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Abstract: The design of an Archimedes optimisation algorithm-variable parameter tilt integral 
derivative with filter (AOA-VPTIDF) controller for injecting the optimal dose of insulin through 
the artificial pancreases (APs) for blood glucose (BG) regulation in type I diabetes mellitus 
(TIDM) patients is presented in this manuscript. The AOA technique is used to optimise the 
controller parameters for better control execution in this strategy. MATLAB and Simulink are 
used to evaluate the AOA-VPTIDF controller’s productivity in terms of accuracy, robustness and 
stability. The obtained results show that the AOA-VPTIDF controller is more effective at 
keeping blood sugar levels in the normal range (70–120 mg/dl). The relative result analysis with 
other well-known control techniques reveals the reason of improved control execution of the 
proposed controller. 
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1 Introduction 
Diabetes mellitus, which is caused by the pancreas 
malfunctioning, is one of the most common illnesses, 
according to the World Health Organization (WHO). It 
affects the normo-glycaemic range of BG level in a human 
being by reducing insulin sensitivity. Several researchers 
are now working on a number of initiatives to solve this 
problem by developing modern medical equipment such as 
an automated micro-insulin dispenser (MID). The BG level 

has been manually managed since the open loop control 
approach was implemented. Due to challenges in managing 
internal system changes and external disruptions by using 
the control loop approach, hypoglycemic or hyperglycemic 
situations may develop. The development of implanted 
artificial pancreas (AP) that allows for an adequate dosage 
of insulin administration proportional to sensor 
measurements in patient’s body might open the way for a 
closed loop control method to be implemented. A closed 
loop TIDM patient structure integrated with AP is depicted 
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in Figure 1. The AP is made up of three components: a 
sensor, a controller and a MID. The glucose sensor monitors 
the patient model’s blood sugar levels and sends the data to 
the controller. With the information from the sensor the 
controller generates a control signal. According to the 
control signal, the MID pumps the desired quantity of 
insulin. 

Figure 1 Overall graphical demonstration of TIDM patient with 
AP (see online version for colours) 

 

A variety of hurdles and constraints must be overcome in 
order to construct an ideal solution for the AP, including the 
impact of nonlinear characteristics, time-varying dynamics, 
different sources of interference, uncertainty, and lack of 
sensitivity to glucose are all factors to consider. Significant 
delay in glucose measurement, delayed post-infusion insulin 
absorption, endogenous insulin action, detection and 
evaluation of food intake, fluctuations in model parameters, 
asymmetric risk of extreme BG fluctuations, and time-based 
control requirements are all examples of control challenges 
(Chee and Fernando, 2003; Kamath and George, 2009). 
Despite significant technological advancement and 
development on the aforementioned issue, the control 
algorithm still needs to be improved significantly. Many 
authors recommended the PID controller as a feasible 
approach for assessing glucose excursions following insulin 
dosage adjustments in AP (Frederick and Tyrone, 2003; 
Sutradhar and Chaudhuri, 2002; Patra, 2020a, 2020b). The 
required performance insuring high accuracy, reliability and 
robustness could not be accomplished owing to glucose 
sensing time delay, insulin action, and non-variable gain 
parameters. Some of the optimal control techniques to deal 
with glucose monitoring issues include fuzzy control 
(Ibbini, 2006; Patra, 2020c), sliding mode (SM) control 
(Rmileh and Gabin, 2012; Gallardo and Ana, 2013; Patra, 
2017a, 2018a), linear quadratic Gaussian (LQG) control 
(Patra, 2015, 2020e), H∞ control (Chee and Andrey, 2005; 
Karimpour, 2012; Patra, 2014), and model predictive (MP) 
control (Patra, 2017b, 2018b), In comparison to PID 
controllers, glucose monitoring in patients within the 
normo-glycaemia range using the abovementioned 
controllers improved performance to some extent. Despite 
their improved performance these controllers are not totally 
immune to model disturbances and uncertainty. As a result, 
for improved performance and to avoid slow reaction after a 
meal disturbance, the current study proposes an alternative 
unique approach based on the Archimedes optimisation 
algorithm-variable parameter tilt integral derivative with 
filter (AOA-VPTIDF) controller. 

