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Abstract: Aiming at the problem that the accuracy of the current compensation model for laser 
gyro bias error is low, an improved RBFNN bias error compensation model of laser gyro is 
proposed. The standardisation constant and data centre of the original data are obtained through 
the self-organising feature mapping network. The sample centre of the new sample data is 
obtained by the fastest decline of the expected variance of OLS algorithm. The results show, the 
improved RBF neural network algorithm has the best performance. under normal temperature, 
temperature change rate of 1C/min and temperature change rate of 3C/min, the zero-bias range 
of laser gyro is 3.491–3.508C/h, 3.992–4.021C/h and 4.092–4.123C/h, respectively. The 
research results provide new reference suggestions for the zero bias temperature compensation 
scheme of laser gyro at different temperatures. 
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1 Introduction 

As a completely autonomous navigation system, chronic 
navigation obtains the navigation parameters such as carrier 
material position, speed and attitude with the help of 
accelerometer and gyroscope. The drift of the system mainly 
comes from its gyroscope. At present, higher requirements 
are put forward for the accuracy of gyroscope at home and 
abroad, which is limited by the use environment, assembly 
process, manufacturing, material performance and other 
reasons. The main solution is to optimise the accuracy of the 
system and calculate effective compensation through the 
compensation technology and data pre-processing technology 
of computer software (Yang et al., 2021; Cheng et al., 2021; 
Tao et al., 2019). Different from the traditional gyroscope, 

laser gyro has the advantages of large measurement range, 
strong impact resistance and high precision, but it still has the 
problem of high economic cost. At this stage, foreign 
research on laser gyroscopes has made outstanding 
achievements, and the developed lg-2728, lg-904 and other 
laser gyroscopes have been successfully applied to the 
navigation system. However, the domestic research on laser 
gyroscope is still in the stage of continuous exploration and 
learning, and there is still a large gap between the scientific 
research ability and the road of realising the localisation of 
laser gyroscope. The problems faced by the laser gyroscope at 
this stage are mainly reflected in the high cost caused by 
factors such as weight, volume and production technology 
(Hao et al., 2021; Tao et al., 2020; Aviev and Enin, 2018). At 
present, the commonly used error modelling methods of laser 
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gyro include time series method, wavelet network, neural 
network and so on. At the same time, the temperature error 
model in the temperature compensation method of laser 
gyroscope can effectively realise the real-time temperature 
compensation of laser gyroscope (Klimkovich, 2021; Chen, 
2022; Fang et al., 2020). In view of this, a neural network 
oriented zero deviation compensation model of laser 
gyroscope is proposed and compared with the improved 
model, in order to improve the temperature compensation 
effect of laser gyroscope in China. The overall structure of the 
research is as follows. The second part describes the radial 
basis function neural network and its optimisation process. 
The third part introduces the laser gyro-bias error 
compensation model combined with the improved RBFNN. 
The fourth part analyses the performance and pre-processing 
effect of the improved RBFNN algorithm, as well as the 
optical gyro-bias temperature compensation results. In the 
fifth part, the compensation effect of laser gyro-bias error is 
summarised, and the shortcomings and prospects of the 
research are put forward. 

2 Radial basis function neural network and its 
optimisation 

2.1 Radial basis function neural network 

Neural network is a mathematical algorithm model of 
distributed parallel information processing implemented by 
simulating the behaviour characteristics of animal neural 
network. The network plays the purpose of analysing 
information through the relationship between internal nodes 
of the system. According to the model structure, neural 
network can be divided into feedback network and multilayer 
perceptron network. The former can be regarded as a large-
scale nonlinear mapping system, and the latter can be  
regarded as a large-scale nonlinear dynamic system. Radial 
Basis Function (RBF) neural network and Back Propagation  
 

(BP) neural network are the two most common neural 
network algorithms. The topological structures of BP neural 
network and RBF neural network are shown in Figure 1(a) 
and 1(b), respectively. The structure of BP neural network is 
divided into three layers: input layer, hidden layer and output 
layer. There is no relationship between the structures of each 
level. Data transmission is divided into forward propagation 
and back propagation. The back propagation carries out 
network learning by constantly modifying the weight and 
threshold (Klimkovich, 2021; Chen, 2022). This structure can 
ensure that the network can realise active learning and has the 
ability of nonlinear classification. The number of nodes t   in 
the hidden layer is determined by equation (1). 

t x y s    (1) 

In equation (1), the number of nodes x  and y  in the input 

layer and the output layer is expressed respectively,  s  is a 
constant and the value range is 1–10. The transfer function of 
the hidden layer uses the Tansig function, and the transfer 
function of the output layer is the logsig function. The 
dimension of RBFNN input node is n , and the hidden layer 
uses Gaussian function for data transmission, and its 
calculation formula is equation (2). 

