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Abstract: In this paper, we focus on solving fully fuzzy interval integer 
transshipment (FIIT) problems where the unit shipping costs, available supply 
capacities, and required destination demands are triangular fuzzy interval 
integers. An innovative method namely, back order sequence method has been 
developed for finding an optimal solution of the fully FIIT problem. The 
proposed method provides that the optimal values of decision variables and 
objective function value for the fully FIIT problem are fuzzy interval integers. 
A numerical example is presented to illustrate the solution procedure of 
optimising fully FIIT problems. The optimal solution to the transshipment 
problem by the proposed method can help the managers to take an appropriate 
decision regarding transshipments. 

Keywords: interval; fuzzy set; fuzzy interval; transshipment problem; optimal 
solution; back order sequence method. 
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1 Introduction 

In a transportation problem (TP) shipment of the commodity takes place among sources 
and destinations. But instead of direct shipments to destinations, the commodity can be 
transported to a particular destination through one or more intermediate or transshipment 
(TS) points. Each of these points in turn supply to other points. Thus, when the shipments 
pass from destination to destination and from source to source, we have a transshipment 
problem. Since the transshipment problem is a particular case of TP hence to solve the 
transshipment problem, we first convert the transshipment problem into an equivalent TP 
and then solve it to obtain an optimal solution by using the MODI method of TP. In a TP, 
shipments are allowed only between source-sink pairs. In many applications, this 
assumption is too strong. For example, it is often the case that shipments may be allowed 
between sources and between sinks. Moreover, some points may exist through which 
units of a product can be transshipped from a source to a sink. Models with these 
additional features are called transshipment problems. Interestingly, it turns out that any 
given transshipment problem can be converted easily into an equivalent TP. The 
availability of such a conversion procedure significantly broadens the applicability of our 
algorithm for solving TPs. 

2 Literature review 

The transshipment problem as an extension to the classical TP with the inclusion of the 
possibility of the transshipment was introduced by Orden (1956). Rhody (1963) studied 
the transshipment problem as a reduced matrix model. Judge et al. (1965), King and 
Logan (1964) and Hurt and Tramel (1965) studied the transshipment problem as a 
general linear programming model. Jafari (2019) inclined to solve the asymmetric 
travelling salesman problem (ATSP), a particular computational advantage of this model 
is that it has a rapid convergence to optimality in contrast with other assignment problem 
(AP)-based models, they also showed that the method can be extended easily to solve 
other variants of ATSPs such as the multiple TSP and the Selective TSP. Determinants of 
Indian banks efficiency: a two-stage Approach is suggested by Jayaraman and Srinivasan 
(2019) this study seeks to examine the cost, revenue and profit efficiency of Indian banks 
from 2004 to 2013 using data envelopment analysis (DEA) and identifies the 
determinants of efficiency using Tobit regression. A mixed-integer programming model 
is proposed (Khatibi et al., 2019), the aim is simultaneous to minimise the total cost of 
tardiness, earliness, delay, and compression as well as expansion costs of job processing 
time; and minimise the passengers overcrowding on the gate. Ozdemir et al. (2006) 
studied the multi-location transshipment problem with capacitated production and lost 
sales. Pandian and Natarajan (2010a, 2010b) developed new methods for solving TPs  
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involving fixed and imprecise parameters. Two new methods are proposed by Kumar  
et al. (2011b) to find the fuzzy optimal solution of fuzzy TPs with some additional 
transshipments. NagoorGani et al. (2011) and Kumar et al. (2011a) developed methods 
for finding an optimal solution for a fully fuzzy transshipment problem based on fuzzy 
linear programming and ranking approach. 

An advanced method namely, the slice-sum method is used for determining an 
optimal solution, to fully rough interval integer TPs and have been developed by Pandian 
et al. (2016) for pharmaceutical sciences (Pandian et al., 2018). Kumar et al. (2019) given 
an attempt is made to find an optimal ordering of three machines for n jobs involving 
processing times, transportation time, breakdown interval and weights of jobs by using 
the genetic algorithm (GA) approach. The produced algorithm protects the best schedule 
of the jobs which has the minimum mean weighted flow time at each iteration. 
Transshipment problems having crisp, interval and fuzzy parameters were studied and 
solved using the zero-point method (Pandian and Natarajan, 2010a, 2010b) with few 
modifications by Rajendran and Pandian (2012). Gong and Yücesan (2012) examined the 
multi-location transshipment problem with positive replenishment lead times using 
infinitesimal perturbation analysis by combining with a stochastic approximation method. 
The vehicle routing problem with trailers and transshipments was studied by Drexl 
(2013). Das et al. (2017) established an innovative solid TP that intends to maximise 
profit under the rough interval approximation methodology. Rais et al. (2014) addressed 
and studied the pickup-and-delivery problem with transshipments as a mixed-integer 
programming model. Akilbasha et al. (2018) proposed an innovative exact method for 
solving fully interval integer TPs. Meissner and Senicheva (2018) discussed the multi-
location inventory systems under periodic review with multiple opportunities for 
proactive transshipments within one order cycle. A behavioural study in supply chain 
models through transshipment strategies were discussed by Villa and Castañeda (2018). 

