

International Journal of Quality Engineering and Technology

ISSN online: 1757-2185 - ISSN print: 1757-2177 https://www.inderscience.com/ijget

Pareto efficient correlated multi-response optimisation by considering customer satisfaction

Ali Salmasnia, Hadi Mokhtari

DOI: <u>10.1504/IJOET.2023.10054274</u>

Article History:

Received:	04 December 2021
Last revised:	06 December 2021
Accepted:	02 March 2022
Published online:	21 February 2023

Pareto efficient correlated multi-response optimisation by considering customer satisfaction

Ali Salmasnia*

Department of Industrial Engineering, Faculty of Engineering, University of Qom, Qom, Iran Email: a.salmasnia@qom.ac.ir *Corresponding author

Hadi Mokhtari

Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran Email: mokhtari ie@kashanu.ac.ir

Abstract: The capability of a manufacturer in satisfying the customer's requirements is an important issue in the current competitive market. Since customers consider several correlated quality characteristics for selecting a product, designing the process variables to meet the required specification limits of the quality characteristics is essential. Furthermore, to attain the most satisfactory solution, a decision maker's preference information should be incorporated into the optimisation procedure. This study suggests a posterior preference articulation approach based on NSGA-II and MOPSO, which is capable to increase customer satisfaction by generating non-dominated solutions within conformance region. The proposed method takes also into account the location and dispersion effects along with the correlation of among quality characteristics as well as the relative importance of them. To demonstrate the applicability of the approach, a computational analysis on two case studies is performed. Results confirm superiority of the suggested method in comparison with the existing posterior approaches.

Keywords: multiple response optimisation; customer satisfaction; correlation; location effect; dispersion effect.

Reference to this paper should be made as follows: Salmasnia, A. and Mokhtari, H. (2023) 'Pareto efficient correlated multi-response optimisation by considering customer satisfaction', *Int. J. Quality Engineering and Technology*, Vol. 9, No. 1, pp.34–74.

Biographical notes: Ali Salmasnia is an Associate Professor in University of Qom, Qom, Iran. His research interests include quality engineering, reliability, applied multivariate statistics and multi-criterion decision making. He is the author or co-author of various papers published in *Journal of Manufacturing Systems, Computers & Industrial Engineering, Applied Soft Computing, Neurocomputing, Applied Mathematical Modelling, Expert Systems with Applications, Quality Technology & Quantitative Management, Journal of* Information Science, Neural Computing & Applications, Applied Stochastic Models in Business and Industry, IEEE Transactions on Engineering Management, International Journal of Information Technology & Decision Making, Operational Research, TOP, Quality and Reliability Engineering International, Journal of Statistical Computation and Simulation, International Journal of Advanced Manufacturing Technology, Communications in Statistics-Simulation and Computation, Arabian Journal for Science and Engineering, Journal of Industrial and Business Economics, and Scientia Iranica.

Hadi Mokhtari is an Associate Professor of Industrial Engineering at University of Kashan, Iran. His current research interests include the applications of operations research and artificial intelligence techniques to the areas of project scheduling, production scheduling, manufacturing supply chains, and engineering economic problems. He also published several papers in international journals such as *Computers and Operations Research*, *International Journal of Production Research*, *Applied Soft Computing*, *Journal of Cleaner Production*, *Neurocomputing*, *International Journal of Advanced Manufacturing Technology*, *IEEE Transactions on Engineering Management*, and *Expert Systems with Applications*.

1 Introduction

The current competitive market has forced the manufacturers to provide customers' needs by improving the quality of their products. In this regard, process design optimisation is an essential issue, which includes selecting design variables to meet the required specification of quality characteristics in a process. For this purpose, response surface methodology (RSM) recently has attracted the most attention due to its well performance in comparison with other approximation approaches. RSM explores the relationship between design variables and a quality characteristic via a group of statistical and mathematical techniques and then optimises quality characteristic with respect to the design variables. Although most of the RSM-based techniques focus on problems with only a quality characteristic, the real-world applications often encounter more than one interested quality characteristic which is called the multiple response optimisation (MRO) problem. According to the definition of MRO problem, the multi-objective optimisation (MOO) methods can be successfully utilised for solving MRO problem. In the MOO survey, the existing approaches are classified into three major groups:

- 1 prior preference articulation
- 2 progressive preference articulation
- 3 posterior preference articulation (Korhenen et al, 1992; Steuer, 1986).

The majority of the existing approaches in MRO literature such as Vining (1998), Allandeh et al. (2010), Najafi et al. (2011), Salmasnia et al. (2012a, 2012b), Hejazi et al. (2013), Salmasnia and Bashiri (2015), Ouyang et al. (2013), Sharma et al. (2013), Babu et al. (2013), Bera and Mukherjee (2013), Pervez et al., (2018), Moslemi et al. (2018a), Limon-Romero et al., (2018), Köksoy and Zeybek (2019), Ganapathy et al., (2019), Chakraborty et al., (2019), Saini et al., (2019), and Tajane and Pawar (2019) are categorized into the prior preference articulation. Also, several progressive approaches have been proposed to find a compromise solution in MRO problem. Some instances are Koksalan and Plante (2003), Jeong and Kim (2003; 2005; 2009), Park and Kim (2005), Koksoy (2006a, 2006b, 2008), Lee and Kim (2012), Salmasnia et al. (2013a, 2017) and Noorossana et al. (2014). According to the best of our knowledge, only few research including Peterson (2004), Costa et al. (2011), Lee et al. (2010; 2011) and Salmasnia et al. (2013b), Costa and Lourenço (2015) have been developed posterior approaches for solving MRO problems.

The prior preference articulation approaches combine multiple responses into a single function and solve it as a single objective optimisation problem. In such approaches, a decision maker (DM) before the solving process must specify the required preference information. However, in many situations the preferred trade-off among responses can not been determined in advance because of difficulties in assessment of the DM's preference structure. The Progressive preference articulation methods give DM the opportunity to incorporate his/her preferences during the solving process. However, the progressive methods often need a considerable amount of time on the part of DM and may not be very useful for large size problems. The Posterior preference articulation approaches do not require any articulation of DM's preference information in advance or during the solving process. In Posterior approaches, after generating all (or most) of the non-dominated solutions, DM selects the most preferred solution among the obtained non-dominated solutions. However, such approaches usually generate a large number of solutions, and hence, it becomes difficult for decision maker to select the best solution among the efficient solutions. In spite of the advantages of posterior methods, they are rarely utilized to solve the MRO problems. Koksoy (2008) proposed a new approach based on the mean square error and solved the suggested model by generalised reduced gradient (GRG) method. Lee et al. (2010) presented a three-stage method to optimise location and dispersion effects of a single response variable. In this method, a set of non-dominated solutions are generated by applying the ε -constraint method. Lee et al. (2011) developed their previous posterior approach by using a modified *\varepsilon*-constraint method to attain the strongly non-dominated solutions. In addition, they employed an interactive selection technique to choose the most satisfactory solution. It is worth to mention that that method only considers the location effect ignoring dispersion effect of responses. Costa et al. (2011) introduced a method for optimising dual and multiple response problems via employing two approaches of the mean square error and global criteria method. Baril et al. (2011) proposed a method to generate Pareto set, which integrates the feasibility modeling technique and the interactive multi-objective algorithm under DM' preferences (IMOP) in a unified framework. Salmasnia et al. (2013b) presented a robust posterior articulation approach that uses Taguchi's signal to noise ratio for considering both location and dispersion effects. Costa and Lourenço (2015) suggested an approach with three separate methods namely, Desirability-based method, Global Criteria-based approach and Physical Programming. In these models location effect of responses along with relative importance of them are considered. Moslemi etal (2018, b) presented a new posterior method for cascade processes consisting of multiple stages. All of the above mentioned posterior methods ignore possible correlation among quality characteristics, which may lead to an unrealistic solution. They also do not guarantee that all quality characteristics fall within their corresponding specification limits.

