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Abstract: In this paper, numerical solution of boundary value problems 
(BVPs) of nonlinear ordinary differential equations (ODEs) by the collocation 
method is considered. Of course, to avoid solving systems of nonlinear 
algebraic equations resulting from the method, residual function of the 
boundary value problem is considered and an unconstrained optimisation 
model is suggested. Particle swarm optimisation (PSO) algorithm is used for  
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solving the unconstrained optimisation problem. In addition, convergence 
properties of the Chebyshev expansion are studied. The scheme is tested on 
some interesting examples and the obtained results demonstrate reliability and 
efficiency of the proposed hybrid method. 

Keywords: nonlinear boundary value problems; ordinary differential 
equations; collocation method; Chebyshev polynomials; particle swarm 
optimisation; convergence analysis. 
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1 Introduction 

Ordinary differential equations (ODEs) appear in modelling various physical phenomena 
(Cheng et al., 2011), and depending on their conditions, they are classified under the two 
categories of initial value problems (IVPs) and boundary value problems (BVPs). 
Generally, it is extremely difficult to find analytical solutions for BVPs, and therefore 
some numerical methods must be utilised. 

During the last decades, many numerical methods have been introduced to solve 
BVPs. Cuomo and Marasco (2008) proposed a numerical method to solve nonlinear two-
point BVPs by using the finite difference method. In Sgura (2013), finite difference 
method was introduced for the numerical solution of BVPs with non-smooth coefficients. 
Also, Erdogan and Ozis (2011) proposed a new kind of finite difference method for 
special second order nonlinear two-point BVPs. Adomian decomposition method has 
been used for obtaining approximate solutions of BVPs (Ebaid, 2011). A collocation 
method based on B-Splines was introduced to solve nonlinear two-point BVPs in 
(Rashidinia and Ghasemi, 2011). Temimi and Ansari (2011) proposed an iterative 
method for solving nonlinear second order BVPs. Also, variational iteration method was 
introduced to obtain solutions of BVPs (Dumitru et al., 2013; Lu, 2007; Mohyud-Din  
et al., 2009; Zhang, 2009). Some works about quasi-linearisation method have been 
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presented in (Ahmad et al., 2001; Vatsala and Melton, 2006). A numerical method based 
on uniform Haar wavelets was introduced for numerical solution of second order BVPs 
(Ul-Islam et al., 2010). In Zhang and Lin (2015) a numerical method based on a 
combination of the reproducing kernels and least square method was introduced for 
solving nonlinear BVPs. Homotopy analysis method (HAM) (Yildrim and Mohyud-Din, 
2010], and homotopy perturbation method (Mohyud-Din et al., 2012; Sikander et al., 
2017) used to solve BVPs. During the last years, some spectral methods have been 
proposed in order to solve BVPs numerically (Doha et al., 2011; Ezz-Eldien, 2018, 2019; 
Ezz-Eldien and Doha, 2019). To see more results, see Ezz-Eldien et al. (2018),  
Ezz-Eldien and El-Kalaawy (2018), Merdan et al. (2012), Merdan et al. (2013),  
Mohyud-Din et al. (2015), Shakeel et al. (2014), Ul-Hassan and Mohyud-Din (2016). 

In this paper we consider the following two-point BVPs: 

( , , ), [ , ]u f x u u x a b′′ ′= ∈  (1) 

( ( ), ( ), ( ), ( )) 0,G u a u b u a u b′ ′ =  (2) 

where f  and G  are given nonlinear functions. 
Here, for solving the above BVPs, the collocation method is applied by using  

the Chebyshev polynomials. Also, by considering residual function of BVP, an 
unconstrained optimisation problem is introduced and we use particle swarm optimisation 
(PSO) algorithm to select appropriate coefficients for the Chebyshev series expansion  
of the solution. Furthermore, convergence properties of the Chebyshev expansion are 
studied. Moreover, the efficiency of the proposed hybrid method is shown by some 
examples. 