    2exp ( 2 )
T

i i i iu x M x M      (2) 

In equation (2), (1, )i t ,the vector of the input data is 

expressed in  1 2, ,..., nx x x x , and the standardisation 

constant is i , iu  refers to the output of the node of the 

hidden layer, with a value range of [0,1], and the central value 
of the Gaussian kernel function is represented by iM . BP 

neural network has some disadvantages, such as weight 
connection, slow convergence speed, easy to fall into local 
minimum, unable to determine the number of nodes in the 
hidden layer, global approximation and so on, which are 
obviously improved by RBF algorithm. 

Figure 1 Topology of BP neural network and RBF neural network 
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RBF neural network is a neural network that uses the local 
acceptance domain to complete the function mapping based 
on the knowledge of overlapping acceptance region and 
biological local regulation. The conversion function of the 
hidden layer is radial basis function. Set the number of nodes 
in the output layer, hidden layer and input layer of RBF 
neural network as , ,p m n , respectively. The input of RBF 

neural network is represented by  1 2, ,..., ,...,j nX x x x x  

and the output is represented by  1 2, ,... ,...,k pY y y y y . The 

input vector does not need to be processed by the input layer 
node, but is directly transmitted to the hidden layer to 
complete the nonlinear mapping of ( )iX F x . RBF 

function is a nonlinear Gaussian radial basis function, and the 
function is a radial symmetric function. If the distance 
between the data input and the symmetry centre is farther, the 
output of the hidden layer is smaller; On the contrary, the 
larger the output value of hidden layer nodes (Fang et al., 
2020; Andre et al., 2019). It can be designed as any 
continuous value, and a basis function corresponds to  
each neuron. The formula of RBF function is shown in 
equation (3). 

 2( ) exp / 2 , 1, 2,...,i i iF x x c i m     (3) 

In equation (3), the i perceived variable is represented by i , 

and the value represents the width of the basis function 
around the centre point; The output of the i  hidden layer 

node is represented by ( )iF x ; n dimensional input vector is 

represented by x; The centre of the i basis function is denoted 
by ic ; The number of sensing units is represented by m . 

ix c  represents the distance between the two. With the 

increase of this value, the velocity of ( )iF x  decays to 0. The 

linear mapping ( )i kF x y  represents the mapping from the 

hidden layer to the output layer. The output formula of the k 
neuron grid sequence in the output layer is equation (4). 

1

ˆ ( ), 1,2,...,
m

k ik i
i

y w F x k p


    (4) 

In equation (4), the output of the k  neuron grid is denoted by 
ˆky . The number of nodes in the output layer and the hidden 

layer is denoted by p and m respectively, and the connection 
weight of the k and i neuron in the output layer and the 

neuron in the hidden layer is denoted by ikw . The weight 

algorithm of RBF network is completed by single layer. Its 
working principle is clustering function. The clustering centre 
of data is obtained through training, and the sensitivity of 
basis function is optimised with the value of perception 
vector. The network in the actual working state works locally, 
that is, after inputting a set of data, only one neuron in the 
network is activated, and the activation degree of other 
neurons can be completely ignored (He et al., 2019; Alanis, 
2018). The learning process of the network includes two 
aspects. First, judge the number of nodes in the hidden layer  
 

and the central value of RBF function. Secondly, the weights 
between the hidden layer and the output layer are 
continuously updated. RBF network has the following 
advantages: fast convergence speed, no local minimum 
problem, good mapping ability between output and input, full 
connection only between output layer and hidden layer, and 
linear relationship between connection weight and network 
output. 