Another important issue in optimisation problems is consideration of customer satisfaction. Two types of approaches are able to consider this property:

- 1 desirability function-based approaches
- 2 process capability index-based approaches.

Desirability function initially introduced by Harington (1965) and then modified by Derringer and Suich (1980). This function transforms an estimated response into a scale free value in the interval [0, 1]. Most of desirability function-based approaches despite considering the customer satisfaction neglect the variance-covariance structure of responses. Although there are few studies such as Salmasnia et al. (2012a, 2012c, 2013c) that take into account the correlation of among quality characteristics, they often do not pay attention to relative importance of responses.

Process capability analysis is concerned with assessing the capability of a process in satisfying the customer's requirements by producing products within conformance region. In MRO literature, only few approaches are in the basis of the process capability Indices. These approaches assume either independency among responses or equal relative importance for quality characteristics. In addition, the most of them are applicable for only nominal-the-best type responses. Some of the proposed methods in this context are as follows:

Ch'ng et al. (2004) proposed the sum of the weighted univariate C_{pm} indices to aggregate mean and variance of several responses into a unique model. Plante (2001) suggested the geometric mean of the univariate process capability index (C_{pm}) of responses as a new unifying mathematical model. Recently, Noorossana et al. (2014) proposed a three stages interactive approach in basis of artificial neural network, genetic algorithm and the sum of the weighted univariate C_{pm} indices. The mentioned approaches take into account both location and dispersion effects as well as the relative importance of quality characteristics in the optimisation process. However, these approaches assume that responses are mutually independent which especially in cases with high correlation among responses may lead to an unrealistic result. To overcome this drawback, Awad and Kovach (2011) proposed a method to maximise the multivariate process capability index (MCpm) that was introduced by Chan et al. (1991). Amiri et al. (2012) suggested an approach for problems with several non-normal responses. In that approach MC_{pm} is computed for each treatment and then the geometric mean of MC_{pmS} is obtained for each factor level. Finally, the factor level with the highest geometric mean value is selected as optimal level. Bera et al. (2013) suggested an approach based on the principle component analysis and multivariate process capability index to take into account the location and dispersion effects of correlated responses. Although Awad and Kovach (2011), Amiri et al. (2012) and Bera and Mukherjee (2013) consider the variance-covariance structure of the responses, they assume that the covariance value is constant over the process region. Furthermore, they do not take into account the relative importance of responses in the optimisation process.

According to the mentioned above, this study suggests a posterior articulation method that considers customer satisfaction via employing the multivariate process capability index. Furthermore, the proposed method takes into consideration the location and dispersion effects of responses along with correlation structure and relative importance of quality characteristics. Table 1 shows the characteristics of different multi-response approaches presented in the literature.

Method	TS	TDMP	LE	DE	CE	SLN	CS	RI
Derringer (1994)	Continuous	Prior	\checkmark			\checkmark	\checkmark	\checkmark
Kim and Lin (2000)	Continuous	Prior	\checkmark			\checkmark	\checkmark	
Kim and Lin (2006)	Continuous	Prior	\checkmark	\checkmark		\checkmark	\checkmark	
Salmasnia et al. (2012b)	Continuous	Prior	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Pignatiello (1993)	Continuous	Prior	\checkmark	\checkmark	\checkmark			\checkmark
Vining (1998)	Continuous	Prior	\checkmark		\checkmark			\checkmark
Ko et al. (2005)	Continuous	Prior	\checkmark	\checkmark	\checkmark			\checkmark
Lin and Tu (1995)	Continuous	Prior	\checkmark	\checkmark		\checkmark		
Kazemzadeh et al. (2008)	Continuous	Prior	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Su and Tong (1997)	Discrete	Prior		\checkmark	\checkmark			
Antony (2000)	Discrete	Prior		\checkmark	\checkmark			
Fung and Kang (2005)	Discrete	Prior		\checkmark	\checkmark	\checkmark		
Plante (2001)	Continuous	Prior	\checkmark	\checkmark			\checkmark	\checkmark
Awad and Kovach(2011)	Continuous	Prior	\checkmark	\checkmark	\checkmark		\checkmark	
Amiri et al. (2012)	Discrete	Prior	\checkmark	\checkmark	\checkmark		\checkmark	
Bera and Mukherjee (2013)	Continuous	Prior	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Noorossana et al. (2014)	Continuous	Progressive	\checkmark	\checkmark			\checkmark	\checkmark
Jeong and Kim (2009)	Continuous	Progressive	\checkmark			\checkmark	\checkmark	
Koksoy (2006a)	Continuous	Progressive	\checkmark	\checkmark				
Lee and Kim (2012)	Continuous	Progressive	\checkmark	\checkmark				\checkmark
Park and Kim (2005)	Continuous	Progressive	\checkmark	\checkmark		\checkmark		\checkmark
Koksoy (2008)	Continuous	Posterior	\checkmark	\checkmark		\checkmark		\checkmark
Lee et al. (2010)	Continuous	Posterior	\checkmark	\checkmark		\checkmark		\checkmark
Lee et al. (2011)	Continuous	Posterior	\checkmark			\checkmark		\checkmark
Costa et al. (2011)	Continuous	Posterior	\checkmark	\checkmark		\checkmark		\checkmark
Baril et al. (2011)	Continuous	Posterior	\checkmark	\checkmark		\checkmark		\checkmark
Salmasnia et al. (2013b)	Continuous	Posterior	\checkmark	\checkmark		\checkmark		\checkmark
Costa and Lourenço (2015)	Continuous	Posterior	\checkmark			\checkmark		\checkmark
Pervez et al. (2018)	Continuous	Prior	\checkmark	\checkmark				

 Table 1
 A characteristic comparison of the existing approaches and the proposed method

Notes: Type of methods by timing of the decision maker's preference information articulate (TDMP); type of search within the experimental design (TS); location effect (LE); dispersion effect (DE); correlation among responses (CE); usability for all three types of smaller-the-better, larger-the-better and nominal-the-best responses, (SLN); customer satisfaction (CS); and relative importance of responses (RI).

Method	TS	TDMP	LE	DE	CE	SLN	CS	RI
Moslemi et al. (2018b)	Continuous	Posterior	\checkmark	\checkmark				
Moslemi et al. (2018a)	Continuous	Prior	\checkmark	\checkmark				
Limon-Romero et al. (2018)	Continuous	Prior	\checkmark	\checkmark				
Köksoy and Zeybek (2019)	Continuous	Prior	\checkmark	\checkmark	\checkmark			
Ganapathy et al. (2019)	Continuous	Prior	\checkmark	\checkmark				
Chakraborty et al. (2019)	Discrete	Prior	\checkmark			\checkmark		\checkmark
Saini et al. (2019)	Continuous	Prior	\checkmark	\checkmark				
Tajane and Pawar (2019)	Continuous	Prior	\checkmark	\checkmark	\checkmark			
The proposed method	Continuous	Posterior	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 Table 1
 A characteristic comparison of the existing approaches and the proposed method (continued)

Notes: Type of methods by timing of the decision maker's preference information articulate (TDMP); type of search within the experimental design (TS); location effect (LE); dispersion effect (DE); correlation among responses (CE); usability for all three types of smaller-the-better, larger-the-better and nominal-the-best responses, (SLN); customer satisfaction (CS); and relative importance of responses (RI).

The rest of this paper is presented in the following order: Section 2 presents the proposed method for solving the MRO problems. Section 3 demonstrates the applicability of the suggested method through two industrial case studies from the literature and provides three comparative studies for each numerical example. Finally, conclusions are reported in Section 4.