The controller settings are modified for improved 
control execution in this suggested approach  

(AOA-VPTIDF) using the AO technique. The  
AOA-VPTIDF controller provides a wide range of control 
options for system parameters. The suggested controller 
adapts to all conceivable disturbances and patient situations 
in order to preserve patient normo-glycemia. When 
compared to other contemporary well-accepted strategies 
for controlling BG levels in TIDM patients, the proposed 
strategy ensures a more robust controller under both 
matched and mismatched uncertainty. The proposed patient 
model along with AOA-VPTIDF controller provides the 
noteworthy contributions which are summarised below. 

• Development of numerical expressions of the glucose 
metabolism (GM) process in patient for glucose 
monitoring. 

• To design a novel control strategy (AOA-VPTIDF) for 
patient model to monitor the BG level to attain the 
normo-glycaemia. 

• Investigation of the patient activities with  
AOA-VPTIDF controller under the abnormal 
environments to justify its better performance. 

• Comparative analysis is performed to certify superiority 
of the proposed approach. 

The remaining of the manuscript is prearranged in the 
following order. The numerical clarifications of the GM 
process are shown in Section 2. Section 3 depicts the details 
about the proposed control strategy (AOA-VPTIDF) for 
maintaining normal BG levels. Section 4 displays the  
AOA-VPTIDF controller’s numerical and simulation 
outputs. The concluding observations are shown in  
Section 5. 

2 Problem formulation 
2.1 Clinical support 
Diabetes mellitus often known as hyper-glycemia, is a 
collection of clinical illnesses defined by a prolonged high 
level of AG exceeding 144 mg/dl. It can be caused by a 
shortage of insulin, its action or both. Diabetes is caused by 
the body’s inability to properly utilise glucose. The dose of 
insulin in case of body determines whether it is types I or II. 
In type I diabetes, the patient’s system is wholly unsuitable 
to make insulin. Insulin is administered at a slower rate and 
its action is limited in type II. Despite the fluctuating 
demands of food, fasting and exercise, glucose is properly 
monitored in the body (Barger and Rodbard, 1989; Chee 
and Fernando, 2003; Gallardo and Ana, 2013). 

Glucose is the original energy source. For all of life’s 
processes the human body need glucose. The venous blood 
(VB) takes glucose from the gastrointestinal compartment 
and absorbs it. The carbohydrate diet provides glucose to 
the gut compartment. It is the circulating glucose’s 
‘external’ source. The VB collects glucose from the 
intestine and subsequently transfers it to the liver. When the 
BG level falls too low, it is stored inside liver as glycogen 
and transported back into VB. It is the ‘internal’ glucose 
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supply. Inside the cell, glucose is metabolised with oxygen 
to produce energy, carbon dioxide, and water (Barger and 
Rodbard, 1989; Chee and Fernando, 2003; Gallardo and 
Ana, 2013). 

The β cells in the pancreas produce insulin which 
regulates blood glucose (BG) levels. Insulin serves two 
major functions in a typical human with a high BG level: 
first, it allows the liver to absorb glucose and store it in the 
form of glycogen, which is especially important during meal 
intake. As a result, the liver and muscles can no longer 
produce excess ‘internal’ glucose. Second, insulin facilitates 
glucose absorption in the muscles and satisfies the body’s 
peripheral energy requirements (Barger and Rodbard, 1989; 
Chee and Fernando, 2003; Gallardo and Ana, 2013). Both 
of the actions are observed to be impaired partially or totally 
in diabetic individuals due to abnormalities in metabolic 
process dynamics. When a diabetic patient’s cells stop 
utilising glucose and the liver produces internal glucose, an 
uncontrolled BG level is observed. When the BG level 
exceeds the renal threshold glucose (RTG) of 162 mg/dl, the 
excess VB glucose is excreted through the kidney (Barger 
and Rodbard, 1989). 

2.2 Structure of patient 
The authors have provided many models that explain the 
mechanism of the GM process for glucose control as shown 
by glucose-insulin (GI) dynamics during the last few 
decades. Because of its structural simplicity and near 
approximation to human metabolic dynamics, Lehmann 
(1992, 1998) created a model that is commonly used in 
modelling and testing of a variety of control strategies. This 
model was used to test the effectiveness of the suggested 
controller for controlling glucose levels in the current 
investigation. Figure 2(a) depicts a GM process with AP, 
which consist of with six compartments including the 
peripheral, liver, kidney, stomach, heart and brain. 