Aguilar-Chinea et al. (2019) have proposed automatic learning techniques to obtain a 
predictor of the robustness of transshipment schedules. A new transshipment contract 
approach has been proposed in order to coordinate such a supply chain and guarantee the 
members’ profit by Aslani and Heydari (2019). Bushuev et al. (2018) investigated the 
strategies for improving supply chain delivery performance when the cumulative density 
function of the delivery time distribution exists in closed form. Maggioni et al. (2019) 
have proposed and studied two-stage and multistage stochastic optimisation models for a 
bike-sharing problem with transshipment to determine the optimal number of bikes to 
assign to each station at the beginning of the service. Maity and Roy (2019) studied the 
multi-item multi-choice TP in the ground of inventory optimisation by using the concept 
of basic inventory optimisation and developed a methodology for integrated optimisation 
in inventory transportation (IOIT) to reduce the logistic cost of a system. Li et al. (2019) 
have solved the single-crane scheduling problem at rail transshipment yards, in which 
gantry cranes move containers between trains, trucks and a storage area. Lmariouh et al. 
(2019) the objective is to minimise the sum of the production, transportation, and 
inventory costs; also they have proposed a mixed-integer linear program for a variant of 
the multi-vehicle, multi-product production routing problem. 

The rest of this paper is formatted as follows: a few known definitions, basic 
arithmetic operators and partial ordering related to intervals, fuzzy sets, and fuzzy 
intervals are presented in Section 3. In Section 4, presents the mathematical formulation 
of the fully FIIT problems. The proposed method namely, back order sequence method 
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for optimising the fully FIIT problem is discussed. The numerical example is illustrated 
in Section 5. In Section 6, the results and discussion part have been included then finally 
the conclusion of the article has been provided. 

3 Preliminaries 

The following few definitions, basic arithmetic operators and partial ordering related to 
real intervals and fuzzy sets are used in this paper which can be found in Akilbasha et al. 
(2018), Klir and Yuan (2008), Moore (1979) and Pandian and Natarajan (2010a). 

Let D denote the set of all closed bounded intervals on the real line R. That is,  
D = {[a, b]: a ≤ b, a and b are in R}. 

Definition 3.1: Let A = [a, b] and B = [c, d] be in D. Then, 

1 A ⊕ B = [a + c, b + d] 

2 A Θ B = [a – d, b – c] 

3 kA = [ka, kb] if k is a positive real number 

4 kA = [kb, ka] if k is a negative real number 

5 A ⊗ B = [p, q] where p = min{ac, ad, bc, bd} and q = max{ac, ad, bc, bd}. 

Definition 3.2: Let A = [a, b] and B = [c, d] be in D. Then, 

1 A ≤ B if and only if a ≤ c and b ≤ d 

2 A = B if and only if a = c and b = d. 

Definition 3.3: Let A = [a, b] be in D. Then, 

1 A is said to be non-negative, that is, A ≥ 0 if a ≥ 0 

2 A is said to be an integer if a and b are integers. 

Definition 3.4: Let A be a classical set and μA(x) be a membership function from A to  
[0, 1]. A fuzzy set A* with the membership function μA(x) is defined by: 

( ){ }* , ( ) : and ( ) [0, 1]A AA x μ x x A μ x= ∈ ∈  

Definition 3.5: A fuzzy number a  is a triangular fuzzy number denoted by (a1, a2, a3) 
where a1, a2 and a3 are real numbers and its membership function ( )aμ x  is given below. 

( ) ( )

( ) ( )

1

1 2 1 1 2

2

3 3 2 2 3

3

0 for
for

( ) 1 for
for

0 for

a

x a
x a a a a x a

μ x x a
a x a a a x a

x a

≤
 − − ≤ <= =
 − − < ≤

>

  

Let F(R) be a set of all triangular fuzzy numbers over R, a set of real numbers. 
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Definition 3.6: Let 1 2 3( , , )a a a a=  and 1 2 3( , , )b b b b=  be in F(R). Then, 

1 1 1 2 2 3 3( , , )a b a b a b a b⊕ = + + +  

2 1 3 2 2 3 1( , , )a b a b a b a bΘ = − − −  

3 1 2 3( , , ), for 0ka ka ka ka k= ≥  

4 3 2 1( , , ), for 0ka ka ka ka k= <  

5 1 2 3( , , ).a b t t t⊗ =  

where t1 = minimum{a1b1, a1b3, a3b1, a3b3}; t2 = {a2b2} and t3 = maximum{a1b1, a1b3, 
a3b1, a3b3}. 

