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Abstract: In the last decade, the increasing usage of digital electronics and 
software has given rise to a new form of failure occurrence known as soft 
failure. Soft failure is not the same as catastrophic failure. Catastrophic failure 
removes all waiting customers, including those receiving service, and the 
system enters the repair state, whereas soft failure does not require the removal 
of customers and instead requires the customer to wait for the server 
reactivation because repair can be accomplished by simply rebooting the 
system. A new approach for categorising and analysing these events is 
necessary to characterise and distinguish soft failures from hardware 
catastrophic failures. As a result, this paper considers a single server queueing 
model with soft failure. The system is prone to random breakdowns while 
providing service to the customer. When a system malfunctions, repair work 
begins right away. During the repair period, new customers are not permitted to 
join the system. For the first time, the transient state probabilities of an M/M/1 
queue with soft failures are computed explicitly. Some performance metrics, 
such as availability and reliability, are derived. Numerical examples are also 
provided to demonstrate the effect of parameters. 
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1 Introduction 

As the world becomes smaller, the service sectors, as well as the production and 
manufacturing of goods and processes, will become more important. Increased 
competition encourages businesses to prioritise efficiency, production, and quality. Even 
when the services are available without interruption, the quality (however, it is defined 
because there is no single dimension to its description) is influenced by a number of 
factors, including server experience, service rate, and variation in the underlying 
variables. Ideally, the services should be available without interruption. This is not the 
case in reality. 

Many studies in the queueing literature assume that servers are reliable; however, 
servers are vulnerable to breakdowns and repairs in practise. Throughout the operation of 
a traditional queueing model, the service facility is always ready to assist clients at 
regular or slower rates. The service facility may not be continuously available due to: 

1 the server taking a vacation when the system becomes empty 

2 a server (or machine) failure or an emergency break that requires immediate 
treatment, after which the service can be resumed. 

The server failure is caused by two types of failures. The first type of failure is 
catastrophic failure, while the second type of failure is soft failure. Catastrophic failure 
(hard failure) drains the system, necessitates the presence of a repairman, and takes a long 
time to repair. Soft failure, on the other hand, does not completely deplete the system. 
Also, it takes less time to repair because the system can be restarted and returned to 
normal operation. 

1.1 Literature survey related to catastrophic failure (hard failure) 

Towsley and Tripathi (1991) are the first researchers to investigate a single server 
queueing model with catastrophic failures. Artalejo (2000) provides an overview of the 
main results and methods of the queueing model with catastrophes theory. Yang et al. 
(2002) presented the system size and sojourn time distributions of an M/G/1 queueing 
system with catastrophes. Di Crescenzo et al. (2012) investigated queueing systems with 
disasters and calculated the transient and steady-state probabilities. Kalidass et al. (2012) 
investigated an M/M/1/N queue with catastrophes and developed transient state 
probabilities as well as performance measures. Ammar (2014) recently derived the 
transient probabilities of a two-processor heterogeneous system with catastrophes. Jiang 
et al. (2015) calculated the queue length and sojourn time distributions of an M/G/1 
queue in a multi-phase random environment with disasters. Mytalas and Zazanis (2015) 
calculated the queue length and sojourn time distribution of a batch arrival queue with 
disasters under a multiple-adapted vacation policy. Yechiali (2007) calculated expected 
queue length and customer sojourn time in an M/M/c queue with catastrophes by 
considering independent abandonments during a repair time. Economou and Kapodistria 
(2010) conduct similar research for the same model with binomial abandonments. To 
learn more about queueing systems with catastrophes, readers can read the papers by 
Kumar et al. (2007), Kumar and Madheswari (2005), Wang et al. (2008), Tarabia (2011), 
Vijayashree and Janani (2017), Rajadurai (2018) and Rasmi and Jacob (2021). 
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1.2 Literature survey related to soft failure 