In the current study, this model was utilised to examine 
the effectiveness of the recommended controller for 
managing BG levels. Figure 2(a) shows a model of the GI 
interaction process with an integrated insulin dose 
controller, which has six parts: peripheral, liver, kidney, 
stomach, heart, and brain. Hepatic glucose production and 
intestinal absorption both result in glucose entering the 
bloodstream. Continuous monitoring of the AG is necessary 
to provide feedback to the AP. Every five minutes, the input 
to the AP is calculated, just like the insulin given into the 
VB by the implanted MID. The sensor technology and the 
support device utilised, on the other hand, decide the sample 
interval. Meal and exercise are presented as disruptions to 
the stomach and the periphery, respectively, in this model. 
After analysing insulin, glucose flow, and their features, the 
synthesis of the entire GM process in a diabetic patient is 
completed. Based on the action of insulin and glucose, a 
reduced model of the process of GM of the TIDM patient is 
presented in Figure 2(b). The transport of glucose flow 
directions is represented by solid arrow marks. The glucose 

transport promotion and inhibition with the help of insulin is 
indicated by +1 and –1 respectively. 

Figure 2 (a) Compartmental model of GM process (b) The GI 
interaction in structure of patient (see online version 
for colours) 

 
(a) 

 
(b) 

2.2.1 Action of insulin 
The AP pumps optimum dose of insulin into the VB stream 
while the BG level increases. The insulin action inside the 
VB is stated as (Lehmann, 1992, 1998): 

( ) ( ) ( )p abs
e p

I

dI t I t K I t
dt V

= −  (1) 

where Ip(t) is the plasma insulin level, Iabs(t) is the insulin 
absorption rate of the VB, Ke is the constant of insulin 
elimination rate, and VI is the volume of insulin distribution. 
The value of Ke and VI are assumed as 0.123 min–1 and  
99.4 dl separately. The differentiation of the active insulin 
concentration Ia(t) (mU/dl) in the VB is stated as (Lehmann, 
1992, 1998): 

1 2
( ) ( ) ( )a

p a
dI t K I t K I t

dt
= −  (2) 
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where K1 is the time delay rate constant of insulin action for 
Ip(t), and K2 is the time delay rate constant of insulin action 
for Ia(t). The value of K1 and K2 are assumed as 0.00042 
min–1 and 0.021 min–1 separately. The concentration of 
effective active insulin Iea(t), and concentration of effective 
plasma insulin Iep(t) in the VB are stated in the equations (3) 
and (4) respectively (Lehmann, 1992, 1998). 

( )2 1( ) ( )ea p aI t S K K I t=  (3) 

( )( ) ( )ep h basal pI t S I I t=  (4) 

where Sp and Sh are the insulin sensitivity of peripheral and 
hepatic respectively. The range of ideal values of both 
insulin sensitivities (Sp and Sh) are taken as from 0 to 1.0. 
The Ibasal denotes as the concentration of basal insulin, and 
its value is 1.0 mU/dl. The dynamic conditions of whole 
insulin activities in the GM process are communicated as in 
equations (1)–(4). 

2.2.2 The profile of glucose in the digestive system 
The glucose formation rate of the gastric emptying 
subsystem (GES) is known as gastric emptying rate Gempt(t), 
and it is displayed in the Figures 3(a) and 3(b). The Gempt(t) 
rises up to the maximum value Vmaxge (360 mg/min), and 
then falls up to the zero. The outline of the Gempt(t) plot 
depends on the amount of carbohydrate (Ch) ingestion. 
Figure 3(a) depicts the triangular form of the Gempt(t) in the 
condition when, Ch ingestion is below the critical value of 
carbohydrate Chcrit (10.8 gm). The Chcrit can be estimated 
by the help of equation (5). The Tascge and Tdesge represent 
the ascending and descending time of the Gempt(t) plot. It is 
described in equation (6). Figure 3(b) depicts the trapezoidal 
form of the Gempt(t) plot in the condition when Ch ingestion 
is higher than or identical to the Chcrit. In this study, values 
of Tascge and Tdesge are taken as 30 min. The Tmaxge is the 
time interval in which Gempt(t) attains the Vmaxge. It is stated 
in the equation (7) (Lehmann, 1992, 1998). 

