Construction of mental health monitoring system based on model transfer learning algorithm Online publication date: Fri, 17-Feb-2023
by Panpan Li; Feng Liang
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 24, No. 1, 2023
Abstract: In order to monitor people's mental health in real-time and effectively, this study has conducted in-depth research on the model transfer learning algorithm, including its learning process, classification criteria, network structure optimisation, etc. The research takes model transfer learning algorithm as the main research method, and innovatively adopts residual learning and gradient descent algorithm to optimise the performance of model transfer learning algorithm, and then compares and analyses the application effects of model transfer learning algorithm and traditional machine learning algorithm in various data sets of mental health monitoring, so as to ensure the accuracy of monitoring results. The results show that the model transfer learning algorithm is significantly better than the traditional machine learning algorithm in accuracy, recall and F1 score, and it requires less network training time. This shows that the mental health monitoring system based on model transfer learning algorithm has good performance and can monitor mental health accurately and efficiently.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com