2 Proposed methods

In this work, a posterior preference articulation method is suggested. It uses the multivariate process capability index to consider the customer's needs via producing the products in a way that the quality characteristics meet their corresponding conformance regions. It also employs the weighted statistical distance to take into account the relative importance and variance-covariance structure of quality characteristics in the optimisation procedure. Therefore, the proposed method reduces the MRO problem to a bi-objective optimisation problem with the weighted statistical distance and the multivariate process capability index as objectives. NSGA-II and MOPSO are conducted on the mentioned objectives to generate the non-dominated solutions. Finally, three performance measures are utilised to assess the generated Pareto sets. To develop the method, we first define the variables and parameters of the method. Then, the methodology of the suggested approach is described in detail.

2.1 Parameters and variables

The used parameters in the paper are defined as follows:

Problem parameters

x	Design vector (is a $n \times 1$ vector, $n =$ the number of control variables).
у	Response vector (is a $r \times 1$ vector, $r =$ the number of response variables).
<i>Yijt</i>	The observed value of the j^{th} response under the i^{th} experimental run in the t^+ replication.
$\overline{\mathcal{Y}}_{ij}$	The sample mean of the j^{th} response under the i^{th} experimental run.
σ_{ij}^2	The sample variance of the j^{th} response under the i^{th} experimental run.
σ_{ijk}	The sample covariance between the j^{th} and k^{th} responses under the i^{th} experimental run.
LSL_j	Lower specification limit of the <i>j</i> th response.
USL_j	Upper specification limit of the <i>j</i> th response.
LPL_j	Lower process limit of the <i>j</i> th response.
UPL_j :	Upper process limit of the <i>j</i> th response.
T_j :	Target value of the <i>j</i> th response.
$Ln(W_{SDi})$	The natural logarithm of weighted statistical distance for the i^{th} experimental run.
$Ln(CpM_i)$) The natural logarithm of process capability index for the i^{th} experimental run.
$\hat{y}_{Ln}(WSD)$	The fitted response surface for the natural weighted statistical distance.
$\hat{y}_{Ln}(CpM$) The fitted responses surface for the natural logarithm of process capability index.
W	The weight matrix for y (is a $r \times r$ diagonal matrix).
Wj	The weight of the j^{th} response.
\sum_i :	The variance-covariance matrix of responses in the i^{th} iteration (is a $r \times r$ matrix).
т	The number of replications of each response variable in the experimental design
Δ	Spacing metric.
\overline{C}	Set coverage metric.
NPS	Number of Pareto solution.
Ω Method pc	Experimental region. <i>trameters</i>
Q_t	Offspring at iteration t in NSGA II

N population size in NSGA II

- *P_t* parent population in NSGA II
- R_t entire population in NSGA II
- F_i : fronts in NSGA II
- V_t^i velocity of the *i*th particle at iteration t in MOPSO
- p_t^i position of the *i*th particle at iteration t in MOPSO
- \overline{C} Normalized set coverage metric
- Δ Spacing metric
- NPS Number of Pareto solutions.

2.2 Model development

The framework of the proposed method consists of three phases:

- 1 data gathering and model building
- 2 pareto optimal set
- 3 performance measures for comparison of non-dominated sorting algorithms.

In the first phase, the used weighted statistical distance and multivariate process capability index are introduced and then are estimated in terms of design variables. Next, in the second phase, the Pareto optimal sets are generated by conducting the non-dominated sorting algorithms on the mentioned objectives. Finally, in the third phase, the generated Pareto sets are statistically compared with respect to three performance metrics. Figure 1 depicts the conceptual framework of the suggested method.

2.2.1 Phase 1: data gathering and model building

The weighted statistical distance (WSD) is a multivariate function, which shows the weighted deviation of the mean quality characteristics from their corresponding targets by considering the variance-covariance structure of quality characteristics.

$$WSD = \left(\overline{y}_{i} - T\right)^{T} W\Sigma^{-1}\left(\overline{y}_{i} - T\right)$$
⁽¹⁾

where Σ^{-1} is the inverse sample variance-covariance matrix of responses.

Process capability analysis is a known method used to relate product/ process performance to customer specifications. It quantifies a process's ability to meet customer requirements. As a result, process capability indices can be used to provide a measure of customer satisfaction. For calculating these indices firstly for each quality characteristic three parameters of:

- 1 target value
- 2 upper specification limit (USL)
- 3 lower specification limit (LSL) are estimated by marketing department based on customer s' point-of-view.

The difference between USL and LSL, called the customer tolerance interval, provides a measure of allowable process spread (i.e. customer requirements). In other words, an item produced outside the customer tolerance interval is called a defective product.

According to the mentioned explanations, customer satisfaction increases as the process has greater ability to be near the target. Larger values of the process capability indices indicate higher customer satisfaction while lower values show poorer customer satisfaction.

The employed multivariate process capability index (*CpM*) is based on the ratio of the engineering tolerance region volume to the modified process region volume. The modified process region is defined the smallest region similar in shape to the engineering tolerance region. Figure 2 illustrates the elliptical actual process region, the rectangular modified process region, and the engineering tolerance region for r = 2. In this Figure, UPL_i and LPL_i are the edges of the modified process region.

$$CpM = \left(\frac{Vol. \ engineering \ tolreance \ region}{Vol. \ modified \ process \ region}\right)^{\frac{3}{r}}$$
(2)

Since the multivariate process capability index is a ratio of the tolerance region to the modified process region, the values greater than or equal to one indicate that all responses are within the specification limits that predetermined by customers. Thus, the customers are satisfied by results that fulfil their needs. On the other hand, values less than one cannot satisfy customers because at least one quality characteristic is outside the tolerance region. The CpM ratio is also capable of considering the correlation among quality characteristics, but it cannot take into account the location effect.

The combination of weighted statistical distance function and multivariate process capability index makes a suitable model that is able to find solutions which satisfies the customer's needs and incorporates the variance-covariance structure of responses and the deviation of the mean responses from their corresponding targets in a unifying model. It also relaxes the assumption of equal relative importance of interested quality characteristics, which is neglected in many MRO approaches. In another word, these two criteria complete each other's tasks; one considers the location effect and relative importance of responses but cannot guarantee that the non-dominated solutions fall within the specification region, whereas the other one can consider this property. The first step in MRO-solving approaches is often identification of the most important control variables. With no exception, also in this study, the design factors that may have significant effects on the weighted statistical distance and the process capability index must be identified. After finding the significant design variables, design of experiment (DOE) and RSM are applied to estimate the objectives under consideration (i.e., WSD, CpM). Therefore, a suitable experimental design, as a test or series of tests in which some changes deliberately are made on the control variable values, is utilised to detect the reasons of changing that may observe in the weighted statistical distance and the process capability index. Experimental designs such as Central composite, Box-Behnken, full factorial and fractional factorial designs are common in the data collection phase.

