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Abstract: In this work, a collocation approach-based Bernstein operational
matrix of differentiation method is used for obtaining the numerical solution
of a class of modified Lane-Emden equation with delay in pantograph
sense. The proposed numerical algorithm provides numerical solution by
discretising the Lane-Emden pantograph delay differential equation into a
system of algebraic equations which can be solved directly using any
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1 Introduction

As a special form of a differential equation, delay differential equations (DDEs) have
become a great criterion in the modelling of many mathematical models such as
population dynamics, epidemiology, and neural networks, and inventory control with
supply delay (see Sulem and Tapiero, 1996; Kuang, 1993; Aziz and Amin, 2016, and
the references therein). In DDEs, solution at certain time instant depends on the past
time. Delay involves automatically in the mathematical model of any dynamical system
if someone wants the correct evaluation of parameter involves in it. Many areas of
science and technology involves DDEs, for example chemical processes (Epstein, 1992),
economic growth (Keller, 2010), network motif modelling (Glass et al., 2021), and
mathematical models of infectious disease (Tipsri and Chinviriyasit, 2015; Chinnathambi
et al., 2021; Nelson and Perelson, 2002), etc.

Pantograph delay differential equations (PDDEs) are the special types of DDEs. The
PDDEs are differential equations with proportional delay, arises in many mathematical
models such as control system, probability, quantum mechanics, population studies,
electrodynamics (see Kuang, 1993; Bahşi and Çevik, 2015; Ghomanjani and Shateyi,
2020; Anakira et al., 2022, and references therein). The pantograph was a tool of electric
locomotive used by British Railways to collect electric current from overloaded lines.
Ockendon and Tayler (1971) introduced a first order PDDE

y′(t) = ay(t) + by(αt), t > 0. (1.1)

This differential equations is used to model the motion of pantograph head on electric
locomotive, where a and b are real constants and 0 < α < 1. In view of the frequent
occurrence of the DDEs in mathematical modelling of various physical phenomena, it
is necessary to find an analytical or a numerical approach to deal with such problems.
It is quite a tough job to solve PDDEs analytically. Therefore most researchers adopt a
numerical approach to solve the PDDEs. Often spectral method (Adam et al., 2016; Liu
et al., 2019), pseudo-spectral method (Breda et al., 2005; Mahmoudi et al., 2020), finite
element methods (Deng et al., 2007; Qin et al., 2019), tau methods (Raslan et al., 2019),
and polynomial approximation methods (Sedaghat et al., 2012; Ernst and Soleymani,
2019; Gülsu et al., 2011; Yuzbasi and Savasaneril, 2020) are some numerical methods
being used to solve PDDEs.

Another area of the differential equation is a singular differential equation, which
often arises while developing models of several phenomena of mathematical physics,
astrophysics, and biochemistry (see Sahu and Mohapatra, 2021; Lane, 1870; Srivastava,
1962; McCrea, 1939; Hao et al., 2018, and references therein). Lane-Emden equation,
Emden-Fowler equation and Emden-Chandrashekhar equation are some well known
singular differential equations (Roul, 2019; Wong, 1975; Shi et al., 2016; Chandrasekhar,
1972). Adel and Sabir (2020) have developed a new mathematical model by merging
the two prominent areas PDDEs and Lane-Emden equation of differential equation,
known as the Lane-Emden PDDEs. They have proposed a numerical technique based
on the Bernoulli polynomials and collocation approach for the numerical solution of
Lane-Emden PDDEs. A class of Lane-Emden PDDE is given by
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x−ρ dn

dxn

(
xρ dm

dxm
y(αx)

)
+ g(y) = f(x). (1.2)

Here ρ ≥ 1 is a real constants, represents the shape factor. Differential equation (1.2)
for m = n = 1 is given with a set of initial conditions as

α
d2

dx2
y(αx) +

ρ

x

d

dx
y(αx) + g(y) = f(x) (1.3)

subject to

y(0) = β, y′(0) = 0. (1.4)

In literature, very few studies (Adel and Sabir, 2020; Izadi and Srivastava, 2021) have
been done on numerical solution of singular PDDEs (1.3) with initial conditions (1.4).
Several numerical techniques are available to find an approximate solution to singular
initial value problems (SIVPs), namely the Adomian decomposition method (Pourgholi
and Saeedi, 2015; Kumar and Umesh, 2020), variation iteration method (Verma et al.,
2021), homotopy perturbation method (Roul and Warbhe, 2017), Greens function and
decomposition method (Singh, 2020; Singh et al., 2015), modified decomposition
method (Singh and Wazwaz, 2016), homotopy analysis method (Bataineh et al., 2009),
and approximation with polynomials (Zheng and Yang, 2009; Zhou and Xu, 2016; Sahu
and Ray, 2017; Hosseini et al., 2017), etc. A method based on approximation with
polynomials is easy to code on any mathematical software.