With an unstable service station, Wang (1990) developed the M/M/1 model and 
discovered steady-state analytic closed-form solutions. He also presents steady-state 
analytic closed-form solutions for the M/Ek/1 model with a removable and unreliable 
server in the year (Wang, 1997); Tang (1997) expanded it to the M/G/1 model, and Wang 
et al. (1999) extended it to the M/H2/1 model. Ke (2006) looked into the control policies 
for an M/G/1 queueing system with a start-up server that was unstable. Choudhury and 
Deka (2008) looked at an M/G/1 retrial queueing system with two stages of service 
failure and repair. Wang and Zhang (2009) looked at a discrete time single-server retrial 
queue with geometrical positive and negative consumer arrivals, as well as server 
breakdowns and repairs. Choudhury and Tadj (2009) extended the server breakdown 
concept by include a delay-repair period. A novel sort of queueing model with 
functioning breakdowns was investigated by Kalidass and Kasturi (2012). They 
employed probability generating functions to calculate the solutions and probabilities of 
various states. 

Kim and Lee (2014) looked into an M/G/1 queueing system that had gone through 
disasters and had operational issues. The reliability of a warm standby repairable system 
with functioning malfunctions was investigated by Yen et al. (2016). Li and Zhang 
(2017) explored an M/G/1 retrial queue with negative arrivals and working breakdowns 
using the additional variable technique. They also tackled the issue of cost minimisation 
by developing a cost function and using the parabolic approach to calculate the best 
service rate during a working breakdown period. Yang and Wu (2017) used a  
finite-capacity M/M/1 queue with working breakdowns to conduct transient and  
steady-state assessments, accounting for reneging customers’ retention. In a recent work 
that adapted Kalidass and Kasturi’s (2012) model to the Markovian arrival process, Ye 
and Liu (2018) employed the matrix-geometric method to evaluate the steady-state 
probabilities of system size. M/M/1 queues with working breakdowns and delayed repair 
were explored by Jiang and Xin (2019), in which the system is either repaired 
immediately (with probability p) or continues to offer service to customers at a slower 
rate (with probability 1 – p) when a breakdown occurs. Liu and Song (2014), Liou 
(2015), Chen et al. (2016) and Yang and Cho (2019) provide more details on queueing 
models with working breakdowns. Many scholars, including Avi-Itzhak and Naor (1963), 
Vinod (1985), Wang and Ke (2002) and Choudhury and Ke (2012), have given queueing 
models with server breakdown. Krishnamoorthy et al. (2014) investigate queueing 
systems with server failure in detail. 

1.3 Importance of the considered model 

According to the literature, the majority of authors in works on server failures 
concentrated on catastrophic failures. Catastrophic server failures, on the other hand, 
result in the system being cleared. Consider an ATM that is not working properly. If an 
ATM malfunctions, customers who are waiting for it are diverted. Aside from natural 
disasters, ordinary system failures (also known as soft failures) can occur at any time, 
leaving customers waiting for the server to be restored. Consider a machine that attaches 
a bottle cap. The equipment may stop working at any time due to overheating. However, 
after rebooting the machine, it can be restored to working order. Overheating of the 
computer is another example of ordinary system failure. Dust or debris obstructing air 
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vents, exhaust ports, or a clogged fan might cause our computer to overheat owing to 
insufficient air movement. Overheating can cause a computer to restart, stop down, or 
have performance issues. 

Figure 1 A device that fixes a bottle cap (see online version for colours) 

 

Various analytical frameworks for unreliable queueing models with steady-state 
conditions have been investigated to date. Unlike steady-state models, analysing the 
transient characteristics of queueing systems is difficult; as a result, gaining insights into 
those systems is difficult. From an application standpoint, steady state models are 
typically better suited for analysing system behaviours over a finite time period. 
Transient models, on the other hand, are used to determine the efficiencies of a system 
over a long period of time. The transient state probabilities of a queueing model with soft 
failures are provided in this paper for the first time. The rest of this paper is structured as 
follows: 

• Section 2 – model description 

• Section 3 – time variant probabilities 

• Section 4 – system reliability and availability 

• Section 5 – numerical examples 

• Section 6 – concluding remarks and future work. 

2 Model description 

Consider an M/M/1 queueing system in which customers can join the queue based on the 
Poisson process with parameter λ. Customers are served at a rate μ, and service time is 
distributed exponentially. The server is unreliable, and it fails at random while providing 
service to the customer. Failures occur at a rate γ that is distributed as a Poisson 
distribution. If a failure occurs, the server immediately enters the repair state and the 
repair process begins. With parameter η, the repair time is also exponentially distributed. 
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Furthermore, new customers are not permitted to join the queue during the repair period, 
and existing customers must wait their turn. 