Since variance-covariance matrix is required for computing *WSD* and *CpM*, the sample mean and variance of the j^{th} response as well as the sample covariance among the j^{th} and the k^{th} quality characteristics in the i^{th} experimental run can be computed by following formulas:

$$\overline{y}_{ij} = \sum_{t=1}^{m} \frac{y_{ijt}}{m} \tag{3}$$

$$\sigma_{ij}^{2} = \frac{1}{m-1} \sum_{t=1}^{m} (y_{ijt} - \overline{y}_{ij})^{2}$$
(4)

$$\sigma_{ijk} = \frac{1}{m-1} \sum_{t=1}^{m} \left(y_{ijt} - \overline{y}_{ij} \right) \left(y_{ikt} - \overline{y}_{ik} \right), \qquad \forall j \neq k$$
(5)

After calculating the sample mean and constructing the sample variance-covariance matrix (Σ_i) of the *i*th iteration, the values of the weighted statistical distance function and multivariate process capability index for the *i*th experimental run can be evaluated via equations (6) and (7), respectively.

$$\sum_{i} = \begin{pmatrix} \sigma_{i1}^{2} & \sigma_{i12} & \cdots & \sigma_{i1r} \\ \sigma_{i2r} & \sigma_{i2}^{2} & \cdots & \sigma_{i2r} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{ir1} & \sigma_{ir2} & \cdots & \sigma_{ir}^{2} \end{pmatrix}$$

$$WSD_{i} = \left(\overline{y}_{ij} - T\right)^{T} W \sum_{i}^{-1} (\overline{y}_{ij} - T)$$
(6)

where W is a diagonal matrix, which the sum of its diagonal elements is equal to 1. The Σ_i^{-1} denotes the inverse variance-covariance matrix in the *i*th iteration.

$$CpM_{i} = \left(\frac{\prod_{j=1}^{r} \left(USL_{j} - LSL_{j}\right)}{\prod_{j=1}^{r} \left(USL_{j} - LSL_{j}\right)}\right)^{\frac{1}{r}}$$
(7)

As mentioned before, UPL_j and LPL_j are the upper and lower process limits of the j^{th} response and are obtained as follows:

$$UPL_{j} = \overline{y}_{ij} + \sqrt{\frac{\chi_{a,r}^{2} \det\left(\Sigma_{ij}^{-1}\right)}{\det\left(\Sigma_{i}^{-1}\right)}}, \qquad LPL_{j} = \overline{y}_{ij} - \sqrt{\frac{\chi_{a,r}^{2} \det\left(\Sigma_{ij}^{-1}\right)}{\det\left(\Sigma_{i}^{-1}\right)}}$$
(8)

where det (Σ_i^{-1}) denotes the determinant of the inverse variance-covariance matrix of responses in the *i*th iteration and det (Σ_{ij}^{-1}) is determinant of Σ_{ij}^{-1} which is obtained via deleting the *j*th row and column from $\sum_{i}^{-1} \chi_{\alpha,r}^2$ denotes the upper 100(α)% of a chi-square distribution with *r* degree of freedoms associated with the probability contour.

Figure 3 Relationship of the original criteria values and their natural logarithm values (see online version for colours)

After the computation of the weighted statistical distance and the multivariate process capability index in all experimental runs, the response surfaces of Ln (CpM_i) and Ln (WSD_i) can be fitted in terms of significant control variables. Since the weighted statistical distance and the multivariate process capability index are inherently positive, their natural logarithm transformations are estimated. It is worth to remark that even though $\hat{y}_{Ln(CpM)}$ and $\hat{y}_{Ln(WSD)}$ take negative values, their corresponding CpM and WSD would always be positive. Figure 3 illustrates relationship of the original values of the equations (6) and (7) with their natural logarithm values by a small instance. It is important to note that the relationship between design factors and the mentioned criteria

must be well modelled. Otherwise, obtained solutions from the model by any MRO approach may not be reliable.

2.2.2 Phase 2: Pareto optimal set

This phase generates a set of non-dominated solutions as a Pareto optimal set by solving the following mathematical problem:

$$\begin{aligned} \text{Minimize } Z = \left[-\hat{y}_{Ln(CpM)}, \, \hat{y}_{Ln(WSD)} \right] \\ \text{s.t} : X \in \Omega \end{aligned} \tag{9}$$

Definition: A point x^* is considered as a non-dominated solution, if there does not exist another point x in the experimental region such that one of the three below modes occurs:

1
$$\hat{y}_{Ln(CpM)}(x) < -\hat{y}_{Ln(CpM)}(x^*)$$
 and $\hat{y}_{Ln(WSD)}(x) \le \hat{y}_{Ln(WSD)}(x^*)$

2
$$\hat{y}_{Ln(CpM)}(x) \leq -\hat{y}_{Ln(CpM)}(x^*)$$
 and $\hat{y}_{Ln(WSD)}(x) < \hat{y}_{Ln(WSD)}(x^*)$

3
$$\hat{y}_{Ln(CpM)}(x) < -\hat{y}_{Ln(CpM)}(x^*)$$
 and $\hat{y}_{Ln(WSD)}(x) < \hat{y}_{Ln(WSD)}(x^*)$

This phase aims to generate a Pareto optimal set to provide sufficient insight into tradeoffs between two criteria under consideration. Carlyle (2003) introduced three desirable properties for evaluating the quality of a Pareto optimal set namely, diversity (a wide range of non-dominated solutions), uniformity (a uniform distribution of the non-dominated solutions) and cardinality (a large number of non-dominated solutions). According to the mentioned properties, two evolutionary multi-objective optimisation algorithms NSGA-II and MOPSO are selected to generate the efficient Pareto optimal set that will be explained in below.

2.2.2.1 NSGA-II

NSGA-II is one of the most popular methods among the evolutionary multi-objective optimisation (EMO) algorithms that was introduced by Deb et al. (2000) and recently has been employed widely by some researchers such as Frotus and Tohme (2013), Yadav et al. (2014), Safarsadeh and Matahhar (2014), Rajabi-Bahmani et al. (2015), Liu et al. (2015) and Arora et al. (2016). It has the ability to find much spread solutions over the Pareto optimal set-in contrast to most of the conventional techniques that employ one elite-preservation strategy. In the first step, NSGA-II creates the offspring Q_t from the parent population P_t by utilising tournament selection, recombination (crossover) and mutation operators. Then, these two populations are combined to form the entire population R_t of size of 2N, where N is population size. Next, a non-dominated sorting is conducted to classify R_t . Finally, the new population is filled by solutions of different fronts F_i in the basis of their ranks. When the last front is being considered, there may exist more solutions than the remaining slots in the new population. In this situation, a crowding sort of procedure is done to choose the members of the last front in a way that a diverse set of solutions is selected from this front set.

The schematic of NSGA-II algorithm is depicted in Figure 4 and pseudo code of algorithm also illustrated in Figure 5.

Figure 4 Schematic of the NSGA-II procedure

- 1. While iteration number is less than the maximum iteration do
- 2. Create R_t by incorporating offspring and parent populations
- 3. Carry out a non-dominated sorting to R_t and identify different fronts F_i
- 4. Set new population $P_{t+1} = \emptyset$ and counter i = 1.
- 5. While $|P_{t+1}| + |F_i| < N$ do
- 6. Carry out $P_{t+1} = P_{t+1} \cup F_i$ and i = i + 1
- 7. End while
- 8. Carry out the crowding sort process and involve the most widely spread $(N |P_{t+1}|)$ solutions.
- 9. Create offspring population Q_{t+1} from P_{t+1} using the crowded tournament selection, crossover and mutation operators.
- 10. End while

2.2.2.2 MOPSO

Coello et al. (2004) proposed MOPSO algorithm as one of the fastest algorithms among the EMO algorithms. Zhu et al. (2015), Meza et al. (2015) and Zhang and Chen (2016) are some researchers who employed the MOPSO algorithm in their studies. In the first step, MOPSO initialises a swarm of particles. Then, the non-dominated solutions are determined and stored in an external archive called repository. Next, the hypercubes are constructed via dividing the search space in order to determine a leader for each particle of the swarm. The classical roulette wheel selection is employed to select a hypercube in which selection probability of each hypercube has inverse relationship with the number of repository members in the given hypercube. Later on, a leader is selected randomly, and the position of particle is updated. Finally, the mutation operator is performed for better search and the personal best position is updated. Figures 6 and 7 illustrate the representation of a searching point and the pseudo code of MOPSO algorithm, respectively.

Figure 6 Schematic of the MOPSO procedure (see online version for colours)

Figure 7 MOPSO algorithm

- 1. Initialize a swarm of particles.
- 2. Initialize velocity and personal best of the i^{th} particle as $V_0^i = 0$ and $P_{best}^i = P^i$, respectively
- 3. Construct the repository by identifying the non-dominated solutions
- 4. While iteration number is less than the Maximum iteration do
- 5. For each particle do
- 6. Construct the hypercube via dividing the search space
- 7. Select a leader for the i^{th} particle from the repository
- 8. Update velocity and position of the i^{th} particle
- 9. Conduct mutation operator on particles and update the personal best of the i^{th} particle.
- 10. End for
- 11. Update the repository.
- 12. End while.