2.2 Optimisation of radial basis function  
neural network 

The research selects self-organising feature mapping network 
(Kohonen network) to optimise RBF neural network. It is a 
teacher free self-organising self-learning network composed 
of fully interconnected neuron matrix. The optimisation idea 
is the response of cerebral cortex and human retina to 
stimulation. It is widely used in robot control, optimisation 
calculation, sample classification, associative storage Pattern 
recognition and other fields. According to the theory of self-
organising feature mapping network, neurons are in different 
regional spaces and produce different types of division of 
labour. When a neural network connects the external input 
mode, each region will have different responses to the input 
mode. Neurons in the output space can form a map, in which 
neurons with the same function are very far away from each 
other, while different neurons are very far away. Since the 
network can complete the initial classification of samples due 
to its pattern classification ability, it is studied to apply it to 
the optimisation of RBF neural network. After completing the 
preliminary classification of training samples, normalisation 
can be completed according to the classification 
characteristics of different training samples, and finally the 
training sample set of RBF neural network is obtained (Hu et 
al., 2020; Jiang et al., 2018; Kohl and Miikkulainen, 2020). 
The self-organising feature mapping network is composed of 
competition layer and input layer. The connection between 
the two layers of neurons is two-way full connection. Self-
organising feature mapping network completes the mapping 
through competitive learning. Competitive learning occurs in 
neurons at the same layer. More competitive neurons obtain 
and modify the connection weights connected with them, and 
then make the network develop in a more optimised way 
through competitive learning. Competitive learning is a kind 
of unsupervised learning. The learning process only needs to 
provide learning samples. The final sample output does not 
need to provide standard output format, but directly carries 
out the automatic sorting of samples and the classification of 
information. The classification results are expressed by the 
winning neurons in the competitive layer. The structure 
diagram of self-organising feature mapping network is shown 
in Figure 2. When the total input of all units in the network is 
calculated, the competition starts and the competition rules 
are set as shown in equation (5). 

 1, max , 1,2,...,

0,others

j kc
j

S S k n
x

  


 (5) 
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In equation (5), the output state of the j  unit of the 

competition layer is indicated by c
jx . After entering a mode, 

when the winning unit is obtained, the weight of the winning 
unit will be updated continuously. In this way, each time the 
same type of mode input is encountered, the unit of this type 
will have a larger input sum. The weight update rule is 
expressed by equation (6). 

i
ik ik

x
w w

m
     
 

 (6) 

In equation (5), the learning factor is denoted  , and the 

value reflects the update rate of the weight. The unit state 
with the input layer state of 16 is represented by m , and 

ikw  represents the change of weight. 

Figure 2 Structure diagram of self-organising feature mapping 
network 
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There are five common methods to determine the centre value 
of different RBF functions, including random selection of 
fixed centre, self-organising Selection Centre, supervised 
Selection Centre and Orthogonal Least squares (OL selection 
centre. Randomly selecting a fixed centre is the simplest 
learning strategy. In this learning strategy, only the weights 
need to be trained. The standard deviation and centre of the 
basis function are certain, and its value comes from any value 
in the input sample. The self-organisation selects the centre 
and determines the centre by clustering method, and the 
weight determination method is the least mean square 
algorithm (Eyal and Michael, 2019; Dong and Wang, 2020; 
Tsang et al., 2019). Supervised learning is the method of 
selecting the learning centre and other parameters, and the 
learning process is corrected by error. The orthogonal least 
square method takes the linear regression as a special 
representative, determines the number of nodes and centres 
and obtains the weight through the orthogonal regression 
matrix. OLS is selected as the selection method to optimise 
the radial basis function centre of RBF neural network. This 
method is simple to operate and requires less model 
conditions. At the same time, it means to ensure the minimum 
sum of squares of the distances from all observation points in 
the scatter diagram to the regression line. OLS can not only 
avoid the huge cost caused by the traditional random centre 
selection method, but also accurately and quickly identify 
whether the laser gyro has zero bias due to the influence of 
temperature. 