Definition 3.7: Let 1 2 3( , , )a a a a=  and 1 2 3( , , )b b b b=  be in F(R). Then, 

1 a  and b  are said to be equal if ai = bi, i = 1, 2, 3 

2 a  is said to be less than or equal b  if ai ≤ bi, i = 1, 2, 3. 

Definition 3.8: Let 1 2 3( , , )a a a a=  be in F(R). Then, 

1 a  is said to be positive if a1 ≥ 0 

2 a  is said to be an integer if ai, i = 1, 2, 3 are integers. 

Now, we define the following definitions of membership function, the basic arithmetic 
operators and partial ordering on closed bounded fuzzy intervals (Judge et al., 1965) 
based on the definitions in real interval sets and fuzzy sets. 

Let D  denote the set of all closed bounded fuzzy intervals over F(R). 
That is, 1 2 3 1 2 3 3 1{[ , ], ( , , ) and ( , , ), and ’ and ’i iD a b a a a a b b b b a b a s b s= = = ≤     

are in }.R  

The membership function [ , ] ( )a bμ x  of the fuzzy interval number [ , ]a b  is given 
below. 

[ ]

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 1 2

3 3 2 2 3

1 2 1 1 2,

3 3 2 2 3

:
:

( ) :
:

0 : otherwise

a b

x a a a a x a
a x a a a x a

μ x x b b b b x b
b x b b b x b

 − − ≤ ≤
 − − ≤ ≤= − − ≤ ≤
 − − ≤ ≤


  

The graph of [ ], ( )a bμ x  is given in Figure 1. 
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Figure 1 Membership of an interval-typed triangular function 

 

Definition 3.9: Let [ , ]A a b=    and [ , ]B c d=    be in .D  Then, 

1 ,A B a c b d ⊕ = + +       

2 ,A B a d b c Θ = − −       

3 [ , ]kA ka kb=    if k is a positive real number 

4 [ , ]kA kb ka=    if k is a negative real number 

5 [ , ]A B p q⊗ =     where 1 2 3 1 2 3( , , ), ( , , ),p p p p q q q q= =   p1 = min{a1c1, a1d1,  
b1c1, b1d1}, q1 = max{a1c1, a1d1, b1c1, b1d1}, p2 = min{a2c2, a2d2, b2c2, b2d2},  
q2 = max{a2c2, a2d2, b2c2, b2d2}, p3 = min{a3c3, a3d3, b3c3, b3d3} and  
q3 = max{a3c3, a3d3, b3c3, b3d3}. 

Definition 3.10: Let [ , ]A a b=    and [ , ]B c d=    be in .D  Then, 

1 A B≤   if and only if a c≤   and b d≤   

2 A B=   if and only if a c=   and .b d=   

Definition 3.11: Let [ , ]A a b=    be in .D  Then, 

1 A  is said to be positive if 0a ≥  

2 A  is said to be an integer if a  and b  are integers. 

4 Fully fuzzy interval integer transshipment (FIIT) problems 

Consider a transshipment problem with m origins and n destinations. Any origin or any 
destination can ship items to any other origin or any destination by using the 
transshipment problem; it would be more suitable to number them successively so that 
the origins and destinations are numbered from 1 to m and from m + 1 to m + n 
respectively. Let [ , ]i ia p   be the fuzzy interval quantity available at the ith origin and 

[ , ]i jb q   be the fuzzy interval requirement at the jth destinations. Let [ , ]ij ijx y   (i, j = 1,  
2, ..., m + n; i ≠ j) be the fuzzy interval quantity shipped from the ith station to the jth 
station and [ , ]ij ijc d  (i, j = 1, 2, ..., m + n) be the fuzzy interval unit shipping cost from 
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the ith station to jth station where [ , ]ij ijc d  need not be same as [ , ].ji jic d  The main 
objective is to obtain an optimal transshipping pattern such that the total fuzzy interval 
cost of transportation is minimum. 

Now, the mathematical formulation of the above said fully FIIT problem, (P) is given 
below: 

1 2
1 1

(P) Minimise [ , ] [ , ] [ , ].

i j

m m n

ij ij ij ij
i j

z z c d x y

≠

+

= =

= ⊗      

Subject to: 

[ ] [ ] [ ]
1 1

, , , , 1, 2, ...,

i j i j

m n m n

ij ij i i ji ji
j j

x y a p x y i m

≠ ≠

+ +

= =

= + =        (1) 

[ ] [ ]
1 1

, , , , 1, 2, ...,
i j i j

m n m n

ij ij j j ji ji
i i

x y b q x y j m m m n
≠ ≠

+ +

= =

 = + = + + +        (2) 