2.2.3 Phase 3: performance measures for comparison of non-dominated sorting algorithms

The purpose of this phase is introducing three performance measures for comparison of the obtained Pareto optimal sets from non-dominated sorting algorithms. As mentioned in the previous phase unlike the single objective optimisation methods, which aim to find the best or near the best solution, the multi-objective optimisation algorithms such as NSGA-II and MOPSO look for three features simultaneously:

- 1 diversity
- 2 uniformity
- 3 cardinality.

In this regard, three famous metrics are utilised as follows:

2.2.3.1 Normalised set coverage metric (\overline{C})

Set coverage metric was proposed by Zitzler and Thiele (1998) for comparing two different Pareto sets. Assume in a problem, there are two sets of non-dominated solution A and B. set coverage metric C(A, B) computes the fraction of B, which is weakly dominated by A as equation (10):

$$C(A,B) = \frac{\left| \left\{ b \in B \mid Ea \in A : a \prec b \right\} \right|}{|B|}$$
(10)

where $a \leq b$ means that solution a weakly dominates solution b. C (A, B) = 1demonstrates that all the non-dominated solutions in B are weakly dominated by A. On the other hand, C (A, B) = 0 means that none of the points in set B can be weakly dominated by A. It is worth to notice that since the C (A, B) is not necessary equals to 1 -C(B, A) both C (A, B) and C (B, A) must be considered. For simplifying the comparison of the two sets, the normalized set coverage metric (\overline{C}) is proposed as equation (11). This equation assures $\overline{C}(A, B) = 1 - \overline{C}(B, A)$ which makes comparison of algorithms easier than set coverage metric. With respect to the mentioned definition, $\overline{C}(A, B) \ge \overline{C}(B, A)$ indicates that set A has better coverage than B.

$$\overline{C}(A,B) = \frac{C(A,B)}{C(A,B) + C(B,A)}$$
(11)

2.2.3.2 Spacing metric (Δ)

Spacing metric was introduced by Deb et al. (2001). It measures the spread of solutions of a Pareto set in the entire region through computing variance of distances of the neighbouring solutions in the given Pareto set.

$$\Delta = \sum_{i=1}^{|n|} \frac{|d_i - \overline{d}|}{|n|} \tag{12}$$

where

$$d_{i} = \min k \in n,$$

$$k \neq i \left\{ \sqrt{\left[\hat{y}_{Ln(CpM)}(x^{i}) - \hat{y}_{Ln(CpM)}(x^{k}) \right]^{2} + \left[\hat{y}_{Ln(WSD)}(x^{i}) - \hat{y}_{Ln(WSD)}(x^{k}) \right]^{2}} \right\}, \vec{d}$$

is mean of the Euclidian distances (d_i) and n denotes the number of non-dominated solutions in the Pareto set. According to the mentioned definition for spacing metric, the smaller value of Δ is more desirable.

2.2.3.3 Number of Pareto solutions

This metric is used to measure the cardinality of algorithm and the higher value of NPS shows the better performance of algorithm.

3 Numerical example

In order to illustrate the applicability of the proposed method, two industrial case studies from Pignatiello (1993) and Costa et al. (2011) are employed. In each numerical example three comparative studies are performed. Since posterior approaches have been rarely investigated in the MRO literature, In the first comparative study the performance of the most popular methods for generating Pareto set consisting of NSGAII, MOPSO and ε constraint are compared to each other. The second comparative study includes the comparison of the most well-known Posterior approaches in the MRO literature. Finally, for more clarification of joint optimisation importance of multivariate process capability index and weighted statistical distance, the proposed method is compared to state-of-the-art methods in the literature as well as individual optimisation of multivariate process capability index and weighted statistical distance, separately.

3.1 Example 1

The case study given in Pignatiello (1993), which is used in this section, consists of two correlated quality characteristics (y_1, y_2) and three process variables (x_1, x_2, x_3) . It is assumed that the target values of the quality characteristics are 103 and 73 and the specification limits are (97,109) and (70, 76) for y_1 and y_2 , respectively.

The procedure of the proposed method on this example is described as follows:

3.1.1 Phase 1: data gathering and model building

The experiment is conducted in a full factorial design with four replications and the results are displayed in Table 2.

The \overline{y}_{ij} , σ_{ij}^2 and σ_{ijk} for these two responses in eight experimental runs are calculated via equations (3) to (5), and the obtained results are shown in Table 3. Then, the weight matrix should be selected based on standards of organisation or decision maker's subjective judgments. For further analysis in the cases with more than two responses, the weight matrix can be determined through one of the weight generation methods in literature such as Moeini et al. (2011) and Ahmadi-Javid and Moeini (2015).

	;	:		\mathcal{Y}_{I}				<i>.............</i>	2	
Experimental run x ₁	x_2	X_3	Ι	2	3	4	Ι	2	3	4
1 -1	-1	-	109.895	109.759	110.704	109.773	67.6974	67.2374	67.962	66.9268
2 1	-1	1	100.192	99.634	100.269	100.6	67.0264	66.1779	66.5758	67.9431
31	-	-	106.078	105.642	105.671	105.393	72.9353	72.8508	72.5768	72.3754
4 1	1	Ξ	104.12	104.802	104.203	104.335	72.9878	74.2487	73.9371	73.2824
5 -1	-1	1	113.515	111.121	112.854	106.666	68.2934	68.4693	68.9576	64.7051
6 1	1	1	98.732	99.357	102.842	94.235	67.0955	63.6112	68.647	62.4118
7 —1	1	1	103.145	106.959	107.62	103.44	71.6818	75.2657	77.4958	76.3739
8 1	1	-	104.454	105.029	99.786	104.923	76.9003	77.0322	68.989	75.7691

Table 2 The Experimental results of numerical example

A. Salmasnia and H. Mokhtari

50

Experimental run	<i>x</i> 1	<i>x</i> ₂	Х3	\overline{y}_1	\overline{y}_2	σ_1^2	σ_2^2	σ_{12}
1	-1	-1	-1	100.033	65.4559	0.0204	0.214	0.1679
2	1	-1	-1	100.174	66.9308	0.1608	0.5756	0.2686
3	-1	1	-1	105.696	72.6846	0.0804	0.0659	0.0611
4	1	1	-1	104.365	73.614	0.0927	0.3364	0.1295
5	-1	-1	1	111.039	67.6064	9.5182	3.8199	5.6372
6	1	-1	1	98.791	65.4431	12.4972	8.4992	8.5411
7	-1	1	1	105.291	75.4543	5.4127	6.6345	4.1672
8	1	1	1	103.548	74.4227	6.3525	18.7178	10.7214

 Table 3
 The results of sample mean, variance and covariance

 $\hat{y}_{Ln(CpM)} = 0.1389 - 0.1538x_1 + 0.1007x_2 - 0.9597x_3 - 0.9991x_2x_3 \tag{13}$

$$W = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$\hat{y}_{Ln(WSD)} = 2.509 - 0.803x_1 - 1.214x_2 - 1.312x_3 - 0.791x_2x_3$$

$$+0.562x_1x_2x_3$$

$$W = \begin{bmatrix} 0.34 & 0 \\ 0 & 0.66 \end{bmatrix}$$

$$\hat{y}_{Ln(WSD)} = 2.509 - 0.941x_1 - 1.038x_2 - 1.462x_3 - 1.055x_2x_3$$

$$+0.468x_1x_2x_3$$

$$W = \begin{bmatrix} 0.57 & 0 \\ 0 & 0.43 \end{bmatrix}$$

$$\hat{y}_{Ln(WSD)} = 2.539 - 1.071x_1 - 1.029x_2 - 1.594x_3 - 0.227x_1x_3$$

$$-1.203x_2x_3 + 0.468x_1x_2x_3$$

$$(16)$$

$$W = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.8 \end{bmatrix}$$

$$\hat{y}_{Ln(WSD)} = 2.613 - 0.836x_1 - 1.411x_2 - 1.088x_3$$
(17)