Certain mathematical models represent the practical application of Lane-Emden
PDDE (see Ciaraldi-Schoolmann, 2012; Xu et al., 2016, and the references therein). A
tumour growth model (Xu et al., 2016) given by

1

r2
∂

∂r

(
r2

∂σ

∂r

)
= Γσ, 0 < r < R(t), t > 0,

where σ = σ(r, t− τ(t)), consists a functional delay τ(t). A pantograph delay is a
particular form of functional delay defined by τ(t) = (1− α)t. Another model proposed
by Ciaraldi-Schoolmann (2012) also shows the practical significance of Lane-Emden
PDDE.

Our aim in this paper is to present a numerical algorithm based on the Bernstein
basis polynomials and its operational matrix of differentiation (Yousefi and Behroozifar,
2010; Shahni and Singh, 2020a, 2020b, 2021) to solve SIVPs (1.3)–(1.4). We discretise
the singular differential equation with appropriate collocation points to get rid of
singularity. Thus SIVPs (1.3)–(1.4) are transformed to an equivalent system of algebraic
equations, which can be solved easily using mathematical software. The accuracy of
the proposed methodology is examined through absolute error norm, and presented in
comparison with the exact solution and with some well known existing techniques. The
viability of the proposed numerical technique is examined through convergence analysis
of the numerical scheme. Lyapunov function is constructed to analyse the stability of
the solution of SIVPs (1.3)–(1.4).

The work of this article is organised as follows: Section 2 introduces the basics of
the Bernstein basis polynomial and relatable properties. In Section 3, the methodology
and the convergence analysis are sentenced. Section 4 contains the stability analysis
using Lyapunov function. The accuracy and reliability of the methodology is tested
through five numerical examples in Section 5. The conclusion and final remarks are
given in Section 6.
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2 Bernstein polynomials

Bernstein polynomials were introduced by Sergei Natanovich Bernstein (1880–1968) in
order to prove the Weierstrass approximation theorem in a constructive manner. Some
basics and relevant studies on the Bernstein polynomials are as follows:

2.1 Basics

The Bernstein polynomials of degree n on the interval [0, 1], are defined asBi
n(x) =

(
n

i

)
xi(1− x)n−i, 0 ≤ i ≤ n

0, i < 0, i > n,

where
(
n
i

)
=

n!

i!(n− i)!
, n ∈ N, i = 0, 1, ..., n. Here, B0

n(x), B
1
n(x), . . . , B

n
n(x) are

called Bernstein basis polynomials, collectively forms a complete basis for the vector
space of all polynomials of degree not more than n and with real coefficients. Some
pertinent observations on the Bernstein polynomials are

1 the Bernstein polynomials are non-negative function i.e. Bi
n(x) ≥ 0,∀x ∈ [0, 1],

and i = 0, 1, . . . , n

2 B0
n(0) = Bn

n(1) = 1

3 Bi
n(0) = Bi

n(1) = 0, for 1 ≤ i ≤ n− 1

4 the sum of all the Bernstein basis polynomials for any n is 1, i.e.,∑n
i=0 B

i
n(x) = 1.

2.2 Functional approximation

A function y(x) ∈ L2[0, 1] can be estimated with Bernstein basis polynomials in a linear
combination as

y(x) ≈ yN (x) =

N∑
i=0

aiB
i
N (x) = ATB(x), (2.1)

where

AT = [a0, a1, ..., aN ], and B(x) = [B0
N (x), B1

N (x), ..., BN
N (x)]T . (2.2)

The Bernstein polynomial Bi
N (x) can be expressed in the series of integer power of x,

as

Bi
N (x) =

(
N
i

)
xi(1− x)N−i =

N−i∑
j=0

(−1)j
(
N
i

)(
N − i

j

)
xi+j . (2.3)

Equation (2.1) can be expressed in the matrix form, by add of equation (2.3) as
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yn(x) = ATDX(x), (2.4)

where

D =



(−1)0
(

N
0

)
(−1)1

(
N
0

)(
N − 0

1

)
. . . (−1)N−0

(
N
0

)(
N − 0
N − 0

)
0 (−1)0

(
N − 1

1

)
. . . (−1)N−1

(
N
1

)(
N − 1
N − 1

)
...