This paper is organised as follows: In Section 2, we discuss about the Chebyshev 
polynomials and their spectral accuracy in approximation theory. In Section 3, we review 
a summary of PSO algorithm. Then, in Section 4, the hybrid collocation method for 
solving nonlinear BVPs is introduced. In Section 5, we present the results of numerical 
experiments. 

2 Orthogonal Chebyshev polynomials and their properties 

Consider the first kind orthogonal Chebyshev polynomials 0{ }k kT ∞
= , which are 

eigenfunctions of the singular Sturm-Lioville problem: 
2

2

2

d d1 ( ) ( ) 0, 1 1, 0,1,
d d 1

n n
nx T x T x x n

x x x
⎛ ⎞− + = − < < =⎜ ⎟
⎝ ⎠ −

…  (3) 

The Chebyshev polynomials are orthogonal with respect to the 2
wL  inner product on the 

interval [ 1,1]−  by the weight function 2( ) 1 1w x x= − , i.e.: 

1

1
( ), ( ) ( ) ( ) ( ) ,

2
m

n m m n mnw
T x T x T x T x w x dx

πγ
δ

−
= =∫  (4) 

where mnδ  denotes the Kronecker delta and 
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2 0
.

1 1m

m
m

γ
=⎧

= ⎨ ≥⎩
 (5) 

Let u  be a real arbitrary function on [ 1,1]− , the Chebyshev expansion of which is  
given by: 

0
( ) ( ),n n

n
u x a T x

∞

=

= ∑  (6) 

where 2 ( ), ( ) .n n w
n

a T x u x
πγ

=  If the infinite series in equation (6) is truncated, then it 

can be written as, 

0
( ) ( ) ( ),

N

N n n
n

u x P u x a T x
=

= ∑�  

where {0}.N ∈ ∪`  
Now, we investigate the convergence analysis of the Chebyshev expansion. 

Theorem 2.1 (Mason and Handscome, 2003): If u  is continuous and either is of 
bounded variation or satisfies a Dini-Lipschitz condition on[ 1,1],−  then its Chebyshev 
series expansion is uniformly convergent. 

Theorem 2.2: If the Chebyshev series expansion of a continuous function u  be a 
uniformly convergent series, then the series converges to u  in 2 [ 1,1].wL −  

Proof: Suppose 

0

( ) ( ),n n
n

g x a T x
∞

=

= ∑  (7) 

where  

2 ( ), ( ) .n n w
n

a T x u x
πγ

=  

By multiplying both sides of expansion (7) in 2( ) 1 ,mT x x−  where {0,1,...}m∈  and 
integration on ( 1,1)− we have: 

1 1

01 12 2

1

0 1 2

( ) ( )
( ), ( ) ( ) d ( ) d

1 1
1                       ( ) ( ) .

21

m m
m n nw n

m
n n m mn

T x T x
T x g x g x x a T x x

x x

a T x T x dx a
x

πγ

∞

=− −

∞

= −

= =
− −

= =
−

∑∫ ∫

∑ ∫
 

So (2/ ) ( ), ( )m m m w
a T x g xπγ= . It implies that u  and g  have the same expansion with 

respect to the Chebyshev polynomials, and so .u g=  □ 
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Theorem 2.3: Let u  be an arbitrary function on [ 1,1]−  with bounded second derivative, 
i.e., | ( ) | ,u x M′′ ≤  then the Chebyshev series expansion of u  is uniformly convergent to 