In this example, four weight matrices are considered. The natural logarithm of the process capability index and the weighted statistical distance are calculated in each experimental run based on the response values in Table 2 and the weight matrices. Table 4 summarises the obtained results for the interested criteria. Finally, the response surfaces of Ln(CpM) as well as Ln(WSD) for different weight matrices are estimated as follows:

						Tn(V	(DSA)	
Experimental run	^{l}x	x_2	x_3	Ln(CpM)	$W = \begin{bmatrix} 0.5 & 0\\ 0 & 0.5 \end{bmatrix}$	$W = \begin{bmatrix} 0.34 & 0\\ 0 & 0.66 \end{bmatrix}$	$W = \begin{bmatrix} 0.57 & 0\\ 0 & 0.43 \end{bmatrix}$	$W = \begin{bmatrix} 0.2 & 0\\ 0 & 0.8 \end{bmatrix}$
1			-	0.99277	4.4432	4.8708	4.2465	5.1366
2	1		Ξ	0.80491	3.4657	3.947	3.3123	3.9414
3	-1	1	Ξ	1.52161	5.2405	4.9461	5.3463	4.5899
4	1	1	Ξ	1.07688	2.736	2.181	2.9068	1.1336
5	-1	-1	1	-0.64817	4.7053	4.7148	4.7012	4.723
6	1	-1	1	-0.95581	1.5735	2.019	1.2916	2.2927
7	-1	1	1	-0.68558	-0.58983	-0.625	-0.5748	-0.6567
8	1	1	1	-0.98457	-1.5024	-0.6631	-2.3586	-0.2596

 Table 4
 The results of constructing the new responses

A. Salmasnia and H. Mokhtari

52

3.1.2 Phase 2: Pareto optimal set

In this section, two suggested meta-heuristic algorithms namely, NSGA-II and MOPSO as well as ε -constraint method, which is proposed in Lee et al. (2011), are conducted on the response surfaces of $\hat{y}_{Ln(CpM)}$ and $\hat{y}_{Ln(WSD)}$ to generate the non-dominated solutions. The conventional ε -Constraint method considers one of the objectives under consideration as main objective and other objectives as constraints. The conventional ε -Constraint method generates the weakly non-dominated solutions (Hassannayebi et al., 2011). To overcome this drawback, the modified ε -Constraint method is introduced which considers a sufficient small coefficient (ρ) to generate the strongly non-dominated solutions. The optimisation scheme of the modified ε -Constraint method which adapted in this study is given:

$$\begin{aligned} \text{Minimize} \left\{ -\hat{y}_{Ln(CpM)} - \rho\left(\hat{y}_{Ln(WSD)}\right) \right\} \\ \text{s.t.:} \ \hat{y}_{Ln(WSD)} < \varepsilon \end{aligned} \tag{18} \\ X \in \Omega \end{aligned}$$

To generate the efficient solutions, the mentioned algorithms were coded in the MATLAB software. The used parameters are given in Table 5. To compare the non-dominated sorting algorithms, each of them is executed six times for each weight matrix. Consequently, 24 Pareto sets are generated, which are used for comparative parametric and non-parametric statistical tests.

Algorithm	Parameter	Value
NSGA-II	Population size	80
	Maximum iteration	120
	Crossover rate	0.7
	Mutation rate	0.4
MOPSO	Population Size	80
	Repository size	80
	Maximum Iteration	120
	Number of divisions	30
ε-Constraint	ρ	0.001
	ε	0.03

 Table 5
 The used parameters in Pareto set generation algorithms

3.1.3 Phase 3: comparison of NSGA-II, MOPSO and ε-constraint

To measure the performance of the non-dominated sorting algorithms, three metric criteria are conducted on the 24 generated Pareto sets. The obtained metric criteria values are shown in Table 6 and the average of the metric criteria are given in the last row. In Table 6 *A*, *B* and *C* denote the Pareto sets generated by NSGA-II, MOPSO and ε -constraint algorithms, respectively. Figure 8 shows the results of the performance metrics of the three algorithms graphically. The average values of measures imply that the NSGA-II algorithm generates the best Pareto sets. It has the smallest Spacing metric values and the greatest NPS and normalised set coverage values among the employed

algorithms. Furthermore, the results in the last row of Table 6 confirm that the MOPSO algorithm generates the more appropriate Pareto sets compared to *\varepsilon\constraint* algorithm. The results also are evaluated by both parametric and non-parametric tests. The parametric t-test is used to study the difference between mean values of NPS, Δ and \overline{C} in three algorithms. On the other hand, the nonparametric Mann-Whitney test is employed for evaluation of difference in median values of criteria under consideration except for the comparison of median NPS of NSGA-II algorithm with the other algorithms, which the sign test is used due to the constant NPS values of NSGA-II algorithm. The hypothesises are given in Table 7 in which μ and m are mean and median, respectively. The given *P*-values in Table 7 confirm that the NSGA-II generates significantly the better Pareto sets and also show the better performance of MOPSO algorithm compared to ε -Constraint method.

		NSG_{i}	4- <i>II</i>			NOF	OSc			:ио <i>з-</i> з	straint	
Weight matrix	∇	$\overline{C}(A,B)$	$\overline{C}(A,C)$	SdN	∇	$\overline{C}(B,A)$	$\overline{C}(B,C)$	NSP	∇	$\overline{C}(C,A)$	$\overline{C}(C,B)$	NSP
$\begin{bmatrix} 0.5 & 0 \end{bmatrix}$	0.0338	0.9756	0.9730	80	0.0538	0.0244	0.8179	77	0.2007	0.0270	0.1821	10
0 0.5]	0.0347	0.6557	0.6557	80	0.0661	0.3443	0.8696	80	0.2512	0.3443	0.1304	16
	0.0362	0.9398	1.0000	80	0.0490	0.0602	0.7484	80	0.2636	0.0000	0.2516	11
	0.0402	1.0000	1.0000	80	0.0625	0.0000	0.9362	80	0.2528	0.0000	0.0638	15
	0.0374	1.0000	1.0000	80	0.0611	0.0000	0.9670	78	0.3243	0.0000	0.0330	12
	0.0361	1.0000	0.9861	80	0.0608	0.0000	0.3721	80	0.4165	0.0139	0.6279	6
$\begin{bmatrix} 0.34 & 0 \end{bmatrix}$	0.0399	1.0000	0.9864	80	0.0649	0.0000	0.8791	80	0.2192	0.0136	0.1209	11
0 0.66	0.0431	1.0000	0.9249	80	0.0506	0.0000	0.9823	80	0.3108	0.0751	0.0177	13
	0.0368	1.0000	1.0000	80	0.0571	0.0000	0.7407	80	0.3424	0.0000	0.2593	14
	0.0482	0.9639	0.9474	80	0.0649	0.0361	0.8333	80	0.4103	0.0526	0.1667	10
	0.0412	1.0000	0.9868	80	0.0545	0.0000	0.7759	80	0.2421	0.0132	0.2241	16
	0.0434	1.0000	1.0000	80	0.0669	0.0000	0.8696	80	0.2873	0.0000	0.1304	18
$\begin{bmatrix} 0.57 & 0 \end{bmatrix}$	0.0506	1.0000	0.9869	80	0.0489	0.0000	0.9244	80	0.2344	0.0131	0.0756	17
$\begin{bmatrix} 0 & 0.43 \end{bmatrix}$	0.0489	1.0000	0.9869	80	0.0860	0.0000	0.8958	78	0.2069	0.0131	0.1042	17
	0.0565	0.9615	1.0000	80	0.0670	0.0385	0.9442	80	0.3506	0.0000	0.0558	13
	0.0453	1.0000	1.0000	80	0.0709	0.0000	0.6689	80	0.3129	0.0000	0.3311	11
	0.0525	0.7843	0.7715	80	0.0508	0.2157	0.7692	80	0.3078	0.2285	0.2308	14
	0.0523	1.0000	1.0000	80	0.0622	0.0000	0.8727	80	0.2700	0.0000	0.1273	15
$\begin{bmatrix} 0.2 & 0 \end{bmatrix}$	0.0299	1.0000	1.0000	80	0.0607	0.0000	0.6191	65	0.3337	0.0000	0.3809	10
$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	0.0328	1.0000	1.0000	80	0.0410	0.0000	0.8205	80	0.3151	0.0000	0.1795	7
	0.0298	1.0000	1.0000	80	0.0538	0.0000	0.9474	80	0.2861	0.0000	0.0526	10
	0.0339	1.0000	1.0000	80	0.0595	0.0000	0.2970	68	0.5975	0.0000	0.7030	7
	0.0268	1.0000	1.0000	80	0.0453	0.0000	0.1659	77	0.3276	0.0000	0.8341	6
	0.0256	0.9080	1.0000	80	0.0533	0.0920	0.5714	80	0.2421	0.0000	0.4286	10
Average	0.0398	0.9662	0.9669	80	0.0588	0.0338	0.7620	78.458	0.3044	0.0331	0.2380	12.2917