, 0, for , 1, 2, ..., and are integersij ijx y i j m n≥ = +   (3) 

where m denotes the number of supply points; n denotes the number of demand points; 
[ , ]ij ijx y   is the fuzzy interval number of units shipped from supply point i to demand 

point j with 1 2 3( , , )ij ij ij ijx x x x=  and 1 2 3( , , ); [ , ]ij ij ijij ij ijy y y y c d=    is the fuzzy interval cost  

of shipping one unit from supply point i to the demand point j with 1 2 3( , , )ij ij ij ijc c c c=   

and 1 2 3( , , ); [ , ]ij i iij ij ijd d d d a p=    is the fuzzy interval supply at supply point i with 
1 2 3( , , )i i i ia a a a=  and 1 2 3( , , )i i i ip p p p=  and [ , ]j jb q   is the fuzzy interval demand at 

demand point j with 1 2 3( , , )j j j jb b b b=  and 1 2 3( , , ).j j j jq q q q=  

If 
1 1 1 1

, , ,
m m m n m n

i i j j
i i j m j m

a p b q
+ +

= = = + = +

   
=   

      
       the fully FIIP problem, (P) is said to be 

balanced. Otherwise, it is called unbalanced. 

Definition 4.1: A set of fuzzy intervals { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijx x x y y y  for all i and j} is said 
to be a feasible solution to the problem (P) if it satisfies the equations (1), (2) and (3). 

Definition 4.2: A feasible solution { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijx x x y y y  for all i and j} to the 
problem (P) is said to be an optimal solution of the problem (P) if the feasible solution 
minimises the objective function of the problem (P), that is: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 1 2 3 1 2 3 1 2 3

1 1

1 2 3 1 2 3 1 2 3 1 2 3

1 1

, , , , , , , , , ,

, , , , , , , , , ,

i j

i j

m m n

ij ij ij ij ij ij ij ij ij ij ij ij
i j

m m n

ij ij ij ij ij ij ij ij ij ij ij ij
i j

c c c d d d x x x y y y

c c c d d d m m m n n n

≠

≠

+

= =

+

= =

   ⊗   

   ≤ ⊗   




 

For all feasible { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijm m m n n n  for all i and j} to the problem (P). 
Now, from the given fully FIIT problem (P), we construct six IT problems namely, 

IT6 problem, IT5 problem, IT4 problem, IT3 problem, IT2 problem, and IT1 problem are 
given below: 

3 3 3
2

1 1

(IT6) Minimise

i j

m m n

ij ij
i j

z d y

≠

+

= =

=  

Subject to: 

3 3 3

1 1

, 1, 2, ...,

i j i j

m n m n

ij i ji
j j

y p y i m

≠ ≠

+ +

= =

= + =   

3 3 3

1 1

, 1, 2, ...,
i j i j

m n m n

ij j ji
i i

y q y j m m m n
≠ ≠

+ +

= =

= + = + + +   

3 0,  for , 1, 2, ...,  and are integers ijy i j m n≥ = +  

2 2 2
2

1 1

(IT5) Minimise

i j

m m n

ij ij
i j

z d y

≠

+

= =

=  

Subject to: 

2 2 2

1 1

, 1, 2, ...,

i j i j

m n m n

ij i ji
j j

y p y i m

≠ ≠

+ +

= =

= + =   

2 2 2

1 1

, 1, 2, ...,
i j i j

m n m n

ij j ji
i i

y q y j m m m n
≠ ≠

+ +

= =

= + = + + +   

2 3 , for , 1, 2, ...,ij ijy y i j m n≤ = +  

2 0, for , 1, 2, ..., and are integersijy i j m n≥ = +  

where 3{ ; , 1, 2, ..., }ijy i j m n= +  is an optimal solution to the problem (IT6). 
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1 1 1
2

1 1

(IT4) Minimise

i j

m m n

ij ij
i j

z d y

≠

+

= =

=  

Subject to: 

1 1 1

1 1

, 1, 2, ...,

i j i j

m n m n

ij i ji
j j

y p y i m

≠ ≠

+ +

= =

= + =   

1 1 1

1 1

, 1, 2, ...,
i j i j

m n m n

ij j ji
i i

y q y j m m m n
≠ ≠

+ +

= =

= + = + + +   

1 2 , for , 1, 2, ...,ij ijy y i j m n≤ = +  

1 0, for , 1, 2, ..., and are integersijy i j m n≥ = +  

where 2{ ; , 1, 2, ..., }ijy i j m n= +  is an optimal solution of the problem (IT5). 

3 3 3
1

1 1

(IT3) Minimise

i j

m m n

ij ij
i j

z c x

≠

+

= =

=  

Subject to: 

3 3 3

1 1

, 1, 2, ...,

i j i j

m n m n

ij i ji
j j

x a x i m

≠ ≠

+ +

= =

= + =   

3 3 3

1 1

, 1, 2, ...,
i j i j

m n m n

ij j ji
i i

x b x j m m m n
≠ ≠

+ +

= =

= + = + + +   

3 1 , for , 1, 2, ...,ij ijx y i j m n≤ = +  

3 0, for , 1, 2, ..., and are integersijx i j m n≥ = +  

where 1{ ; , 1, 2, ..., }ijy i j m n= +  is an optimal solution of the problem (IT4). 