( ) max 2crit ge ge geCh Tasc Tdes V=  +    (5) 

maxge ge geTasc Tdes Ch V= =  (6) 

( )
max

(1/ 2) max max
ge

ge ge ge ge

T

Ch V Tasc Tdes V=  − +  
 (7) 

The Gempt(t) with Ch intake higher than Chcrit is 
characterised as: 

( )

( )

max if
if

max
max

( ) if max
max

max
max

0 if otherwise

ge ge ge

ge ge
ge

ge

empt ge ge
ge

ge
ge ge

ge ge

V Tasc t Tasc
Tasc t Tasc

V
T

G t Tasc T
V

t Tasc
V Tdes t

T Tdes

 <
 < ≤
 +


= +
 ≤ <−
 + +



 (8) 

where t is the interval of the time from the instance of meal 
ingestion. The Gempt(t) plot for both triangular and 
trapezoidal form can be acknowledged and expected for the 
calculation purpose by indicating the equation (8). The 
glucose preoccupation rate from gut is assessed from the 1st 
order filter production with respect to the input Gempt(t) 
(Lehmann, 1992, 1998). 

( )
( ) ( )gut

empt in
dG t

G t G t
dt

= −  (9) 

( ) ( )in gabs gutG t K G t=  (10) 

where Ggut(t) is the gut glucose absorption, Gin(t) is the 
glucose ingestion rate into the VB, Kgabs is the gut glucose 
absorption rate constant, and the value of Kgabs is assumed 
as 0.017 min–1. Figure 3(c) exhibits the glucose assimilation 
rate from the gut with 10 gm and 60 gm Ch consumption. It 
is obtained by going of Gempt(t) through the 1st order filter 
and appears in Figures 3(a) and 3(b) separately in both the 
circumstances. The dynamic conditions as spoken to in 
equations (5)–(8) for the GES are analysed and executed. 
Additionally, the dynamic conditions as depicted by the 
equations (9)–(10) implied for gut are also analysed and 
executed. The numerical structure of the gut is shown in 
Figure 4(a). 

2.2.3 Profiles of glucose in liver 
The liver delivers and uses the carbohydrates, and it is 
characterised as NHGB. The NHGB is the glucose profile of 
the liver, and constrained by two variables as Iep(t) and AG. 
It is estimated by referring the look-up table. The associated 
information is collected from the literatures (Lehmann, 
1992). The numerical structure of the liver is reflected in 
Figure 4(a). 

2.2.4 Profiles of glucose in cells 
The cells utilise glucose dependent on Iea(t) and Ip(t). The 
glucose utilisation by the cells is synthesised by the look-up 
table, and the associated information is collected from the 
literatures (Lehmann, 1992, 1998). The numerical structure 
of cell is reflected in Figure 4(a). 

2.2.5 Profiles of glucose in central nerve system and 
RBC 

The central nerve system (CNS) and RBC are the insulin 
autonomous organs. CNS and RBC utilise the glucose of  
72 mg/hr/kg and 12.96 mg/hr/kg respectively. The 
numerical structures of the CNS and RBC are reflected in 
Figure 4(a). 
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Figure 3 (a) The plot of the Gempt(t) with 10 gm Ch ingestion 
(Ch < Chcrit) (b) The plot of the Gempt(t) with 60 gm Ch 
ingestion (Ch > Chcrit) (c) The outcome of the gut with 
10 gm and 60 gm Ch ingestion (see online version  
for colours) 

 
(a) 

 
(b) 

 
(c) 

2.2.6 Profiles of glucose in kidney 
The kidney eliminates the part of the glucose from the VB, 
when the BG level ascents up to the RTG. The glucose 
discharge rate of kidney depends upon the BG and 
creatinine clearance rate (CCR). The function of the kidney 
is stated as follows (Lehmann, 1992, 1998): 
 

( )( ) ( ) if ( )renG t CCR G t RTG G t RTG= − >  (11) 

( ) 0 if ( )renG t G t RTG= ≤  (12) 

where G(t) and Gren(t) are the BG level (mg/dl) and renal 
glucose excretion rate respectively. The numerical structure 
of kidney is illustrated in Figure 4(a). In this study, the CCR 
is identical to 1 dl/min. 