The system state at time t is represented by {N(t), J(t)}, where N(t) is the number of 
customers in the system and J(t) is the system state. If J(t) = 0, the system is in a normal 
state; if J(t) = 1, the system is in a failure state. The process {N(t), J(t)} is then a 
continuous time Markov chain, with the following transition diagram. 

Figure 2 State diagram of the model (see online version for colours) 

 

The system of governing equations of the model is as follows. 

0,0 0,0 1,0( ) ( ) ( ),P t λP t μP t′ = − +  (2.1) 

,0 ,0 1,0 1,0 ,1( ) ( ) ( ) ( ) ( ) ( ); 1,2, ...n n n n nP t λ μ γ P t μP t λP t ηP t n+ −′ = − + + + + + =  (2.2) 

and 

,1 ,1 ,0( ) ( ) ( ); 1, 2, ...n n nP t ηP t γP t n′ = − + =  (2.3) 

with the initial condition P0,0(0) = 1. 

3 Time variant probabilities 

In this section, time variant probabilities of the model described in Section 2 are derived 
with the help of Laplace transform and generating function techniques. 

Taking Laplace transform for the equation (2.1) gives, 

0,0 1,0
1ˆ ˆ( ) ( ).μP s P s

s λ s λ
= +

+ +
 (3.1) 

Taking inverse Laplace transform for the equation (3.1) gives, 

0,0 1,0( ) ( ).λt λtP t e μe P t− −= + ∗  (3.2) 

Similarly taking Laplace transform for the equation (2.3) gives, 
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,1 ,0ˆ ˆ( ) ( ).n n
γP s P s

s η
=

+
 (3.3) 

Taking inverse Laplace transform for the equation (3.3) gives, 

,1 ,0( ) ( )ηt
n nP t γe P t−= ∗  (3.4) 

To determine ,01
( )nn

P t
∞

=  

Define 

,0
1

( ) ( ).n
n

H t P t
∞

=

=  (3.5) 

Then 

,0
1

( ) ( ).n
n

H t P t
∞

=

′ ′=  (3.6) 

On substituting the equation (2.2) in the equation (3.6) yields, 

,0 1,0 1,0 ,1
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )n n n n
n n n n

H t λ μ γ P t λ P t μ P t η P t
∞ ∞ ∞ ∞

− +
= = = =

′ = − + + + + +     (3.7) 

Taking Laplace transform for the equation (3.7) gives, 

0,0 1,0 ,1
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )n
n

s γ H s λP s μP s η P s
∞

=

+ = − +   (3.8) 

On substituting the equation (3.1) and (3.3) in the equation (3.8) gives, 

( ),0 1 1,0 1,0
1 0

1ˆ ˆ ˆ( ) ( ) ( ) ( ) ,k
n

n k

λ λμP s F s P s μP s
s γ s λ s λ

∞ ∞

= =

 = + − + + +    (3.9) 

where 

1( ) .
( )( )

ηγF s
s γ s η

=
+ +

 (3.10) 

Taking inverse Laplace transform for the equation (3.9) yields, 

( ) [ ]*
,0 1 1,0 1,0

1 0

( ) * ( ) * * ( ) ( ) ,kyt λt λt
n

n k

P t e F t λe λμe P t μP t
∞ ∞

− − −

= =

= + −   (3.11) 

where 

1( ) *yt ηtF t ηγe e− −=  (3.12) 

Taking summation over n = 1 to ∞ in the equation (3.3) gives, 
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,1 ,0
1 1

ˆ ˆ( ) ( ).n n
n n

γP s P s
s η

∞ ∞

= =

=
+   (3.13) 

Substituting the equation (3.9) in (3.13) gives, 

( ),1 1 1,0 1,0
1 0

1ˆ ˆ ˆ( ) ( ) ( ) ( )k
n

n k

γ λ λμP s F s P s μP s
s η s γ s λ s λ

∞ ∞

= =

    = + −    + + + +   
   (3.14) 

Taking inverse Laplace transform for the equation (3.14) yields, 

( ) [ ]*
,1 1 1,0 1,0

1 0

( ) * * ( ) * * ( ) ( )kηt γt λt λt
n

n k

P t γe e F t λe λμe P t μP t
∞ ∞

− − − −

= =

= + −   (3.15) 

Hence 0,0 ,11
( ), ( )nn

P t P t
∞

=  and ,01
( )nn

P t
∞

=  are expressed in terms of P1,0 (t). 