Table 6The results of performance metrics

Pareto efficient correlated multi-response optimisation

Table 7Statistical test results

	Parametri	ic test			Nonparamet	tric test	
sis	P-value	Hypothesis	P-value	Hypothesis	P-value	Hypothesis	P-value
$= \mu_B$ > μ_B	0.031	$\begin{cases} H_0: \mu_A = \mu_C \\ H_1: \mu_A > \mu_C \end{cases}$	0.00	$\left\{ \begin{matrix} H_0:m_A=m_B\\ H_1:m_A>m_B \end{matrix} \right.$	0.0156	$\begin{cases} H_0: m_A = m_C \\ H_1: m_A > m_C \end{cases}$	0.00
		$\begin{cases} H_0: \mu_B = \mu_C \\ H_1: \mu_B > \mu_C \end{cases}$	0.00			$\begin{cases} H_0: m_B = m_C \\ H_1: m_B > m_C \end{cases}$	0.00
$\eta_{1}=\mu_{B}$ $\eta_{1}<\mu_{B}$	0.00	$\begin{cases} H_0: \mu_A = \mu_C \\ H_1: \mu_A < \mu_C \end{cases}$	0.00	$\begin{cases} H_0: m_A = m_B \\ H_1: m_A < m_B \end{cases}$	0.00	$\begin{cases} H_0: m_A = m_C \\ H_1: m_A < m_C \end{cases}$	00.0
		$\begin{cases} H_0: \mu_B = \mu_C \\ H_1: \mu_B < \mu_C \end{cases}$	0.00			$\begin{cases} H_0: m_B = m_C \\ H_1: m_B < m_C \end{cases}$	0.00
$\Lambda_A = \mu_B$ $\Lambda_A > \mu_B$	0.00	$\begin{cases} H_0: \mu_A = \mu_C \\ H_1: \mu_A > \mu_C \end{cases}$	0.00	$\begin{cases} H_0: m_A=m_B\\ H_1: m_A>m_B \end{cases}$	0.00	$\begin{cases} H_0: m_A = m_C \\ H_1: m_A > m_C \end{cases}$	0.00
		$\begin{cases} H_0: \mu_B = \mu_C \\ H_1: \mu_B > \mu_C \end{cases}$	0.00			$\begin{cases} H_0: m_B = m_C \\ H_1: m_B > m_C \end{cases}$	0.00

Figure 9 The Pareto sets when $W = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$ (a) NSGA-II Pareto optima 1 set (b) the

MOPSO Pareto optima 1 set and (c) the ε -constraint Pareto optima 1 set (see online version for colours)

Figure 10 The Pareto sets when $W = \begin{bmatrix} 0.34 & 0 \\ 0 & 0.66 \end{bmatrix}$ (a) NSGA-II Pareto optima 1 set (b) the MOPSO Pareto optima 1 set and (c) the ε -constraint Pareto optima 1 set (see online

Figure 10 The Pareto sets when $W = \begin{bmatrix} 0.34 & 0 \\ 0 & 0.66 \end{bmatrix}$ (a) NSGA-II Pareto optima 1 set (b) the

MOPSO Pareto optima 1 set and (c) the *E*-constraint Pareto optima 1 set (see online version for colours) (continued)

Figure 11 The Pareto sets when $W = \begin{bmatrix} 0.57 & 0 \\ 0 & 0.43 \end{bmatrix}$ (a) NSGA-II Pareto optima 1 set (b) the

MOPSO Pareto optima 1 set and (c) the *E*-constraint Pareto optima 1 set (see online version for colours)

MOPSO Pareto optima 1 set and (c) the ε -constraint Pareto optima 1 set (see online version for colours)

3.2 Comparison of the proposed method with the posterior methods in example 1

In this section, the suggested approach is compared with the existing posterior preference articulation methods. In this regard, the presented approaches in Lee et al. (2011) and Salmasnia et al. (2013b) and two presented models in Costa and Lourenço (2015) are conducted on the numerical example. Then, one of the generated non-dominated solutions is determined as the best solution via their proposed best solution selection phase. Table 8 depicts the achieved results from the mentioned methods along with the results obtained from employing VIKOR method, which is described briefly in appendix A, on the generated non-dominated solutions in Table 8 give the obtained results for the natural logarithm of the process capability index and the weighted statistical distance in addition to performance measures of NPS and Δ . For the better comparison, the response surfaces of standard deviation of original responses are estimated and their results are given in the columns 4 and 5 for y_1 and y_2 , respectively. The estimated surfaces of these responses can be seen in the appendix C.