,u  i.e.,. 
0

( ) ( ).n n
n

a T x u x
∞

=

=∑  Moreover, we have 2
1

2 .
1N

n N

Mu P u
n

∞

= +

− ≤
−∑  

Proof: By considering the Chebyshev expansion for 0,n =  we have  

1 0
0 1 2

( ) ( )1 d ,
1

u x T x
a x

xπ −
=

−
∫  so 

1 10
0 1 12 2

( ) ( )1 1 | ( ) || | d d .
1 1

u x T x u xa x x
x xπ π− −

= ≤ < ∞
− −

∫ ∫  

Also, for 1,n =   

1 1
1 1 2

( ) ( )2 d
1

u x T xa x
xπ −

=
−

∫ , so 
1 11

1 1 12 2

( ) ( )2 2 | ( ) || | d d .
1 1

u x T x xu xa x x
x xπ π− −

= ≤ < ∞
− −

∫ ∫  

Now for n N∈  and 2,n ≥  we have  

1

1 2

( ) ( )2 d
1

n
n

u x T x
a x

xπ −
=

−
∫  

by considering cos( )x θ=  we have 

0

2 (cos( ))cos( )d .na u n
π

θ θ θ
π

= ∫  

So by using integration by parts, we get: 

0

0 0

0 0

2| | (cos( )) cos( )d

1 1 1 1(cos( ))sin((1 ) )sin( )d (cos( ))sin((1 ) )sin( )d
1 1

1 1 1 1(cos( ))sin((1 ) )sin( )d (cos( ))sin((1 ) )sin( )d ,
1 1

na u n

u n u n
n n n n

u n u n
n n n n

π

π π

π π

θ θ θ
π

θ θ θ θ θ θ θ θ
π π

θ θ θ θ θ θ θ θ
π π

=

′′ ′′= − − +
− +

′′ ′′≤ − + +
− +

∫

∫ ∫

∫ ∫

 

since | ( ) | ,u x M′′ ≤  we have: 

2

2| | ,
( 1) ( 1) 1n
M M Ma

n n n n n
≤ + =

− + −
 

and 

2
2 2

2| | ,
1n

n n

Ma
n

∞ ∞

= =

≤ < ∞
−∑ ∑  

which shows that 
2 nn
a∞

=∑  is absolutely convergent. Also, we have: 

2 2 2
| ( ) | | || ( ) | | | .n n n n n

n n n
a T x a T x a

∞ ∞ ∞

= = =

≤ ≤ < ∞∑ ∑ ∑  
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By considering theorem 2.2, the series 
0

( )n nn
a T x∞

=∑  is convergent to ( ).u x  Moreover, 
we have: 

2[ 1,1] [ 1,1]1 1 1 1

2max | ( ) | max | || ( ) | | | ,
1N n n n n nx xn N n N n N n N

Mu P u a T x a T x a
n

∞ ∞ ∞ ∞

∈ − ∈ −= + = + = + = +

− = ≤ ≤ ≤ < ∞
−∑ ∑ ∑ ∑  

which completes the proof. □ 

Corollary: If u  be an arbitrary function on [ 1,1],−  with bounded kth derivative,  

i.e., ( ) ( ) ,ku x M≤  where { }2,3,... ,k ∈  then the Chebyshev series expansion of u  is 

uniformly convergent to u  and | ( ) ( ) | ( )k
Nu x P u x O N −− =  for all [ 1,1].x∈ −  

It must be noted that if [ 1,1],u C∞∈ −  then the truncation error Nu P u−  approaches zero 
faster than any negative power of the N  number, as that N  tends to infinity (Canuto  
et al., 1998). This phenomenon is usually referred to as ‘spectral accuracy’ (Gottlieb and 
Orzag, 1979). 

In continue, the Chebyshev series expansion of the first and the second derivatives of 
a real function u  are presented. 

Theorem 2.4 (Canuto et al., 1998): Suppose that 
0

( ) ( ),n n
n

u x a T x
∞

=

= ∑  then we  

have (1)

0
( ) ( )n n

n
u x a T x

∞

=

′ = ∑  and (2)

0
( ) ( ),n n

n
u x a T x

∞

=

′′ = ∑  where (1)

1
 

2
n p

p nn
p n odd

a pa
γ

∞

= +
+

= ∑  and 

(2) 2 2

2
 

1 ( ) .n p
p nn
p n even

a p p n a
γ

∞

= +
+

= −∑  

3 Particle swarm optimisation 

PSO is a population based stochastic optimisation technique developed by Kennedy and 
Eberhart (1995), inspired by social behaviour of bird flocking or fish schooling (Eberhart 
and Kennedy, 1995; Kennedy and Eberhart, 1995, 2001). 