2.2.7 Glucose concentration in VB 
The dynamic equation of BG level in VB is stated as 
follows (Lehmann, 1992, 1998): 

[ ]( ) ( ) ( ) ( )( ) in liver out ren

G

G t G t G t G tdG t
dt V

+ − −
=  (13) 

where VG, Gout(t), and Gliver(t) are the glucose distribution 
volume in the VB, total glucose consumption rate of all GM 
organs, and NHGB rate of the liver separately. In this study, 
VG is taken as 175 dl. 

2.3 Mathematical structure of patient 
The structure of the patient is shown in the Figure 4(a). It is 
formulated regarding to the mathematical expressions as 
signified in equations (1)–(13). 

2.4 MID 
Cochin (1997) recommends one sort of MID for this study. 
It works on the principle of variable pumping rate. The most 
crucial components of this device are the storage capsule, 
micro pump, accumulator, pump return valve, and proper 
electrical control. A chromatograph for testing BG levels, 
an accelerometer for determining if the patient is active or 
resting, and a pulse monitor for monitoring heart rate are 
among the other sensing and regulating components. All of 
this information is gathered by a microprocessor, which 
then makes the decision to give proper insulin doses to the 
VB. In Figure 4(b), the MID’s simulation structure is 
shown. 

2.5 Investigation of patient dynamics 
The time domain response fluctuation of numerous 
parameters associated to BG metabolic processes is 
demonstrated in this section using a 60.00 gm meal at 600 
minutes and exercise at 1,300 minute workout under 
Gaussian environment. A fixed insulin dose, known as the 
basal dose of insulin, is used in this study. Figure 5(a) 
depicts the transitory variations in plasma glucose levels in 
VB as well as the insulin dose. Figure 5(b) depicts the 
abnormalities in NHGB rate, gut rate, rate of kidney 
excretion, as well as glucose uptake by the CNS and cells. 
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Figure 4 (a) Simulation structure of MID along with patient (b) MID’s simulation structure 

 
(a) 

 
(b) 

 
Peripheral cells and the liver, which rely only on insulin, 
maintain entire BG control in the VB. The cells and liver 
consume the least amount of glucose when insulin is not 
present. In this circumstance, the BG level increases 
excessively, above the 144 mg/dl target. This leads to the 
issue of hyper-glycemia. The kidney removes part of the 
glucose from the VB when the BG level reaches the RTG 
threshold. The rate of glucose excretion by the kidney as a 
function of BG level is depicted in Figure 5(c). The results 
in Figures 5(a)–5(c) depict a patient model with a wide 
range of transient reactions, and the patient’s glucose level 
is always higher than the normal BG level. It shows how 
sensitive the patient dynamics are to the presence of 
uncertainty and disturbances. Adaptive control technique-
based AP will be designed to overcome these uncertainties 
and disruptions in the patient model. 

3 Control mechanisms 
The AOA-VPTIDF control mechanism is clearly 
established in this section. The patient performance with 
AOA-VPTIDF controller as far as stability, accuracy and 
robustness are studied. The control performance indices like 
settling time in minute ts (min), steady-state error ess (%), 

peak overshoot in mg/dl OPeak (mg/dl), and peak undershoot 
in mg/dl UPeak (mg/dl) are also assessed and analysed with 
appropriate justification of the AOA-VPTIDF control 
activities. 

3.1 AOA-VPTIDF controller 
The diabetic patient structure with AOA-VPTIDF is 
reflected in Figure 1. In this control strategy, the error signal 
e(t) is utilised to generate the control output u(t). The 
transfer function (TF) of the AOA-VPTIDF controller is 
defined as (Patra, 2020b; Hashim and Hussain, 2021): 

( ) in
t d

K psTF K s K
s p s

−    = × + +   +   
 (14) 

where the control parameters are represented by tilt gain 
(Kt), integral gain (Ki), derivative gain (Kd), coefficient of 
tilt (n) and pre-filter gain (p). The control parameters are 
evaluated based on the patient activity for the minimum 
value of the fitness function like integral time absolute error 
(ITAE) as represented in the equation (15) (Patra, 2020b). 
The minimum value of fitness function gives better control 
outcomes such as less settling time along with less 
overshoot and undershoots. 
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0

( )ITAE e t tdt
∞

=   (15) 

For monitoring of glucose level, control parameters are 
evaluated by help of the AOA approach. 