...
. . .

...

0 0 . . . (−1)0
(

N
N

)


, (2.5)

and

X(x) = [1, x, ..., xN ]T . (2.6)

2.3 The operational matrix of differentiation

The operational matrix of derivative of the set X(x) is defined as follows

X ′(x) = [0, 1, 2x, ..., NxN−1]T (2.7)

=


0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 . . . 0
...

...
...

. . .
...

0 . . . 0 N 0




1
x
x2

...
xN

 . (2.8)

Thus, the derivatives of the function yn(x) in terms of Bernstein basis is given by

y
(k)
N (x) = ATDCkX(x), k = 1, 2, ... (2.9)

where

C =


0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 . . . 0
...

...
...

. . .
...

0 . . . 0 N 0

 . (2.10)

The matrix C is of order (N + 1), called operational matrix of differentiation.
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2.4 Approximation of a function and its derivate with delay

A function y(x) ∈ L2[0, 1] with the delay α, i.e., y(αx) can be approximated using the
Bernstern basis polynomials as

y(αx) ≈ yN (αx) =
N∑
i=0

aiB
i
N (αx) = ATB(αx), (2.11)

which can also be expressed as

yN (αx) = ATDX(αx). (2.12)

Furthermore, the approximation of derivatives of y(αx) using the Bernstein basis
polynomials are given as follows

ykN (αx) = ATDCkX(αx). (2.13)

3 Methodology and convergence analysis

This section comprises the numerical scheme to find the approximate solution of the
SIVPs (1.2)–(1.3) in terms of the Bernstein polynomials. The working of the scheme
involves the Bernstein polynomials and a set of appropriate collocation points. The
Bernstein polynomials and its derivatives transform differential equation (1.2) into a
matrix equation, given by

αX(αx)
(
CT
)2 (

DT
)−1

A+
ρ

x
X(αx)CT

(
DT
)−1

A

+ g
(
X(x)

(
DT
)−1

A
)
= f(x).

(3.1)

The collocation points xi−1, have introduced here to solve equation (3.1) as

xi−1 =
i

N + 1
, i = 1, 2, ..., N + 1, (for any positive integer N ). (3.2)

Collocation points (3.2) transform matrix form (3.1) into a system of nonlinear algebraic
equation

α ¯̄X(CT )2
(
DT
)−1

A+H ¯̄XCT
(
DT
)−1

A+ g
(
X̄
(
DT
)−1

A
)
= F. (3.3)

Here,

¯̄X =


1 αx0 (αx0)

2 · · · (αx0)
N

1 αx1 (αx1)
2 · · · (αx1)

N

1 αx2 (αx2)
2 · · · (αx2)

N

...
...

...
. . .

...
1 αxN (αxN )2 · · · (αxN )N

 , X̄ =


1 x0 x2

0 · · · xN
0

1 x1 x2
1 · · · xN

1

1 x2 x2
2 · · · xN

2
...

...
...

. . .
...

1 xN x2
N · · · xN

N

 ,
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H =



ρ

x0
0 0 · · · 0

0
ρ

x1
0 · · · 0

0 0
ρ

x2
· · · 0

...
...

...
. . .

...
0 0 0 · · · ρ

xN


, F = [f(x0), f(x1), · · · , f(xN )]T .

The application of the Bernstein polynomials and its derivatives, transform initial
conditions (1.3), into a pair of algebraic equations given by

X(0)
(
DT
)−1

A = β, X(0)CT
(
DT
)−1

A = 0. (3.4)

In order to get the solution of SIVPs (1.2)–(1.3), recombine a system of (N + 1)
nonlinear algebraic equation by replacing any two equation of system (3.1) having (N +
1) equations, with the pair of algebraic equations (3.4). The solution of the recombined
system using Newton-Raphson iteration method for unknown coefficients ai’s provides
the solution of SIVPs (1.2)–(1.3) by replacing the values of ai’s in equation (2.1).