2 2 2
1

1 1

(IT2) Minimise

i j

m m n

ij ij
i j

z c x

≠

+

= =

=  

Subject to: 

2 2 2

1 1

, 1, 2, ...,

i j i j

m n m n

ij i ji
j j

x a x i m

≠ ≠

+ +

= =

= + =   



   

 

   

   
 

   

   

 

   

   10 A. Akilbasha et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

2 2 2

1 1

, 1, 2, ...,
i j i j

m n m n

ij j ji
i i

x b x j m m m n
≠ ≠

+ +

= =

= + = + + +   

2 3 , for , 1, 2, ...,ij ijx x i j m n≤ = +  

2 0, for , 1, 2, ..., and are integersijx i j m n≥ = +  

where 3{ ; , 1, 2, ..., }ijx i j m n= +  is an optimal solution to the problem (IT3) and, 

1 1 1
1

1 1

(IT1) Minimise

i j

m m n

ij ij
i j

z c x

≠

+

= =

=  

Subject to: 

1 1 1

1 1

, 1, 2, ...,

i j i j

m n m n

ij i ji
j j

x a x i m

≠ ≠

+ +

= =

= + =   

1 1 1

1 1

, 1, 2, ...,
i j i j

m n m n

ij j ji
i i

x b x j m m m n
≠ ≠

+ +

= =

= + = + + +   

1 2 , for , 1, 2, ...,ij ijx x i j m n≤ = +  

1 0, for , 1, 2, ..., and are integersijx i j m n≥ = +  

where 2{ ; , 1, 2, ..., }ijx i j m n= +  is an optimal solution to the problem (IT2). 
Now, we establish a relationship between an optimal solution of the fully FIIT 

problem (P) and the constructed six IT problems, (IT1) to (IT6). This established 
relationship among the IT problems is employed in the proposed method namely, back 
order sequence method. 

Theorem 4.1: If the set { 3,ijy  for all i and j and i ≠ j} is an optimal solution of the 

problem (IT6) with the minimum transportation cost 3
2 ,z  the set { 2 ,ijy  for all i and j  

and i ≠ j} is an optimal solution of the problem (IT5) with the minimum transportation 
cost 2

2 ,z  the set { 1 ,ijy  for all i and j and i ≠ j} is an optimal solution of the problem (IT4) 

with the minimum transportation cost 1
2 ,z  the set { 3 ,ijx  for all i and j and i ≠ j} is an 

optimal solution of the problem (IT3) with the minimum transportation cost 3
1 ,z  the set 

{ 2 ,ijx  for all i and j and i ≠ j} is an optimal solution of the problem (IT2) with the 

minimum transportation cost 2
1 ,z  the set { 1 ,ijx  for all i and j and i ≠ j} is an optimal 

solution for the problem (IT1) with the minimum transportation cost 1
1 ,z  then the set of 

fuzzy integer intervals { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijx x x y y y , for all i and j and i ≠ j} is an optimal 
solution for the fully FIIT problem (P) with the minimum transportation cost 

1 2 3 1 2 3
1 1 1 2 2 2[( , , ), ( , , )].z z z z z z  



   

 

   

   
 

   

   

 

   

    Optimising fully fuzzy interval integer transshipment problems 11    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Proof: Now, since { 1 ,ijx  for all i, j and i ≠ j}, { 2 ,ijx  for all i, j and i ≠ j},{ 3 ,ijx  for all i, j 

and i ≠ j}, { 1 ,ijy  for all i, j and i ≠ j}, { 2 ,ijy  for all i, j and i ≠ j} and { 3,ijy  for all i, j and  
i ≠ j} are optimal solutions of the problems (IT2), (IT3), (IT4), (IT5) and (IT6) 
respectively with 1 2 3 1 2 3

ij ij ij ij ij ijx x x y y y≤ ≤ ≤ ≤ ≤  for all i, j and i ≠ j, we can conclude that 

the set of fuzzy interval integers { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijx x x y y y  for all i, j and i ≠ j} is a 
feasible solution to the fully FIIT problem (P). 

Let { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijm m m n n n  for all i, j and i ≠ j} be a feasible solution to the fully 

FIIT problem (P). This implies that { 1 ,ijm  for all i, j and i ≠ j}, { 2 ,ijm  for all i, j and  

i ≠ j}, { 3 ,ijm  for all i, j and i ≠ j}, { 1 ,ijn  for all i, j and i ≠ j}, { 2 ,ijn  for all i, j and i ≠ j} and 

{ 3 ,ijn  for all i, j and i ≠ j} are feasible to the problems (IT1), (IT2), (IT3), (IT4), (IT5) and 
(IT6) respectively. 