3 Zero-bias error compensation model of laser 
gyro for improved RBFNN 

A zero bias error compensation model of laser gyro for 
improved RBFNN is proposed. In the model, the RBF neural 
network mainly refers to the data centre of the weight, 
standardisation constant and radial basis function of the 
output node in the learning stage. The model obtains the 
output data of the centre of the laser gyro through the self-
organising feature mapping network, and then obtains the 
new sample centre through the expected variance reduction of 
the OLS algorithm after the pre-processing method, so as to 
avoid the problems of numerical ill condition and large 
network scale. The schematic diagram of laser gyro zero-bias 
error compensation model for improved RBFNN is shown in 
Figure 3. The core of the model is to obtain the 
standardisation constant and data centre of the original data 
through the self-organising feature mapping network, and the 
sample centre of the new sample data through the fastest 
decline of the expected variance of the OLS algorithm. 
Specifically, firstly, the temperature data and zero bias of the 
laser gyro are pre-processed, and the final sample space is 
determined (Wang, 2018; Chaoudhary et al., 2022; Zou et al., 
2021; Klimkovich, 2020). Then, the sample data are 
classified by self-organising feature mapping network to 
obtain the classification results. The learning methods of self-
organising feature mapping network are as follows: firstly, 
randomly initialise the weights between the network learning 
rate and the input layer and the RBF layer. Secondly, set the 
network output as the dimension input vector representing the 
time. Thirdly, calculate the distance between each output 
node. Fourthly, set the node with the smallest distance as the 
winning output node. Fifthly, update the weight vector; 
Finally, when the change value of the weight value is close to 
or 0, the process of network learning ends (Zou et al., 2021). 
Then, preprocess the data obtained from the classification of 
self-organising feature mapping network, and obtain the data 
centre of improved RBF neural network through OLS 
algorithm (Klimkovich, 2020). The specific steps are as 
follows: first, select the transformation function and local 
perception domain of RBF neural network, set the maximum 
training times and allowable parameters of the network, then 
select the initial centre of the self-organising feature mapping 
network and use the transformation function to obtain the 
basis of the output of the hidden layer. Secondly, the training 
centre is obtained with the help of OLS algorithm. Finally, 
the training of RBF neural network is completed through the 
trained sample centre, and the best model is obtained. 

Data pre-processing includes temperature change rate, 
temperature gradient and angular velocity data processing. 
To deal with the angular velocity, we need to subtract the 
angular velocity of the earth’s rotation angle velocity in 
each channel, and then get the output data of the neural 
network. In view of the huge sample size of the original 
data, the research needs to smooth the data to avoid the 
cumulative effect of sample data caused by other error 
sources. For the treatment of temperature change rate and 
gradient, the final selected temperature output is the average 



 Zero-bias error compensation method 95 

value of temperature sensor. The temperature change rate 
can be fitted by quartic polynomial. The change law of 
temperature, temperature gradient and temperature change 
rate in three directions of gyroscope is shown in Figure 4. 

Figure 3 Schematic diagram of laser gyro zero-bias error 
compensation model for improved RBFNN 
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The calculation formula of the zero-bias error compensation 
model of laser gyro is shown in equation (7). 

0 1 2 3

0 1 2

( ) ( ) ( )

( ) ( )

I

IR

N
K K K T K T

t

D D T D T D





          
        

  (7) 

In equation (7), N  refers to the pulse given by the hall 
sensor to start and stop counting, t  refers to the actual 
sampling period, T  refers to the temperature difference 

between the base of the laser gyro and the channel axis, T


 
refers to the change rate of the channel axis temperature of 
the laser gyro, 

I
  refers to the input angular velocity, RD  

refers to the random error, and 0D  refers to the zero deviation 

of the constant value of the gyro, The gyro-bias temperature 
error function is represented by 1D  and 2D . Since the 

variation of gyroscale factor at different temperatures is very  
 
 

small, there is no need to implement temperature 
compensation for the scale factor. The number of samples is 
300 and the classification is 50. For the data acquisition of 
laser gyro, the research is divided into two cases: normal 
temperature and variable temperature. During the normal 
temperature experiment, first place the laser gyro in a large 
temperature box and keep it warm at 20C for 2 h, then turn 
on the laser gyro and close the temperature box, and then 
record the temperature change value and zero bias of the laser 
gyro. The sampling period is 1 Hz and the length of the 
sampling data is 8 h. In the case of variable temperature, the 
variation range of the temperature box is – 40–60C, set the 
initial temperature to 0C, and also store it for 2 h. Set the 
change rate of the temperature box to 1C / min, record the 
temperature change value and zero bias of the laser gyro, 
when the temperature increases to 60C, do not continue to 
increase the temperature and keep the insulation box for 2 h; 
Then, use the same temperature change rate to reduce the 
temperature until the temperature drops to – 40C, and keep 
the incubator for 2 h. Repeat the above steps to record the 
temperature change value and zero bias of the laser gyro. The 
sampling period and sampling data are the same as those of 
the normal temperature experiment. Then set the temperature 
change rate to 3C / min, and record the temperature change 
value and zero bias of the laser gyro under the changing 
environment. 

The loss of the model is calculated by three indicators: 
Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE) and Mean Absolute Percentage Error (MAPE). The 
value range of the three indicators is any positive real-
number. Mae represents the error between the real-value 
and the predicted value. The greater the value, the greater 
the difference between the error value and the real-value. 
RMSE refers to the deviation between the real-value and the 
predicted value. The greater the value, the greater the 
deviation between the error value and the real-value. MAPE 
refers to the dispersion of data. The greater the prediction 
accuracy of the model, the smaller the value of MAPE. The 
calculation formula of MSE is equation (8). 