To show the convergence of the methodology, the Bernstein polynomials (Levasseur,
1984) have used for Weierstrass approximation theorem.

Theorem 3.1: If y(x) be a continuous function on [0, 1], and let Bn(y, x) =∑n
i=0 B

i
n(x)y

(
i

n

)
be the Bernstein polynomial of degree n in terms of Bernstein

basis, then Bn(y, x) converges to y(x), uniformly.

Proof: Some results on the Bernstein polynomials are as follows:

n∑
i=0

(
n
i

)
Bi

n(x) = 1, (3.5)

n∑
i=0

(
n
i

)(
i

n

)
Bi

n(x) = x, (3.6)

n∑
i=0

(
n
i

)(
i

n

)2

Bi
n(x) =

n− 1

n
x2 +

x

n
. (3.7)

The difference of Bn(y, x) and y(x) is given by

Bn(y, x)− y(x) =
n∑

i=0

f

(
i

n

)
Bi

n(x)− y(x).1.

Using relation (3.5), in the following equation, we have

Bn(y, x)− y(x) =

n∑
i=0

{
y

(
i

n

)
− y(x)

}
Bi

n(x), (3.8)
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=⇒ |Bn(y, x)− y(x)| ≤
n∑

i=0

∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣Bi
n(x). (3.9)

Since the function y(x) is uniformly continuous on [0, 1], thus there exist a positive real
number δ for a given real number ϵ > 0, so that

|x1 − x2| < δ, =⇒ |y(x1)− y(x2)| < ϵ. (3.10)

Corresponding to the real number δ > 0 and x ∈ [0, 1], we can divide the set of nodes
i

n
into two sets A = { i

n
: | i
n
− x| < δ} and B = { i

n
: | i
n
− x| ≥ δ}. Thus the series

on the right hand side of inequality (3.9), can be divided into two series
∑ ′ and

∑ ′′ ,
as follows:

|Bn(y, x)− y(x)| ≤
n∑

i=0

′
∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣( i

n
∈ A

)Bi
n(x)

+
n∑

i=0

′′
∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣( i

n
∈ B

)Bi
n(x).

(3.11)

Let ϵ is given corresponding to the real number δ, such that∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣ < ϵ

2
, for

∣∣∣∣ in − x

∣∣∣∣ < δ. (3.12)

Now, for
∣∣∣∣ in − x

∣∣∣∣ ≥ δ, we have

1 ≤

(
i

n
− x

)2

δ2
. (3.13)

Let |f(x)| ≤ M , then by using relation (3.13), we have
n∑

i=0

′′
∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣( i

n
∈ B

)Bi
n(x)

≤ 1

δ2

n∑
i=0

′′
(
i

n
− x

)2 ∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣( i

n
∈ B

)Bi
n(x), (3.14)

<
2M

δ2

n∑
i=0

′′
(
i

n
− x

)2

Bi
n(x). (3.15)

Using the results (3.5), (3.6) and (3.7) in the above inequality, we have
n∑

i=0

′′
∣∣∣∣y( i

n

)
− y(x)

∣∣∣∣( i

n
∈ B

)Bi
n(x) <

2M

δ2

(
x(1− x)

n

)
. (3.16)

<
M

2δ2n
. (3.17)
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For the positive real number ϵ > 0, there exist natural number N , such that for all
n ≥ N ,

M

2δ2n
<

ϵ

2
. Therefore for all x ∈ [0, 1], we have

|Bn(y, x)− y(x)| < ϵ

2
+

ϵ

2
= ϵ. (3.18)

Thus the Bernstein polynomial Bn(y, x) converges to y(x), uniformly. �

4 Stability analysis

4.1 The Lane-Emden PDDE as an autonomous system

The autonomous system, equivalent to a particular form of Lane-Emden pantograph
differential equation has been established to analyse the stability of its equilibrium point
at α =

1

2
.