Now, since { 1 ,ijx  for all i, j and i ≠ j}, { 2 ,ijx  for all i, j and i ≠ j}, { 3 ,ijx  for all i, j and  

i ≠ j}, { 1 ,ijy  for all i, j and i ≠ j}, { 2 ,ijy  for all i, j and i ≠ j} and { 3,ijy  for all i, j and i ≠ j} 
are optimal solutions of the problems (IT1), (IT2), (IT3), (IT4), (IT5) and (IT6) 
respectively, we have: 

1 1 1 1 1
1

1 1 1 1
i j i j

m m n m m n

ij ij ij ij
i j i j

z c x c m

≠ ≠

+ +

= = = =

= ≤   

2 2 2 2 2
1

1 1 1 1
i j i j

m m n m m n

ij ij ij ij
i j i j

z c x c m

≠ ≠

+ +

= = = =

= ≤   

3 3 3 3 3
1

1 1 1 1
i j i j

m m n m m n

ij ij ij ij
i j i j

z c x c m

≠ ≠

+ +

= = = =

= ≤   

1 1 1 1 1
2

1 1 1 1
i j i j

m m n m m n

ij ij ij ij
i j i j

z d y d n

≠ ≠

+ +

= = = =

= ≤   

2 2 2 2 2
2

1 1 1 1
i j i j

m m n m m n

ij ij ij ij
i j i j

z d y d n

≠ ≠

+ +

= = = =

= ≤   

and 

3 3 3 3 3
2

1 1 1 1
i j i j

m m n m m n

ij ij ij ij
i j i j

z d y d n

≠ ≠

+ +

= = = =

= ≤   

This implies that: 
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( ) ( )

( ) ( ) ( ) ( )

1 2 3 1 2 3
1 1 1 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3

1 1

, , , , ,

, , , , , , , , , ,

i j

m m n

ij ij ij ij ij ij ij ij ij ij ij ij
i j

z z z z z z

c c c d d d x x x y y y

≠

+

= =

  

   = ⊗     

and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 1 2 3 1 2 3 1 2 3

1 1

1 2 3 1 2 3 1 2 3 1 2 3

1 1

, , , , , , , , , ,

, , , , , , , , , ,

i j

i j

m m n

ij ij ij ij ij ij ij ij ij ij ij ij
i j

m m n

ij ij ij ij ij ij ij ij ij ij ij ij
i j

c c c d d d x x x y y y

c c c d d d m m m n n n

≠

≠

+

= =

+

= =

   ⊗   

   ≤ ⊗   




 

Therefore, the set of fuzzy interval integers { 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijx x x y y y  for all i, j  
and i ≠ j} is an optimal solution of the fully FIIT problem (P) with the minimum 
transportation cost 1 2 3 1 2 3

1 1 1 2 2 2[( , , ), ( , , )].z z z z z z  
Hence, the theorem is proved. 

5 Back order sequence method 

We, now propose a new method namely, back order sequence method for finding an 
optimal solution to the fully FIIT problem. 

The back order sequence method has the following steps. 

Step 1 Convert the given fully FIIT problem into a balanced one if it is not. 

Step 2 Construct six-level integer transshipment (IT) problems of the given fully FIIT 
problem (P). 

Step 3 Solve the (IT6) problem using the zero-point method for transshipment 
problems (Rajendran and Pandian, 2012). Let { 3,ijy  for all i, j and i ≠ j} be an 

optimal solution of the (IT6) problem with the minimum transportation cost 3
2 .z  

Step 4 Solve the (IT5) problem using the zero-point method for transshipment 
problems (Rajendran and Pandian, 2012). Let { 2 ,ijy  for all i, j and i ≠ j} be an 

optimal solution of the (IT5) problem with the minimum transportation cost 2
2 .z  

Step 5 Solve the (IT4) problem using the zero-point method for transshipment 
problems (Rajendran and Pandian, 2012). Let { 1 ,ijy  for all i, j and i ≠ j} be an 

optimal solution of the (IT4) problem with the minimum transportation cost 1
2 .z  

Step 6 Solve the (IT3) problem using the zero-point method for transshipment 
problems (Rajendran and Pandian, 2012). Let { 3 ,ijx  for all i, j and i ≠ j} be an 

optimal solution of the (IT3) problem with the minimum transportation cost 3
1 .z  



   

 

   

   
 

   

   

 

   

    Optimising fully fuzzy interval integer transshipment problems 13    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Step 7 Solve the (IT2) problem using the zero-point method for transshipment 
problems (Rajendran and Pandian, 2012). Let { 2 ,ijx  for all i, j and i ≠ j} be an 

optimal solution of the (IT2) problem with the minimum transportation cost 2
1 .z  

Step 8 Solve the (IT1) problem using the zero-point method for transshipment 
problems (Rajendran and Pandian, 2012). Let { 1 ,ijx  for all i, j and i ≠ j} be an 

optimal solution of the (IT1) problem with the minimum transportation cost 3
1 .z  

Step 9 The optimal solution of the given fully FIIT problem (P) is 
{ 1 2 3 1 2 3[( , , ), ( , , )],ij ij ij ij ij ijx x x y y y  for all i, j and i ≠ j} with the minimum 

transportation cost 1 2 3 1 2 3
1 1 1 2 2 2[( , , ), ( , , )]z z z z z z  (by Theorem 4.1.). 