In PSO, each single solution is a bird in the search space, which is called a particle. 
Each particle has a fitness value, which is evaluated by the fitness function to be 
optimised and velocities which directed the flying of the particles. 

In PSO, each particle will change its position according to its personal experience  
and the experiences of the whole society. Social sharing information between  
particles has a series of evolutionary advantages, a hypothesis which is the basis of PSO 
algorithm. 

PSO is initialised with a group of random particles or solutions. In every  
iteration, each particle needs its best fitness, which it has achieved so far.  
This value is called pbest. Also, another best value is needed which is the best value, 
obtained so far by any particle in the population. This best value is the global best value 
and is called gbest. 
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Suppose we have m  particles and each particle is treated as a point in the  
D-dimensional searching space. We will show the position, velocity and the best  
position of ith particle in searching space, respectively, by 1 2( , ,..., )i i i iDX X X X= , 

1 2( , ,..., )i i i iDV V V V=  and 1 2( , ,..., )i i i iDP P P P=  for 1,..., ,i m=  and the global position in 
searching space by 1 2( , ,..., ).g g g gDP P P P=  

Velocity and position of each particle is updated at each time step by the recursive 
relations: 

1 1 2 2( 1) ( ) ( ( )) ( ( )),i i i i g iV t V t c r P X t c r P X t+ = + − + −  (8) 

and 

( 1) ( ) ( 1),i i iX t X t V t+ = + +  (9) 

where 1c  and 2c  are learning factors, the recommended choice for both of them is 2 
(Kennedy and Eberhart, 1995), 1r  and 2r  are two random numbers in (0,1) . 

The pseudo code of the general PSO algorithm is as follows (Das et al., 2008): 

Algorithm 1 The pseudo code of the general PSO algorithm 
Generate an initial population by random position and velocity; 
While the termination condition is not seen do 

 For 1i =  to number of particles; 

 Evaluate the fitness; 

 Update iP  and gP ; 

Update the velocity and position of each particle by (8) and (9); 

 Increase i ; 

 End for 
End while 

4 Proposed hybrid collocation method and PSO algorithm for nonlinear 
BVPs 

In this section, the implementation of the collocation method for nonlinear BVP (1) and 
(2) is presented. 

The spectral methods for solving this class of equations is based on the expansion of 
the solution function u  for (1) and (2) as a finite sum in terms of smooth basis functions, 
as below: 

0
( ) ( ),

N

n n
n

u x a xφ
=

≈ ∑�  

in which { }i iφ  represents a family of orthogonal polynomials on [ , ].a b  In this paper,  
we consider the Chebyshev polynomials of the first kind on [ 1,1].−  

Now, we should compute the coefficients of the Chebyshev series expansion, 
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0
( ) ( ),

N

i i
i

u x a T x
=

≈ ∑�  (10) 

where 0{ }N
i iT =  are the Chebyshev polynomials as mentioned in Section 2. By substituting 

equation (10), respectively in equation (1) and its boundary conditions we define the 
residual function: 

(2) (1)
0 1

0 0 0
( , ,..., , ) ( ) , ( ), ( ) .

N N N

N i i i i i i
i i i

F a a a x a T x f x a T x a T x
= = =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (11) 

Moreover, we assume: 

(1) (1)

0 0 0 0
( ), ( ), ( ), ( ) 0.