 2

1

1 ˆn

i ii
MSE U U

n 
   (8) 

In equation (8), n represents the number of samples, and the 
training value and output value of the second sample of the 

neural network are represented by iU  and ˆ
iU , respectively. 
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Figure 4 Variation law of temperature, temperature gradient and temperature change rate in three directions of gyroscope 
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4 Analysis of compensation effect of zero bias 
error of laser gyro 

4.1 Improve the performance and pre-processing 
effect of RBFNN algorithm 

Firstly, the performance of the improved RBFNN algorithm 
is verified by MATLAB simulation platform. The learning 
rate is 0.5. In order to ensure the reliability of the results, the 
experiment was carried out 10 times and the average value 
was taken as the final result. The results of MAE, RMSE and 
MAPE errors are shown in Figures 5(a), 5(b) and 5(c). As can 
be seen from Figure 5(a), the MAE of five network structures 
such as dep belief network (DBN) decreases with the increase 
of iteration times, and the variation range is 8.23–426.36. The 
MAE of RBF neural network and BF neural network is 
higher than that of self-organising feature map network, 
improved RBF neural network and DBN. The self-organising 
feature map network, improved RBF neural network and 
DBN all converge rapidly when the number of iterations is 
about 20. The difference between the three algorithms is not 
particularly obvious. However, when the number of iterations 
ranges from 20 to 100, compared with self-organising feature 
map network and DBN, the improved RBF neural network 
algorithm has faster convergence speed and Mae tends to be 
more stable. It can be seen from Figure 5(b) that the RMSE of 
the five network structures decreases with the increase of the 
number of iterations, and the variation range is 4.16–214.21. 
The RMSE of RBF neural network and BF neural network is 
higher than that of self-organising feature map network, 
improved RBF neural network and DBN. The self-organising 

feature map network, improved RBF neural network and 
DBN all converge rapidly when the number of iterations is 
about 20. The difference between the two algorithms is not 
particularly obvious. As can be seen from Figure 5(c), the 
MAPE of the five network structures decreases with the 
increase of the number of iterations, ranging from 1.02 to 
41.23. The self-organising feature map network, improved 
RBF neural network and DBN all converge rapidly when the 
number of iterations is about 20. The difference between the 
three algorithms is not particularly obvious. However, when 
the number of iterations ranges from 20 to 100, compared 
with the self-organising feature map network algorithm and 
DBN, the improved RBF neural network algorithm has faster 
convergence speed and MAPE tends to be more stable. 

The zero-bias data of laser gyro collected in three cases 
are smoothed for 100 seconds, and the results are shown in 
Figures 6(a), 6(b) and 6(c). On the whole, the zero bias of 
laser gyroscope is very stable at room temperature, but with 
the increase of temperature change rate, the zero bias of 
laser gyroscope will be seriously affected by temperature. 
Under normal temperature, the zero-bias range of laser gyro 
is 3.491–3.508C / h; When the temperature change rate is 
1C / min, the zero-bias range of the laser gyro is 3.992–
4.021C / h，this is because with the increase of 
temperature change rate, the adaptability of the laser 
gyroscope will be reduced, resulting in a large zero bias 
range of the laser gyroscope; When the temperature change 
rate is 3C / min, the zero-bias range of the laser gyro is 
4.092–4.123C / h. Therefore, the zero-bias temperature 
compensation of laser gyro is of great significance when the 
temperature change rate is large. 
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Figure 5  Training loss results of five neural networks  
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Figure 6 Smoothing results of laser gyro zero-bias data in three cases 
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4.2 Analysis of zero bias temperature compensation 
results of laser gyro 

The output of RLG of RBF neural network at three different 
temperatures is shown in Figures 7(a), 7(b) and 7(c). Under 
normal temperature, the zero-bias range of the laser gyro 
under the network is 3.493–3.512C / h; When the 
temperature change rate is 1C / min, the zero-bias range of 
the laser gyro is 3.993–4.023C / h; When the temperature 
change rate is 3C / min, the zero-bias range of the laser gyro 
is 4.098–4.131C / h. It can be seen that the network can 
better fit the influence of temperature in the bias of laser gyro. 