Theorem 4.1: The Lane-Emden pantograph differential equation

1

2

d2y

(
1

2
x

)
dx2

+
2

x

dy

(
1

2
x

)
dx

+ y(x)n = 0 (4.1)

is equivalent to the following autonomous system of equation

du

dt
= p, (4.2)

dp

dt
= −2F 1(u, p), (4.3)

with the function F 1(u, p) given by

F 1(u, p) =
1

2

[
−7n− 15

n− 1
p− 8(3n− 5)

(n− 1)2
u+ 2

5−3n
1−n Bn−1un

]
. (4.4)

Proof: To transform the Lane-Emden pantograph differential equation (4.1), to an
autonomous system, a set of variables (u, t) is given by

y(x) = Bx
2

1−nu(x), x = e−t, (4.5)

where B > 0, is a constant. The new set of variables transforms differential
equation (4.1) to the following second order differential equation

d2

dt2
u

(
1

2
e−t

)
− 7n− 15

n− 1

d

dt
u

(
1

2
e−t

)

− 8(3n− 5)

(n− 1)2
u

(
1

2
e−t

)
+ 2

5− 3n

1− n Bn−1un(e−t) = 0.

(4.6)
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In order to analyse the stability condition of equilibrium point of the autonomous system
(4.2)–(4.3), the index n will be restrict to the range (0,∞) \ {1}. The second order
differential equation (4.6), is equivalent to the autonomous system (4.2)–(4.3) with the
introduction of new variable p = du/dt. Also, we have F 1(0, 0) = 0.

Since, x ∈ (0, 1]. So, the new variable t = ln

(
1

x

)
lies in the set [0,∞). We

observe that, the variables u(e−t) and u( 12e
−t) are similar for large value of t.

Remark: All the critical points of the autonomous system (4.2)–(4.3) lies on p = 0 and,
they are solution of the equation

F 1(u, 0) =
1

2

−8(3n− 5)

(n− 1)2
u+ 2

5− 3n

1− n Bn−1un

 = 0. (4.7)

Thus, we have two critical points given by

C0 = (0, 0), (4.8)

Cn =

 1

B

 8(3n− 5)

2

5− 3n

1− n (n− 1)2


1/n−1

, 0

 for n >
5

3
, (4.9)

and

Cn =

(−1)

1

n− 1 1

B

 8(5− 3n)

2

5− 3n

1− n (n− 1)2


1/n−1

, 0


for n ∈

(
0,

5

3

)
\ {1},

(4.10)

�

4.2 Stability analysis using Lyapunov function (Boehmer and Harko, 2010)

In order to analyse the stability of autonomous system (4.2)–(4.3), some relatable
definitions are given as follows:

Definition 4.2 (Lyapunov function): A Russian mathematician Aleksandr Mikhailovich
Lyapunov (1857-1918) had presented a continuous function V : Rn → R, in his PhD
dissertation for stability analysis of autonomous system ẋ = f(x), x ∈ Rn. The function
V known as Lyapunov function satisfies following axioms in a neighbourhood D of
equilibrium point x0 of system ẋ = f(x)

1 V should be differentiable in D \ {x0}
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2 V (x) > V (x0)

3 V̇ (x) ≤ 0∀x ∈ D.

If one can establish a Lyapunov function in a neighbourhood D of equilibrium point x0.
This guaranties the asymptotic stability of the equilibrium point x0. The best quality of
this function is that, it enables us to analyse the stability of autonomous system without
its explicit solution.

Theorem 4.3: The system of autonomous differential equation (4.2)–(4.3), is
asymptotically stable for 1 < n < 5

3 at C0. The critical point Cn is asymptotically

stable for 1 < n <
15

7
.

Proof: In order to construct a Lyapunov function V (u, p) using variable gradient
method, we set

∆V (u, p) =

[
−8(3n−5)

(n−1)2 u+ 2
5−3n
1−n Bn−1un

p

]
(4.11)

such that the critical points C0 and Cn satisfy the homogeneous equation ∆V = 0.
Thus, we have

V (u, p) =
1

2
p2 − 4(3n− 5)

(n− 1)2
u2 + 2

5−3n
1−n Bn−1 u

n+1

n+ 1
. (4.12)

If function V (u, p) in equation (4.12) is Lyapunov function, then there exist local
minima at critical points C0 and Cn. We can verify it by using Hessian H(V ) of
equation (4.12), given by

H(V ) =

−8(3n− 5)

(n− 1)2
+ n2

5− 3n

1− n Bn−1un−1 0

0 1

 . (4.13)

The eigenvalues of this Hessian matrix at the critical point C0 are given as

λ1 = −8(3n− 5)

(n− 1)2
, λ2 = 1. (4.14)

Since λ1, λ2 > 0 for n ∈
(
0,

5

3

)
\ {1}. Thus, Lyapunov function V has local minima

near C0 for n ∈
(
0,

5

3

)
\ {1}. Also, the eigenvalues of the Hessian matrix H(V ) at

Cn are given by

λ1 = −8n2 − 29n+ 40

(n− 1)2
, λ2 = 1. (4.15)