N N N N

i i i i i i i i
i i i i

G a T a a T b a T a a T b
= = = =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  (12) 

In the standard collocation method, by considering the residual function (11), the 
boundary condition (12) and choosing 0{ }N

k kx =  as a set of collocation points, we try to 
obtain a nonlinear algebraic system with 1N +  equations and 1N +  unknown parameters 
(Hosseini, 2006a, 2006b). Since solving a nonlinear algebraic system is facing many 
problems including the choice of a suitable starting point, in this paper, we introduce a 
nonlinear unconstrained optimisation problem for finding the coefficients of the 
Chebyshev series expansion, as bellow. 

For given large natural number ,M  we choose 1{ }M
k kx =  as a set of collocation points 

and define a general residual function by: 

2
2 (1) (1)

0 1
1 0 0 0 0

1 ( , ,..., , ) ( ), ( ), ( ), ( ) 0 .
M N N N N

N k i i i i i i i i
k i i i i

V F a a a x G a T a a T b a T a a T b
M = = = = =

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑  

 (13) 

Now, according to equation (13), we define the nonlinear unconstrained optimisation 
problem: 

min  ,
s.t.,   i

V
a ∈\

 (14) 

This optimisation problem is solved by using PSO algorithm, and we find the appropriate 
coefficients for the Chebyshev series. 

5 Numerical results 

In this section, we present some examples and use the proposed hybrid method to solve 
them. 

In our study, we choose the initial population for PSO with 20 particles, and each 
particle is random numbers for coefficients in the Chebyshev series expansion. It should 
be noted that N  is the number of basis functions and we set 50M =  and  

cosk
kx
M
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 0,1,...,50,k =  
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also, we test the proposed method 20 times for all examples. 

Example 1: Consider the following nonlinear Dirichlet BVP (Cuomo and Marasco, 
2008): 

2 2cos sin 2 cos(1 )sin(2 ) 2( 1) 2, [ 1,1]y y y y t t t t′′ ′= − + + − − − + ∈ −  (15) 

( 1) 0, (1) 0,y y− = =  (16) 

We solve this example by the proposed hybrid method with 2N = , and reach 
2( ) 1y t t= − , which is also the exact solution for this problem. 

Example 2: Consider the following BVP (Cuomo and Marasco, 2008): 

2 2 1 1sin cos cos(4 1) sin(1 12 ) 24 , [ , ]
2 2

y y y t t t t′′ ′= − − + − − − + ∈ −  (17) 

1 1 1 12, 2.
2 2 2 2

y y y y⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′− − − = − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (18) 

We solve this problem with 3,N =  and we obtain 2( ) (4 1),y t t t= −  which is the exact 
solution for this problem. 

Example 3: Consider the following BVP (Cuomo and Marasco, 2008): 
2 2(1 ( ) ), [0,1]y y tα′′ ′= − + ∈  (19) 

(0) 0, (1) 0.y y= =  (20) 

The exact solution of this problem is: 

2

cos ( 0.5)ln
cos(0.5 )

( ) .

t

y t

α
α

α

⎛ ⎞−
⎜ ⎟
⎝ ⎠=  (21) 

We consider 1/7α =  to solve this problem. Absolute error of mean and the best  
solution for different number of basis function which have been obtained by the proposed 
method and the absolute error obtained by the standard colocation method are shown in 
Table 1. 

Table 1 Results of absolute error for Example 3 

N 
Absolute error of mean 

solution value 
Absolute error of the best 

solution value 
Absolute error of the standard 

collocation method 
4 1.17 × 10–5 6.57 × 10–7 5.42 
8 1.06 × 10–6 4.38 × 10–8 1.13 
12 6.46 × 10–8 3.50 × 10–9 5.11 × 10–3 

The graph of the absolute error of the best solution obtained by the proposed hybrid 
method for 12N =  is shown in Figure 1. 
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Figure 1 Absolute error of the best solution for N = 12, in example 3 

 

Example 4: Consider the following BVP (Jain et al., 2016): 

31 2e , [0,1]
1

yy t
t

′⎛ ⎞′ = ∈⎜ ⎟+⎝ ⎠
 (22) 

(0) 0, (1) ln(2).y y= = −  (23) 

The exact solution is: 

1( ) ln .
1

y t
t

⎛ ⎞= ⎜ ⎟+⎝ ⎠
 (24) 

Absolute error of mean and the best solution for different number of basis function and 
the absolute error obtained by the standard collocation method are shown in Table 2.  
The graph of the absolute error of the best solution for 7N =  is shown in Figure 2. 