Figure 7 Llaser gyro output of RBF neural network at three 
different temperatures 
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The output of RLG with improved RBF neural network at 
three different temperatures is shown in Figures 8(a), 8(b) and 
8(c). Under normal temperature, the zero-bias range of laser 
gyro is 3.492–3.509C / h; When the temperature change rate 
is 1C / min, the zero-bias range of the laser gyro is 3.991–
4.020C / h; When the temperature change rate is 3C / min, 
the zero-bias range of the laser gyro is 4.091–4.122C / h. 
Compared with the output of RLG based on RBF neural 
network, it can be seen that the network can better fit the 
influence of temperature in RLG bias. 

The zero-bias temperature compensation results of RLG 
based on RBF neural network at three different temperatures 
are shown in Figures 9(a), 9(b) and 9(c). After compensation, 
the zero bias of the laser gyro will not be affected by 
temperature. Under normal temperature, the zero-bias range 
of laser gyro is –0.0012–0.0008C / h; When the temperature 

change rate is 1C / min, the zero-bias range of the laser gyro 
is –0.0009–0.0008C / h; When the temperature change rate 
is 3C / min, the zero-bias range of the laser gyro is –0.0009–
0.0008C / h. The temperature compensation accuracy under 
normal temperature, temperature change rate of 1C / min 
and temperature change rate of 3C / min is 99.1%, 98.9% 
and 98.8%, respectively, which does not meet the 
requirements of temperature compensation accuracy. 

Figure 8 Laser gyro output of Improved RBF neural network at 
three different temperatures 
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The zero-bias temperature compensation results of laser gyro 
based on Improved RBF neural network under three different 
temperatures are shown in Figures 10(a), 10(b) and 10(c), 
respectively. After compensation, the zero bias of the laser gyro 
will not be affected by temperature. Under normal temperature, 
the zero-bias range of laser gyro is –0.0012–0.0008C / h; 
When the temperature change rate is 1C / min, the zero-bias 
range of the laser gyro is –0.0009–0.0008C / h; When the 
temperature change rate is 3C / min, the zero-bias range of the 
laser gyro is –0.0009–0.0008C / h. The temperature 
compensation accuracy under normal temperature, temperature 
change rate of 1C / min and temperature change rate of 3C / 
min are 99.6%, 99.7% and 99.8%, respectively, meeting the 
requirements of temperature compensation accuracy. At the 
same time, in terms of time-consuming, the time spent by the 
improved RBF neural network is less than 90 s, while the time 
spent by the non-optimised RBF neural network is more than 
130 s, which shows that the time spent by the improved RBF 
neural network is significantly less than that of the non-
optimised RBF neural network. The temperature compensation 
efficiency is greatly improved. 
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Figure 9 Zero-bias temperature compensation results of laser 
gyro based on RBF neural network at three different 
temperatures 
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Figure 10 Zero-bias temperature compensation results of laser 
gyro based on improved RBF neural network at three 
different temperatures 
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5 Conclusions 

The zero-bias temperature compensation of laser gyro has 
always been a topic of close attention by experts and scholars at 
home and abroad. Aiming at the problems of low precision and 
poor stability of laser gyro in China, a neural network-oriented 
compensation model for laser gyro-bias temperature error is 
proposed, which can effectively compensate the influence of 
temperature on laser gyro-bias error. Firstly, the principle and 
defects of RBF network algorithm are proposed, and then the 
RBF neural network is optimised by OLS algorithm and self-
organising feature mapping network. Secondly, the original 
laser gyro-bias data is pre-processed. Finally, the performance 
of zero-bias temperature compensation method is verified and 
compared by setting temperature compensation experiments at 
three temperatures. The results of neural network performance 
test show that with the increase of iteration times, the MAE, 
RMSE and MAPE of the five network structures gradually 
decrease, and the variation ranges of the three errors are 8.23–
426.36, 4.16–214.21 and 1.02–41.23, respectively. Under 
normal temperature, the zero-bias range of laser gyro is 3.491–
3.508C / h; When the temperature change rate is 1C / min, 
the zero-bias range of the laser gyro is 3.992–4.021C / h; 
When the temperature change rate is 3C / min, the zero bias 
range of the laser gyro is 4.092–4.123C / h. The time 
consumed by the improved RBF neural network is also less 
than 90 s, which is significantly less than that of the non-
optimised RBF neural network. Therefore, the improved RBF 
neural network can not only greatly improve the temperature 
compensation efficiency of laser gyro bias, but also greatly 
shorten the temperature compensation time of laser gyro bias. 
Limited by our time and energy, the dispersion constant of 
RBF network has not been determined in the research, and the 
proposed neural network optimisation algorithm has not been 
applied in practice. Subsequent optimisation and improvement 
are needed to improve the practical value of the research. 
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