Therefore, it remains to determine P1,0 (t). 

To find P1,0(t) 

By normalisation condition, 

0,0 ,0 ,1
1 1

( ) ( ) ( ) 1.n n
n n

P t P t P t
∞ ∞

= =

+ + =   (3.16) 

Taking Laplace transform for the equation (3.16) and using the equations (3.1), (3.9) and 
(3.14) yields, 

( ) ( )

( )

1,0 3 1
0 0

1
0

1 1 1ˆ ( ) ( ) ( )

1 ( )

j k

j k

k

k

λP s F s F s
s s λ s γ s λ

γ λ F s
s η s γ s λ

∞ ∞

= =

∞

=


= − − + + +

   −    + + +     

 


 (3.17) 

where 

3 2( ) 1 ( ),μF s F s
s λ

= − −
+

 

and 

( )2 1
0

1( ) ( ) 1 .k

k

λu γF s F s μ
s γ s λ s η

∞

=

  = − +  + + +  
  

By inverting the equation (3.17) gives, 
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( )

( ) ( )

*
1,0 3

0

* *
1 1

0 0

( ) ( )

* 1 * * ( ) * * * ( ) ,

j

j

k kλt γt λt ηt γt λt

k k

P t F s

e e λe F t γe e λe F t

∞

=

∞ ∞
− − − − − −

= =

=

 
− − − 

  



 
 (3.18) 

where 

3 2( ) ( ) ( ),λtF t δ t μe F t−= − −  

( ) ( ) ( )*
2 1

0

( ) * ( ) * ( ) * ( ) ,kγt λt ηt

k

F t e F t λμe μδ t δ t γe
∞

− − −

=

= − +  

and δ(t)represents dirac delta function. 
Hence, P1,0(t) is determined explicitly. 

3.1 Special case 

3.1.1 Validation of the findings using existing literature 
Applying final value theorem of Laplace transform to the equation (3.8) yields, 

,0 0,0 1,0 ,1
1 1

.n n
n n

λ μ ηP P P P
γ γ γ

∞ ∞

= =

= − +   (3.19) 

Similarly, applying final value theorem of Laplace transform to the equation (3.1) yields, 

0,0 1,0 .μP P
λ

=  (3.20) 

On substituting the equation (3.20) in the equation (3.19) gives, 

,0 ,1
1 1

.n n
n n

ηP P
γ

∞ ∞

= =

=   (3.21) 

The normality condition yields, 

,1
1

,n
n

γP
η γ

∞

=

=
+  (3.22) 

and 

,0
1

.n
n

ηP
η γ

∞

=

=
+  (3.23) 

The results in equations (3.21), (3.22) and (3.23) are seen to coincide with the results 
obtained by Ibe (2016). 



   

 

   

   
 

   

   

 

   

    Mathematical modelling of breakdowns with soft failures 27    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

4 Availability and reliability of the system 

The dependability indices for the model under discussion are supplied in this section, 
including system availability and system reliability. 

Let A(t) be the probability that the system is available (in operation) at time t, i.e., the 
chance that the server is active or idle at time t. 