The analysis for existence of local minima at Cn states that λ1, λ2 > 0 for n ∈ (0,∞) \
{1}. Thus, Lyapunov function V has local minima near Cn for n ∈ (0,∞) \ {1}.
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The function V (u, p) also satisfies,

dV

dx
=

∂V

∂u

du

dx
+

∂V

∂p

dp

dx
=

(7n− 15)

(n− 1)
p2. (4.16)

Thus, we have

V̇ < 0, for 1 < n <
15

7
. (4.17)

Hence, the equilibrium point C0 is asymptotic stable for 1 < n <
5

3
and the equilibrium

point Cn is asymptotically stable for 1 < n <
15

7
. The Lyapunov function constructed

above cannot enable us to know the global stability analysis. �

5 Numerical testing and discussion

In this section, five numerical problems have been tested using the new methodology
developed for second order nonlinear Lane-Emden PDDE in order to show the efficiency
and accuracy of the method. The absolute error norm e = |Exact−Approximate|
is used to compare the approximate solution with exact solution along with existing
numerical techniques (Adel and Sabir, 2020; Izadi and Srivastava, 2021).

Example 5.1:

1

2

d2

dx2
y

(
1

2
x

)
+

2

x

d

dx
y

(
1

2
x

)
+ y3 = 4 + 3x2 + 3x4 + x6, (5.1)

subject to the initial conditions

y(0) = 1, y′(0) = 0. (5.2)

The exact solution of SIVPs (5.1)–(5.2) is 1 + x2. Implementation of the proposed
numerical technique developed in Section 3 on Problem 5.1 provides the approximate
solution for N = 2 which is equal to the exact solution. This shows that the new
approach has high adaptability to solve such problems. The values of Bernstein
coefficients are provided in Table 1.

Table 1 Chebyshev coefficients at different values of N for Example 5.1

a0 a1 a2

N = 2 1.0 1.0 2.0

Example 5.2:

1

2

d2

dx2
y

(
1

2
x

)
+

3

x

d

dx
y

(
1

2
x

)
+ ey = e1+x3

+
15

4
x, (5.3)

subject to the initial conditions
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y(0) = 1, y′(0) = 0. (5.4)

The exact solution of IVP (5.3)–(5.4) is 1 + x3.

Figure 1 Comparison of results for Example 5.2, (a) numerical vs. exact (b) absolute error
(e) (see online version for colours)

(a) (b)

Table 2 Comparison of BOMDC(N ) with exact solution at N = 3 and N = 4 of
Example 5.2

x Exact N = 3 e N = 4 e BCM e BMCM e

0.0 1.0000 1.0000 0.00000 1.0000 0.00000 1.0000 0.00000 1.0000 0.00000

0.2 1.0080 1.0080 5.7E-11 1.0080 1.5E-15 1.0080 6.2E-13 1.0080 1.6E-15
0.4 1.0640 1.0640 1.4E-10 0.0640 6.6E-15 1.0640 8.3E-13 1.0640 7.8E-15
0.6 1.2160 1.2160 1.1E-10 1.2160 5.5E-15 1.2160 1.0E-12 1.2160 5.0E-14
0.8 0.5120 1.5120 1.4E-10 1.5120 2.7E-14 1.5120 4.0E-12 1.5120 1.5E-13
1.0 2.0000 2.0000 7.8E-10 2.0000 1.3E-13 2.0000 1.3E-11 2.0000 3.2E-13

The approximate solution using the proposed numerical technique, Bernstein operational
matrix of differentiation and collocation approach (BOMDC(N)) has presented in
Table 2 in comparison with exact solution and some existing methods including
Bernoulli collocation method (BCM) (Adel and Sabir, 2020) and Bessel matrix with
collocation method (BMCM) (Izadi and Srivastava, 2021). The numerical results of
BCM is presented at N = 6 and BMCM is presented at M = 3. The graphical
representation of the approximate solutions using different numerical methods against
the exact solution has given in Figure 1(a). One cannot differentiate the solution graphs
for different methods without legends. So, we have also drawn the graph for absolute
errors in Figure 1(b), which shows the excellency of BOMDC(N) over BCM and
BMCM. Table 2 concludes that the maximum absolute error decreases significantly from
the order 10−10 to 10−13 as N increases from 3 to 4. To verify the numerical results
of BOMDC(N), the Bernstein coefficients are given in Table 3.
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Table 3 Bernstein coefficients at different values of N for Example 5.2

a0 a1 a2 a3 a4

N = 3 1.0 1.0 0.9999999993306705 2.0000000007865645
N = 4 1.0 1.0 1.0000000000000000 1.2499999999999349 2.0000000000001332