Example 5: Consider the following BVP (Kumar, 2003; Zhang and Lin, 2015): 

e 0, (0,1)yty y t t′′ ′+ + = ∈  (25) 

(0) 0, (1) 0.y y′ = =  (26) 

The exact solution is: 

2

4 2 2( ) 2 ln .
(3 2 2) 1

y t
t

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

 (27) 

Absolute error of mean and the best solution for different number of basis function, the 
absolute error obtained by the standard collocation method and the absolute error of the 
method (Zhang and Lin, 2015) which was based on combination of the reproducing 
kernel method and least square method are shown in Table 3. 
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Table 2 Results of absolute error for Example 4 

N 
Absolute error of mean 

solution value 
Absolute error of the best 

solution value 
Absolute error of the standard 

collocation method 
3 2.50 × 10–3 1.41 × 10–3 0.01 
5 3.91 × 10–5 1.43 × 10–5 17.76 
7 1.77 × 10–6 3.79 × 10–7 25.13 

Figure 2 Absolute error of the best solution for N = 7, in example 4 

 

Table 3 Results of absolute error for Example 5 

Our method 
The standard 

collocation method 
Method (Zhang and 

Lin, 2015) 

N 
Absolute error of 

mean solution value 
Absolute error of 

best solution value N Absolute error n Absolute error 
3 5.73 × 10–4 3.95 × 10–4 3 6.53 4 1.9 × 10–3 
5 7.58 × 10–6 2.15 × 10–6 5 3.55 32 1.4 × 10–5 
7 1.69 × 10–7 2.09 × 10–9 7 3.52 128 7.1 × 10–7 

The graph of the absolute error of the best solution which is obtained by the proposed 
hybrid method for 7N =  is shown in Figure 3. 

Example 6: Consider the following BVP (Cuomo and Marasco, 2008; Handerson and 
Thompson, 2002; Thompson, 1996): 

2 5sin 2cos( )sin ( ) , [0,1]y t t y y y t′′ ′= − − − − ∈  (28) 

2 2[ (1) ( (1)) ](0) (0) 0,
10

y yy y
′−′− + =  (29) 
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(0) (0) 6 (1) (1) sin( (0) (1)) 0.y y y y y y′ ′ ′+ + + + − =  (30) 

The graphs of the approximate solutions obtained by the proposed algorithm for different 
number of basis functions for this example are shown in Figure 4. 

Figure 3 Absolute error of the best solution for 7N = , in example 5 

 

Figure 4 The approximate solution for different number of basis functions for example 6  
(see online version for colours) 

 

As can be seen, the approximate solutions which are obtained by the proposed method 
are convergent, specially the approximate solutions for 6N =  and 7N =  are coincided 
with each other. 
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6 Conclusion 

It is well known that to solve nonlinear BVPs of ODEs by the collocation methods is 
generally difficult. To remove this difficulty, we defined a general residual function for 
the nonlinear BVP and then introduced an appropriate unconstrained optimisation model. 
Also, to solve this optimisation problem we used PSO algorithm. The merit of our hybrid 
method is its simplicity of implementation, such that there is no need to solve systems of 
nonlinear algebraic equations. Furthermore, the proposed method can be usually obtained 
spectral accuracy to solve nonlinear two-point boundary ODEs. To illustrate the 
efficiency of our method, some interesting examples have been solved. Numerical results 
show the high accuracy and efficiency of the proposed hybrid method. 
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