,1 ,0
1 1

( ) 1 ( ) 1 * ( )ηt
n n

n n

A t P t γe P t
∞ ∞

−

= =

= − = −   (4.1) 

The average availability of the system in the interval [0, t] is 

0

,0
0 1

1( ) ( )

11 * ( )

t

t
ηu

n
n

A t A u du
t

γe P u du
t

∞
−

=

=

= −




 (4.2) 

Further, the total working time of the system in the interval [0, t] is 

0

,0
0 1

( ( )) ( )

* ( )

t

t
ηu

n
n

E A t A u du

t γe P u du
∞

−

=

=

= −




 (4.3) 

If η = 0 then 

,1 ,0
1 1

( ) ( )n n
n n

P t γP t
∞ ∞

= =

=   

so that the reliability function R(t) of the system is obtained as 

,1 ,0
1 1

( ) 1 ( ) 1 ( )n n
n n

R t P t γP t
∞ ∞

= =

= − = −   (4.4) 

5 Numerical illustrations 

In order to support theoretical results, numerical illustrations are depicted below by 
considering the parameter value as λ = 0.5, μ = 0.8, η = 0.5 and γ = 0.2. 

The behaviour of working state probability with respect to time t is depicted in  
Figure 3. Initially, as time passes, the likelihood of being in a working condition 
increases and reaches a peak. After then, it progressively declines until it reaches a steady 
state. It is also noted that as ‘n’ increases, the likelihood of being in a working condition 
diminishes. This is due to the machine overheating as it fixes caps to a larger number of 
bottles in a sequence. This has an impact on the probability of reaching a steady state. It 
should be emphasised that as ‘n’ increases, the probability of reaching a steady state 
diminishes. When ‘n’ is increased, the machine will obviously stop working due to 
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overheating and will be restored following a reboot. This will undoubtedly have an 
impact on the steady state probabilities. 

Figure 3 Pn,0(t) versus t (see online version for colours) 
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The failure state probability behaviour with regard to time t is shown in Figure 4.  
Figure 3 and Figure 4 show that the likelihood of being in a working state is higher than 
the probability of being in a failing condition. Because the failure rate is lower than the 
repair rate, this is the case. Because the rate of repair is higher than the rate of failure, the 
likelihood of being in a failure state with a higher value of ‘n’ is lower than with a lower 
value of ‘n’. In practise, if the repair rate is high, a machine that has failed due to 
overheating will be repaired quickly. As a result, we may argue that the repair rate and 
the probability of being in a failure state with a higher ‘n’ value are linked. The chance of 
failure with a larger value of ‘n’ decreases when the repair rate increases, and vice versa. 

Figure 4 Pn,1(t) versus t (see online version for colours) 
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Figure 5 depicts how the probability of the system failing changes over time t for various 
values of η. It has been discovered that as η increases, the chances of being in a failure 
state diminish. As a result, we can deduce that the probability of failing is inversely 
related to the rate of η. This indicates that as the repair rate increases, so does the 
likelihood of being in a failure condition. If a machine stops working due to overheating 
and is not swiftly rebooted, the chances of it breaking down grow. 

Figure 5 Probabilities to be in state one versus time t (see online version for colours) 
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Figure 6 Availability of the server for varying values of η (see online version for colours) 
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Figure 6 depicts how the system’s availability changes over time t for various values of η. 
It has been discovered that as η increases, the probability of being in an availability state 
increases. As a result, we can deduce that the probability of being available is 
proportional to the rate of η. This means that as the rate of repairs increases, so does the 
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possibility of becoming available. If a machine stops working due to overheating and is 
rapidly rebooted, the server will be available instantly, improving the chances of it being 
operational. 

For various values of γ, Figure 7 shows how the system’s reliability changes over 
time t. It has been discovered that as γ decreases, the reliability increases. As a result, we 
can conclude that the rate of γ is inversely proportional to the reliability. This means that 
reliability improves as the rate of failure reduces. The reliability of a machine degrades if 
it stops working frequently due to overheating. 

Figure 7 Reliability of the server for varying values of γ (see online version for colours) 
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6 Concluding remarks and future work 

This study takes a look at a single server queueing model with soft failure. While 
providing service to the consumer, the system is prone to periodic breakdowns. When a 
system fails, repair work begins immediately. New clients are not permitted to join the 
system during the maintenance period. The transient state probabilities of an M/M/1 
queue with soft failures are explicitly estimated for the first time. Some performance 
measurements are derived, such as availability and reliability. There are additional 
numerical examples offered to highlight the effect of parameters. This work can be 
extended even further by allowing customers to join the queue during the repair period. 
In addition, the model can be constrained to a finite capacity, along with many other 
things. 
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