Example 5.3:

1

2

d2

dx2
y

(
1

2
x

)
+

3

x

d

dx
y

(
1

2
x

)
+ y2 = x8 + 2x4 + 3x2 + 1, (5.5)

subject to the initial conditions

y(0) = 1, y′(0) = 0. (5.6)

Figure 2 Comparison of results for Example 5.3, (a) numerical vs. exact (b) absolute error
(e) (see online version for colours)

(a) (b)

Table 4 Comparison of BOMDC(N ) with exact solution at N = 4 and N = 5 of
Example 5.3

x Exact N = 4 e N = 5 e BCM e

0.0 1.0000 1.0000 0.00000 1.0000 0.00000 1.0000 0.00000

0.2 1.0016 1.0016 1.8E-13 1.0016 8.8E-15 1.0016 3.7E-15
0.4 1.0256 1.0256 2.4E-13 1.0256 6.8E-15 1.0256 4.4E-15
0.6 1.1296 1.1296 1.8E-12 1.1296 1.6E-14 0.1296 3.0E-14
0.8 1.4096 1.4096 9.6E-12 1.4096 2.9E-14 1.4096 4.5E-13
1.0 2.0000 2.0000 3.1E-11 2.0000 5.1E-13 2.0000 3.0E-12



78 N. Sriwastav and A.K. Barnwal

Table 5 Bernstein coefficients at different values of N for Example 5.3

a0 a1 a2 a3 a4 a5

N = 4 1.0 1.0 1.0000000000023 0.9999999999909 2.0000000000318
N = 5 1.0 1.0 1.0000000000000 0.9999999999997 1.2000000000004 1.9999999999994

The exact solution of SIVPs (5.5)–(5.6) is 1 + x4. The proposed methodology converts
the SIVPs into a system of nonlinear algebraic equations. The solution of these algebraic
equations for unknown Bernstein coefficients provides the numerical solution of the IVP
(5.5)–(5.6). The comparative discussion of the proposed technique BOMDC with BCM
(Adel and Sabir, 2020) is given in Table 4 and Figure 2. The values of approximate
solution using present method are being presented in Table 4 for N = 4 and N = 5, at
different values of x. The numerical results of BCM are given at N = 6. The absolute
error given in Table 4, and plotted in Figure 2(b) makes us sure, that the proposed
methodology performs better than the existing technique BCM. To check the viability
of the proposed technique, the values of the Bernstein coefficients are given in Table 5.

Example 5.4:

1

2
y′′
(
1

2
x

)
+

2

x
y′
(
1

2
x

)
+ y(x) +

1

3
y3(x) +

2

5
y5(x)

= 3 + (1 + x2) +
1

3
(1 + x2)3 +

2

5
(1 + x2)5,

(5.7)

subject to

y(0) = 1, y′(0) = 0. (5.8)

The exact solution of Problem 5.4 is 1 + x2. The qualitative and quantitative
representation of approximate solution in comparison with exact solution has presented
in Table 6, and Figure 3. The approximate solution using proposed numerical technique
has given in Table 6 and plotted in Figure 3(a), for N = 2 and N = 3. One cannot
differentiate between the solution graphs for N = 2, N = 3 and also the exact solution
in the Figure 3(a) without legend. To overcome this situation, we have also given the
absolute error in Table 6 and plotted in Figure 3(b). Table 6 concludes that the absolute
error decreases significantly as N increases from 2 to 3.

