2.0497

DMQPSO 589.0737 24.9123 0.8895 2.5851
ClustalW - - 0.9410 3.4308

Baum-Welch 380.7306 14.8000 0.5691 –2.6765
BLABC-HMM 631.0652 26.9504 0.9245 3.1598

1taq SPSO 763.7521 39.1818 0.6931 –0.0998
QPSO 875.6509 45.4846 0.7953 0.6237

DMQPSO 953.9467 49.8947 0.8504 1.0137
ClustalW - - 0.9630 1.8108

Baum-Welch 729.3726 37.2454 0.6453 –0.4382
BLABC-HMM 989.6754 51.9072 0.9002 1.3663

Figure 3 Comparison of µscore for P1 dataset (see online version for colours)

The results for datasets P1 and P2 from Tables 2, 3 and Figure 3 show that
BLABC-HMM is generally an out-performer than compared algorithms and methods,
at the criteria of alignment quality (evaluated by SS , SoPS and µscore) and prediction
accuracy (evaluated by LLS). The algorithm is yielding higher prediction ratios even at
lower APSI scores.

6 Conclusions

Proposed approach develops BL-ABC algorithm for training HMM, in order to perform
MSA of proteins. The structure of the model is preserved whereas the best compression
is obtained along with improvement in the prediction accuracy. The training set is
comprised of training and cross training sets in proposed methodology. First level
of the algorithm provides the optimised model length, that is carried forward to the
second level for obtaining the optimal parameters for the complete stochastic model.
Proposed BL-ABC algorithm is an effective framework for protein MSA as confirmed
by the alignment quality and prediction accuracy results of BL-ABC in comparison
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to the state-of-art and PSO-based algorithms. Hence, BL-ABC algorithm is proven
efficient in building HMM at better prediction accuracy. As a future scope of proposed
work, implementation of BLABC-HMM in parallel computing environment for handling
highly complex protein sequences can be explored.
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