Figure 5 Patient model (open loop) characteristic curves, (a) BG 
level verses insulin dose (b) glucose production and 
utilisation rates of GM organs (c) glucose excretion 
rate of kidney verses BG level (see online version  
for colours) 

 
(a) 

 
(b) 

 
(c) 

3.2 Optimisation algorithm 
The advent of optimisation algorithms provides better 
tuning methods. The optimisation algorithms used is 
Archimedes optimisation (AOA). This is explained in 
sections appended below. 

3.2.1 Archimedes optimisation algorithm 
Motivation from AOA is Archimedes law of physics. It is 
based on the buoyant force exerted by partially or 
completely immersed in any fluid is proportional to the 
weight of the displaced liquid (Hashim and Hussain, 2021). 
AOA is a population based algorithm. It starts with 
initialisation of total number of iterations, objects, 
population, optimisation variables, volume, density and 
acceleration. These values are assigned randomly upon 
evaluation of its fitness function. The optimisation 
terminates after evaluating the all iterations. The 
acceleration of objects is based on the condition of mutual 
collision of objects. The updated density, volume and 
acceleration determine new position of the object. It has 
both exploration and exploitation phase. Hence it is a global 
optimisation algorithm. Let, N be total number of objects, lbi 
and ubi be the lower and upper bound of search spaces. The 
position (oi) of ith object of the population with N objects is 
represented by equation (16). 

( )i bi bi bio l rand u l= + × −  (16) 

where rand is a D dimensional vector that randomly 
generates number between 0 and 1. The initial value of 
volume (voli) and density (deni) is expressed by  
equation (17). 

i

i

den rand
vol rand

= 
= 

 (17) 

After initialisation the fitness function is evaluated and the 
object with best fitness value is represented as xbest, the best 
value of volume is volbest, the best value of density is denbest 
and the best value of acceleration is accbest. The updating 
process of density and volume for current iteration (t) is 
expressed in equation (18). 

( )
( )

1

1

t t t
i besti i

t t t
i besti i

den den rand den den
vol vol rand vol vol

+

+

= + × − 
= + × − 

 (18) 

The objects initially collide mutually and then start to settle 
around equilibrium point. This is represented by transfer 
operator (Tf). Tf transforms exploration phase in to 
exploitation phase. It is represented mathematically by 
equation (19). 

max

max

t t
tTf e
−

=  (19) 

where tmax is maximum number of iterations. Tf gradually 
increases from its initial value and settles around one. The 
transfer from global search to local search is achieved by 
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density decreasing factor (d). It is expressed mathematically 
as equation (20). 

1
max1

max

t
tt td e

t

 − 
 + = −  (20) 

The values of dt+1 decreases with rise in time which aids in 
convergence. Proper handling of dt+1 will help to strike a 
balance between exploration and exploitation phase. The 
value of Tf ≤ 0.5 indicates collision between the objects. 
The acceleration of ith object for t + 1 iteration is updated by 
selecting a random material (mr) is expressed by  
equation (21). 

1
1 1

mr mr mrt
i t t

i i

den vol accacc
den vol

+
+ +

+ ×=
×

 (21) 

where denmr, volmr and accmr represent density, volume and 
acceleration for the selected random material. The 1t

iden +  
and 1t

ivol +  represent the density and volume t + 1 iteration. 
The exploitation phase considers no mutual collision 
between the objects. This phase is implemented by 
considering Tf ≥ 0.5. In this phase the acceleration of ith 
object for t + 1 iteration is updated by equation (22). 

1
1 1

best best bestt
i t t

i i

den vol accacc
den vol

+
+ +

+ ×=
×

 (22) 

where denbest, volbest and accbest represent the best values of 
density, volume and acceleration respectively. 
Normalisation of acceleration will determine the step size 

1
~( )t

i Normacc +  that each particle will change for achieving 
optimal solution. It is expressed by equation (23). 