Table 6 Comparison of BOMDC(N) with exact solution at N = 2 and N = 3 of Example 5.4

x Exact N = 2 e N = 3 e

0.0 1.0000 1.0000 0.00000 1.0000 0.00000

0.2 1.0400 1.0400 1.2E-11 1.0400 4.2E-15
0.4 1.1600 1.1600 5.1E-11 1.1600 2.6E-15
0.6 1.3600 1.3600 1.1E-10 1.3600 2.6E-14
0.8 1.6400 1.6400 2.0E-10 1.6400 1.0E-13
1.0 2.0000 2.0000 3.2E-10 2.0000 2.4E-13
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Figure 3 Comparison of results for Example 5.4, (a) numerical vs. exact (b) absolute error
(e) (see online version for colours)

(a) (b)

Table 7 Bernstein coefficients at different values of N for Example 5.4

a0 a1 a2 a3

N = 2 1.0 1.0 2.0000000003209352
N = 3 1.0 1.0 1.3333333333332697 2.0000000000002473

Example 5.5:

1

2
y′′
(
1

2
x

)
+

2

x
y′
(
1

2
x

)
+ e

y
2 = 3− 3x+ e

1
2 (x

2−x3), (5.9)

subject to

y(0) = 0, y′(0) = 0. (5.10)

Figure 4 Comparison of results for Example 5.5, (a) numerical vs. exact (b) absolute error
(e) (see online version for colours)

(a) (b)
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Table 8 Bernstein coefficients at different values of N for Example 5.5

a0 a1 a2 a3

N = 2 0.0 0.0 0.333333333400134
N = 3 0.0000000000000431 0.0000000000000447 0.3333333333258025 0.0000000000760721

Table 9 Comparison of BOMDC(N ) with exact solution at N = 2 and N = 3 of
Example 5.5

x Exact N = 2 e N = 3 e

0.0 0.0000 0.0000 0.00000 0.0000 4.3E − 14

0.2 0.0320 0.0133 1.8E-02 0.0320 7.5E-14
0.4 0.0960 0.0533 4.2E-02 0.0960 2.7E-12
0.6 0.1440 0.1200 2.4E-02 0.1440 1.3E-11
0.8 0.1280 0.2133 8.5E-02 0.1280 3.6E-11
1.0 0.0000 0.3333 3.3E-01 0.0000 7.6E-11

The exact solution of SIVPs (5.9)–(5.10) is x2 − x3. The qualitative and quantitative
representation of approximate solution in comparison with exact solution has presented
in Table 9 and Figure 4. The approximate solution using proposed numerical technique
has given in Table 9, for N = 2 and N = 3, also plotted in Figure 3(a), for N = 3.
To check the accuracy of the method, the absolute errors are computed and given in
Table 9. Table 9 concludes that the absolute error decreases significantly as N increases
from 2 to 3.

6 Conclusions

A robust numerical method based on the Bernstein operational matrix of differentiation
and collocation approach has been introduced to find the numerical solution of a class of
PDDE. The leading supremacy of the proposed technique is its algorithm and computer
programming. The programming of the methodology is easy to implement on any
mathematical software. It can be easily implemented on different test examples with
slight modification in code. The other advantage of this technique is its high precision
results in terms of absolute error norms. The proposed technique deal the nonlinear
problems with highly nonlinear terms (ey, e

y
2 ) with excellent accuracy of order 10−11

to 10−13 for very small values of N ≤ 4. The convergence analysis of the proposed
numerical technique and Lyapunov stability analysis of Lane-Emden PDDE is also given
to show the efficiency and applicability of the numerical algorithm.

Acknowledgements

This work is supported by SERB, New Delhi (Grant No. ECR/2017/000560).



Numerical solution of Lane-Emden pantograph delay differential equation 81

References

Adam, A., Bashier, E., Hashim, M. and Patidar, K. (2016) ‘Fitted galerkin spectral method to solve
delay partial differential equations’, Mathematical Methods in the Applied Sciences, Vol. 39,
No. 11, pp.3102–3115.

Adel, W. and Sabir, Z. (2020) ‘Solving a new design of nonlinear second-order Lane-Emden
pantograph delay differential model via Bernoulli collocation method’, The European Physical
Journal Plus, Vol. 135, No. 5, p.427.

Anakira, N., Jameel, A., Hijazi, M., Alomari, A-K. and Man, N. (2022) ‘A new approach for
solving multi-pantograph type delay differential equations’, International Journal of Electrical &
Computer Engineering, Vol. 12, No. 2, pp.1859–1868, ISSN: 2088-8708.

Aziz, I. and Amin, R. (2016) ‘Numerical solution of a class of delay differential and delay partial
differential equations via Haar wavelet’, Applied Mathematical Modelling, Vol. 40, Nos. 23–24,
pp.10286–10299.
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