5.1 Numerical example 

The solution procedure of the back order sequence method for solving the fully FIIT 
problem is illustrated by the following numerical example. 

Example 5.1: Consider the following fully FIIT problem involving two sources and  
two destinations. The available items at the source S1 and the source S2 are [(3, 7, 10), 
(15, 17, 19)] units and [(6, 8, 11), (16, 18, 20)] units, respectively. The required demands 
at the destinations D1 and D2 are [(2, 6, 9), (14, 16, 18)] units and [(7, 9, 12), (17, 19, 
21)] units, respectively. 

The transportation cost per unit between different sources and destinations are fuzzy 
interval integers are summarised in the following table as given in Table 1. 
Table 1 The transportation cost per unit between different sources and destinations 

 S1 S2 D1 D2 
S1 - [(1, 4, 6),  

(9, 11, 13)] 
[(5, 9, 11),  

(14, 16, 18)] 
[(3, 5, 7),  

(10, 12, 14)] 
S2 [(2, 4, 6),  

(9, 11, 13)] 
- [(7, 11, 13),  

(16, 18, 20)] 
[(3, 5, 7),  

(10, 12, 14)] 
D1 [(1, 3, 5),  

(8, 10, 12)] 
[(8, 10, 12),  
(15, 17, 19)] 

- [(4, 6, 8),  
(11, 13, 15)] 

D2 [(2, 4, 6),  
(9, 11, 13)] 

[(1, 3, 5),  
(8, 10, 12)] 

[(2, 4, 6),  
(9, 11, 13)] 

- 

The given problem can be structured as a fully FIIT problem as follows (Table 2). 
Table 2 A fully FIIT problem 

 S1 S2 D1 D2 Supply 
S1 - [(1, 4, 6),  

(9, 11, 13)] 
[(5, 9, 11),  

(14, 16, 18)] 
[(3, 5, 7),  

(10, 12, 14)] 
[(3, 7, 10),  

(15, 17, 19)] 
S2 [(2, 4, 6),  

(9, 11, 13)] 
- [(7, 11, 13),  

(16, 18, 20)] 
[(3, 5, 7),  

(10, 12, 14)] 
[(6, 8, 11),  

(16, 18, 20)] 
D1 [(1, 3, 5),  

(8, 10, 12)] 
[(8, 10, 12),  
(15, 17, 19)] 

- [(4, 6, 8),  
(11, 13, 15)] 
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Table 2 A fully FIIT problem (continued) 

 S1 S2 D1 D2 Supply 
D2 [(2, 4, 6),  

(9, 11, 13)] 
[(1, 3, 5),  

(8, 10, 12)] 
[(2, 4, 6),  

(9, 11, 13)] 
-  

Demand   [(2, 6, 9),  
(14, 16, 18)] 

[(7, 9, 12),  
(17, 19, 21)] 

 

Now, since the total supply = [(9, 15, 21), (31, 35, 39)] = the total demand. Therefore the 
given problem is balanced. 

Now, by using step 2, the (IT6) problem of the given fully FIIT problem is obtained 
as given in Table 3. 
Table 3 The optimal solution allotted table of the (IT6) problem 

 S1 S2 D1 D2 Supply 
S1 - 13 18 14 19 
S2 13 - 20 14 20 
D1 12 19 - 15  
D2 13 12 13 -  
Demand   18 21  

Now, by using step 3, the optimal solution of the (IT6) problem is 3 3
13 1418; 1y y= =  and 

3
24 20y =  with the minimum transshipment cost is 618. 

Now, by using step 2, the (IT5) problem of the given fully FIIT problem is obtained 
as given in Table 4. 
Table 4 The optimal solution allotted table of the (IT5) problem 

 S1 S2 D1 D2 Supply 
S1 - 11 16 12 17 
S2 11 - 18 12 18 
D1 10 17 - 13  
D2 11 10 11 -  
Demand   16 19  

with 2 3 , , 1, 2, 3, 4.ij ijy y i j≤ =  

Now, by using step 4, the optimal solution to the (IT5) problem is 2 2
13 1416; 1y y= =  

and 2
24 18y =  with the minimum transshipment cost 484. 

Now, using step 2, the (IT4) problem of the given fully FIIT problem is obtained as 
given in Table 5. 
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Table 5 The optimal solution allotted table of the (IT4) problem 

 S1 S2 D1 D2 Supply 
S1 - 9 14 10 15 
S2 9 - 16 10 16 
D1 8 15 - 11  
D2 9 8 9 -  
Demand   14 17  

with 1 2 , , 1, 2, 3, 4.ij ijy y i j≤ =  

Now, by step 5, the optimal solution to the (IT4) problem is 1 1
13 1414; 1y y= =  and 

1
24 16y =  with the minimum transshipment cost 366. 