1
1

~
min( )0.9 0.1

max( ) min( )

t
it

i Norm
acc accacc

acc acc

+
+ −= × +

−
 (23) 

When the object is far away from the optimal solution then 
the value of acceleration is higher and as the object 
approaches optimal solution then the acceleration is 
reduced. The position of ith particle in exploration phase is 
updated as per equation (24). 

( )1 1
~2t t t t

i Norm randi i ix x rand acc d x x+ += + × × × × −  (24) 

The position of ith particle in exploitation phase is updated 
as per equation (25). 

( )( )
1 1

~

3

6t t t
i Normi best

t
rand i

x x F rand acc

d c Tf x x

+ += + × × ×

× × × × −
 (25) 

c3 and F are constant value and flag employed to change 
direction of motion of objects. The flag (F) is expressed as 
per equation (26). 

( )
( )

4

4

1 if 2 0.5
1 if 2 0.5

rand c
L

rand c
+ × − ≤

= − × − >
 (26) 

where c4 is a constant value. Finally the fitness function is 
computed and the updated particle position and best values 

of density, acceleration and volume are recorded. The 
optimisation is achieved through reduction in cost function 
or loss function. The optimisation is carried till the limit of 
objects is reached or the iteration limits is reached. The 
optimal AOA-VPTIDF control parameters are adopted 
based on the AOA strategy as mentioned in Table 1. The 
optimisation (AOA) is achieved through reduction in cost 
function (ITAE). The structure of AOA-VPTIDF is shown 
in Figure 6(a), which is designed based on the  
equations (16) to (26). The working principle of the 
proposed optimisation technique (AOA) is clearly described 
through a flow chart as shown in Figure 6(b). 

Figure 6 (a) Block diagram of AOA-VPTIDF (b) Flowchart of 
AOA (see online version for colours) 
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Table 1 AOA-VPTIDF optimised parameter values 

Kt Ki Kd p n 

0.49896 0.003031 0.209 123.5578 0.48456 

4 Results and discussion 
The BG profiles of the patient model with AOA-VPTIDF 
controller are analysed thoroughly. The AOA-VPTIDF 
controller is also compared with the other existing control 
strategies to validate its enhanced actions. 

Figure 7 Patient model (closed loop) characteristic curves,  
(a) BG level verses insulin dose (b) glucose production 
and utilisation rates of GM organs (c) glucose 
excretion rate of kidney verses BG level  
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

4.1 Investigation of patient dynamics with  
AOA-VPTIDF control 

The AOA-VPTIDF controller for the patient model looked 
at all of the profiles as well as the related disturbances and 
uncertainties, such as fluctuating activity, random glucose 
intake, sensor and actuator noise, and so on. The 
characteristic curve in-between insulin dose and glucose 
level are established by eating a 60.00 gm meal at 600 
minutes and exercising for 1,300 minutes, as shown in 
Figure 7(a). Under identical conditions, other profiles such 
as CNS, NHGB, gut, peripheral and green rates are 
represented in Figure 7(b). 

The response of the patient model with the controller is 
shown in Figures 7(a)–7(c). In comparison to an 
uncontrolled process, the data clearly show that insulin-
dependent organs including the liver and peripheral cells 
use more glucose [Figures 5(a)–5(c)]. The BG level drops to 
83.3 mg/dl as a result of this impact. So that the problem of 
hyper-glycemia is avoided. Now that the BG level has 
decreased below the RTG threshold, no additional glucose 
extraction by the kidney occurs, as shown in Figure 7(c). As 
a result, the use of the AOA-VPTIDF controller-based AP 
boosted all patient model characteristics. 

4.2 Robustness aspect of the AOA-VPTIDF 
controller 

The AOA-VPTIDF controller was put through its paces to 
prove its worth under two different sets of patient 
parameters and a wide variety of meal intakes. The BG 
levels in relation to hepatic and peripheral insulin sensitivity 
are shown in Figures 8(a) and 8(b). Figure 8(c) shows the 
BG levels in relation to a wide range of meal consumption. 
In each case, the BG level reaches 81 mg/dl within a short 
period of time. As a result, patient features are unaffected 
by model restrictions or meal intake. It contributes to the 
AOA-VPTIDF controller’s robustness. 