Now, by using step 2, the (IT3) problem of the given fully FIIT problem is obtained 
as given in Table 6. 
Table 6 The optimal solution allotted table of the (IT3) problem 

 S1 S2 D1 D2 Supply 
S1 - 6 11 7 10 
S2 6 - 13 7 11 
D1 5 12 - 8  
D2 6 5 6 -  
Demand   9 12  

with 3 1 , , 1, 2, 3, 4.ij ijx y i j≤ =  

Now, using step 6, the optimal solution to the (IT3) problem is 3 3
13 149; 1x x= =  and 

3
24 11x =  with the minimum transshipment cost 183. 

Now, by using step 2, the (IT2) problem of the given fully FIIT problem is given in 
Table 7. 
Table 7 The optimal solution allotted table of the (IT2) problem 

 S1 S2 D1 D2 Supply 
S1 - 4 9 5 7 
S2 4 - 11 5 8 
D1 3 10 - 6  
D2 4 3 4 -  
Demand   6 9  

with 2 3 , , 1, 2, 3, 4.ij ijx x i j≤ =  

Now, using step 7, the optimal solution to the (IT2) problem is 2 2
13 146; 1x x= =  and 

2
24 8x =  with the minimum transshipment cost 99. 

Now, by using step 2, the (IT1) problem of the given fully FIIT problem is given in 
Table 8. 
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Table 8 The optimal solution allotted table of the (IT1) problem 

 S1 S2 D1 D2 Supply 
S1 - 1 5 3 3 
S2 2 - 7 3 6 
D1 1 8 - 4  
D2 2 1 2 -  
Demand   2 7  

with 1 2 , , 1, 2, 3, 4.ij ijx x i j≤ =  

Now, by step 8, the optimal solution to the (IT1) problem is 1 1
13 142; 1x x= =  and 

1
24 6x =  with the minimum transshipment cost 31. 

Now, by step 9, the optimal solution of the given fully FIIT problem is given below: 

( ) ( ) [ ]1 2 3 1 2 3
13 13 13 13 13 13, , , , , (2, 6, 9), (14, 16, 18)x x x y y y  =   

( ) ( ) [ ]1 2 3 1 2 3
14 14 14 14 14 14, , , , , (1, 1, 1), (1, 1, 1)x x x y y y  =   

and 

( ) ( ) [ ]1 2 3 1 2 3
24 24 24 24 24 24, , , , , (6, 8, 11), (16, 18, 20)x x x y y y  =   

with the minimum transshipment cost [(31, 99, 183), (366, 484, 618)]. 

6 Results and discussion 

From the above result we observed that the transshipment plan is [(2, 6, 9), (14, 16, 18)] 
fuzzy interval integer units are shipped from source S1 to the destination D1; [(1, 1, 1), 
(1, 1, 1)] fuzzy interval integer units are shipped from source S1 to the destination D2; 
and [(6, 8, 11), (16, 18, 20)] fuzzy interval integer units are shipped from source S2 to the 
destination D2. 

Figure 2 Transshipment plan 
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According to the literature study, there is no research work done in transshipment 
problems with the fuzzy interval integer environment. This study entirely inclined by 
using fuzzy interval integer values, this approach adequate for the decision-makers can 
have a chance to select an appropriate decision regarding transhipments according to their 
financial situation and time requirement. 

6.1 Objectives 

• The main objective of this study is to find an optimal transshipment plan for the 
given problem. 

• This will give the best transshipment plan to decision-makers when they are handling 
logistic problems with fuzzy interval integer parameters. 

• This will helps the upcoming researchers to extend this problem into the other 
problems with parameters like trapezoidal fuzzy sets, rough sets and so on. 

7 Conclusions 

In this paper, we have considered fully FIIT problems where the cost coefficients of the 
objective functions and the source and destination parameters have been expressed as 
fuzzy integer interval values. For this, we have developed an innovative method namely, 
back order sequence method for finding an optimal solution of fully FIIT problem. Under 
the proposed method, the optimal values of decision variables and the objective function 
of the fully FIIT problem are fuzzy interval integers. A numerical example has been 
given to illustrate the optimal solution procedure for solving the fully FIIT problem. The 
back order sequence method helps the decision-makers to take an appropriate decision 
regarding transshipments based on their situations when they are handling logistic models 
of real-life situations having the supply and demands are in fuzzy interval integer 
parameters. 

Future research will involve considering options other than direct shipment.  
We would also like to include additional constraints related to driver breaks, time 
requirements, and conveyance. We also plan to produce robust solutions by including 
rough sets in the demand and supply. 
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