Table 2 Comparative investigation with other state of art 
controllers 
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Meal intake 
(gm) 

60 60 60 60 60 60 

Insulin dose 
(mU/min) 

59.6 59.2 59.0 59.1 59.1 59.0 

ts (min) 290 260 250 260 255 220 
OPeak (mg/dl) 5.2 5.3 4.1 8.5 4.5 2.3 
UPeak (mg/dl) 3.1 2.1 1.5 1.8 1.2 1.0 
Noise (%) 10 10 5 5 5 1 
ess (%) 0 0 0 0 0 0 
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Figure 8 BG levels of closed loop patient structure verses 
patient parameters, and meal intakes, (a) BG level 
verses Sh (b) BG level verses Sp (c) BG level verses 
meal intakes (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

4.3 Stability of the patient model 
The bode outputs of an open and closed system are shown 
in Figures 9(a) and 9(b) to verify that the stability criteria 
are fulfilled. From the outputs, it can be shown that the 
closed model [Figure 9(b)] has a greater perfection referring 
to the more continuous state stability than the opened model 
[Figure 9(a)]. The bandwidth (BW) of the closed patient 
model is greater than that of the opened patient model. It 

clearly demonstrates a faster and more stable dynamics, and 
the model, in combination with the proposed controller, 
achieves a glucose level of 81 mg/dl. From, Figure 9(b), it is 
also seen that both gain and phase margin are positive. 
Hence, it confirms that the patient’s structure, in 
conjunction with the controller, achieves increased stability. 

Figure 9 (a) The frequency response of patient structure (b) The 
frequency response of patient structure along with 
AOA-VPTIDF controller (see online version  
for colours) 

 
(a) 

 
(b) 

4.4 Comparative investigation 
In this part, the control performance of AOA-VPTIDF is 
compared to that of other control techniques. In diabetic 
patients employing this controller, the effects of exercise 
and meal disruption on BG levels and insulin infusion rate 
changes are depicted in Figures 7(a)–7(c), and Table 2 
offers some significant data. 

The selected controller’s settling time, undershoot, and 
overshoot are comparatively bigger stability and 
controllability than other implemented optimum controllers 
based on patient BG levels with the suggested controller and 
a 60.00 gm ingested meal disruption. 
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According to an exercise disturbance test, the  
AOA-VPTIDF regulated BG level declines to 80.00 mg/dl 
and is within the normo-glycemic range. According to the 
findings, the AOA-VPTIDF controller performs 
significantly better and more consistently in minimising 
noise and resolving hyper-glycemia issues. This controller 
regulates blood sugar levels and reduces insulin infusion 
rates better than other commonly used controllers. Using an 
AOA-VPTIDF based controller, the results demonstrated 
greater reliability, stability, precision, and robust 
performance in a variety of physiological circumstances and 
disturbances. 

5 Conclusions 
This study provides a new control strategy (AOA-VPTIDF) 
for maintaining BG level in TIDM diabetes patients in the 
normo-glycemic range. For testing and simulation purposes, 
a patient model with MID has been taken and detailed 
mathematical representation and Simulink model design has 
been offered. All of the calculations were done with a 
variety of uncertainties and disturbances related with food 
and exercise, all of which were centred on a normal human 
operating point. The study was carried out with different 
meal and activity-related uncertainties and disturbances, 
with a starting operating point set by a normal human body 
reference with a plasma glucose level of 81 mg/dl and a 
22.3 mU/min ‘base dose’ of insulin. When comparing the 
suggested control algorithm to the other control methods, it 
is clear that the proposed control algorithm is more 
accurate, steady and robust in controlling the BG level. The 
results suggest that employing an integrated embedded 
system and other auxiliary devices for BG control in TIDM 
patients, such as a MID and a sensor, this sort of control 
approach may be implemented in real-time. However, 
according to the current state of the system, the tuning 
approach to identify the best gain is largely dependent on 
the parameters linked with the technique. In the same stage 
and state of the control approach, this could be vulnerable. 
With the aforementioned problems in mind, future research 
may be conducted to create a more robust, dependable, and 
effective controller for this situation. 
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