Weigh matrix	Model	X	$\hat{y}_{1\sigma}$	$\hat{y}_{2\sigma}$	$\hat{\mathcal{Y}}_{Ln(CpM)}$	$\hat{\mathcal{Y}}_{Ln(WSD)}$	SdN	∇
[0.5 0]	Lee et al. (2011)	(1, 0.6856, 1)	2.6889	3.6223	-0.9735	-0.5953	4	0.2073
0 0.5]	Salmasnia et al. (2013b)	(-0.9970, 0.9976, -0.9998)	0.1099	0.3610	1.4510	4.7580	7	0.0012
	Costa and Lourenço (2015) model 1	(1,0.8037,0.2346)	1.7021	2.4306	-0.1778	0.3793	10	0.1275
	Costa and Lourenço (2015) moddel2	(1,0.7998, 0.5760) *	2.1299	2.8451	-0.5328	-0.1262	٢	0.2358
	The proposed method (NSGA-II)	(0.9802, 0.9872, -0.9613)	0.1606	0.7237	1.1041	2.0124	80	0.0402
	The proposed method (MOPSO)	(0.9790, 0.9579, -0.4032)	0.8657	1.5439	0.5100	1.1820	80	0.0625
$\begin{bmatrix} 0.34 & 0 \end{bmatrix}$	Lee et al. (2011)	(1,0.6856,1)	2.6889	3.6223	-0.9735	-1.0008	4	0.2073
$\begin{bmatrix} 0 & 0.66 \end{bmatrix}$	Salmasnia et al. (2013b)	(-0.9989, 0.9977, -0.9995)	0.1102	0.3609	1.4510	5.3928	7	0.0012
	Costa and Lourenço (2015) model 1	(1, 0.7956, 1)	2.6609	3.3598	-0.9733	-1.1868	10	0.1275
	Costa and Lourenço (2015) moddel2	(0.1064, 0.7199, -0.0005) *	1.4295	1.7731	0.1955	1.6627	7	0.2358
	The proposed method (NSGA-II)	(0.9739, 0.9879, -0.8991)	0.2382	0.8136	1.0395	2.4139	80	0.0368
	The proposed method (MOPSO)	(0.9699, 0.8710, -0.3852)	0.9103	1.5675	0.4804	1.4571	80	0.0571
$\begin{bmatrix} 0.57 & 0 \end{bmatrix}$	Lee et al. (2011)	(0.4839, 0.6004, 0.9373)	2.6321	3.1875	-0.8304	-0.9451	4	0.2073
$\begin{bmatrix} 0 & 0.43 \end{bmatrix}$	Salmasnia et .al (2013b)	(-0.9966, 0.9979, -0.9997)	0.1099	0.3611	1.4509	5.3903	7	0.0012
	Costa and Lourenço (2015) moddell	(1, 0.7955, 1)	2.6609	3.3598	-0.9733	-1.9975	10	0.1275
	Costa and Lourenço (2015) moddel2	(1,0.7964, 0.9066) *	2.5440	3.2464	-0.8763	-1.7687	٢	0.2358
	The proposed method (NSGA-II)	(0.9791, 0.9857, -0.3733)	0.8960	1.5880	0.4823	1.2760	80	0.0565
	The proposed method (MOPSO)	(0.9012, 0.8852, -0.4333)	0.8465	1.4788	0.5433	1.5887	80	0.0670
[0.2 0]	Lee et al. (2011)	(1, 0.6856, 1)	2.6889	3.6223	-0.9735	-0.2783	4	0.2073
0 0.43	Salmasnia et al. (2013b)	(-0.9989, 0.9977, -0.9995)	0.1102	0.3609	1.4510	3.1278	7	0.0012
	Costa and Lourenço (2015) moddel1*	(1, 0.7952, 1)	2.6610	3.3598	-0.9733	-0.4330	10	0.1275
	Costa and Lourenço (2015) moddel2*	(0.6754, 0.7745, 0.0121)	1.4314	2.0204	0.1005	0.9425	٢	0.2358
	The proposed method (NSGA-II)	(0.9897, 0.9924, -0.9719)	0.1461	0.7091	1.1150	1.4427	80	0.0298
	The proposed method (MOPSO)	(0.5014, 0.9065, -0.5290)	0.7215	1.2261	0.7083	1.4903	80	0.0538
Notes: *desirability fu	nction-based model and global criterion-bas	sed model are considered as mod	tels 1 and 2,	respectively.				

A. Salmasnia and H. Mokhtari

The results of Table 8 demonstrate that Lee et al. (2011), Salmasnia et al. (2013b) and Costa and Lourenço (2015) have poor performance in the NPS criterion with only four, seven and ten generated non-dominated solutions. The results in the last column denote that the generated Pareto sets by Lee et al. (2011) and Costa and Lourenço (2015) models do not cover the entire feasible region in comparison with the other approaches. Salmasnia et al. (2013b) method has a very small spacing metric value that means an appropriate uniformity but generating only 7 non-dominated solutions shows that the method only focuses on a small part of the acceptable region and ignores the other parts of the experimental region. In other words, it is only capable of generating a few efficient solutions in a small neighbourhood. In contrast, both suggested sorting non-dominated algorithms generated 80 non-dominated solutions with small uniformity. It confirms that the suggested approach generates better Pareto optimal sets in comparison with the other existing posterior MRO approaches.

Lee et al. (2011) and Costa and Lourenço (2015) have the negative values for $\hat{y}_{Ln(CpM)}$, which is equivalent with values of less than 1 for the multivariate process capability index. It supports the claim that both of these approaches ignore customer's needs in process optimisation. Furthermore, the great values for $\hat{y}_{j\sigma}$ demonstrate that the mentioned methods do not consider dispersion effect of responses. The obtained values for the design variables by Salmasnia et al. (2013b) lead to great values for $\hat{y}_{Ln(WSD)}$ because of ignoring of this method from covariance among quality characteristics. This comparison confirms the efficiency of the proposed method against the existing posterior articulation approaches in the MRO literature.

Model		X	$\hat{y}_{l\sigma}$	$\hat{y}_{2\sigma}$	$\hat{\mathcal{Y}}_{Ln(CpM)}$	$\hat{y}_{Ln(WSD)}$
Awad and Kovac	h (2011)	(1.0000, -1.0000, -1.0000)	0.6170	0.9319	0.7450	4.0030
Babu et al. (2013)	(1, 0.796, 1)	2.6608	3.3598	-0.9733	-0.7546
Hejazi et al. (201	1)	(0.9530, 0.7090, 0.4070)	1.9417	2.5971	-0.3553	0.2753
Díaz-García and	Bashiri (2014)	(1.0000, 0.7070, 0.4520)	1.9984	2.6945	-0.4092	0.1815
Individual CpM		(-1.0000, 1.0000, -1.0000)	0.1090	0.3603	1.4522	4.7630
Individual WSD		(1.0000, 1.0000, 1.0000)	2.6090	3.3598	-0.9730	-1.0490
The proposed	NSGA-II	(0.9802, 0.9872, -0.9613)	0.1606	0.7237	1.1041	2.0124
method	MOPSO	(0.9790, 0.9579, -0.4032)	0.8657	1.5439	0.5100	1.1820

 Table 9
 Comparison of the proposed method with some prior approaches in example 1

3.2.1 Comparison of the proposed method with existing prior methods in example 1

In this section, to illustrate the advantages of simultaneous optimisation of multivariate process capability index and weighted statistical distance, the proposed method is compared to state-of-the-art methods in the literature as well as individual optimisation of multivariate process capability index and weighted statistical distance, separately. The reported results in the last column of Table 9 reveal that Awad and Kovach (2011) and Individual *CpM* do not consider location effects, properly. Furthermore, the obtained negative values for natural logarithm of process capability index confirm the claim that

Babu et al. (2013), Hejazi et al. (2011) and Díaz-García and Bashiri (2014) and Individual WSD set the controllable variable values without considering the customer's requirements, which is not acceptable in the current competitive market. Eventually, the obtained results denote the outstanding performance the suggested method.

 \overline{y}_{ij} , σ_{ij}^2 and σ_{ijk} of two interested responses for each experimental run are calculated via equations (3) to (5), which are given in Table 11. Then, three weight matrices are randomly determined. Table 12 summarises the obtained results for process capability index and weighted statistical distance. The response surfaces of *Ln* (*CpM*) and *Ln* (*WSD*) are estimated, subsequently.

3.3.2 Phase 2: Pareto optimal set

In this section, similar to the first numerical example NSGA-II and MOPSO algorithms as well as ε -constraint method are conducted on the response surfaces of $\hat{y}_{Ln(CpM)}$ and $\hat{y}_{Ln(WSD)}$ to generate the non-dominated solutions. For this purpose, the used parameters are given in Table 13. To compare the non-dominated sorting algorithms, each of them is executed eight times for each weight matrix. Consequently, 24 Pareto sets are generated, which are used for comparative parametric and non-parametric statistical tests.

3.3.3 Phase 3: Comparison of NSGA-II, MOPSO and *\varepsilon*-constraint

Three metric criteria are conducted on the 24 generated Pareto sets to measure the performance of the non-dominated sorting algorithms. The obtained results are shown in Table 14 while the average values of the metric criteria are given in the last row. Similar to the case study 1, the results imply that the NSGA-II algorithm generates the best Pareto sets. It has the smallest spacing metric values and the greatest NPS and normalised set coverage values among the employed algorithms. Furthermore, the results in the last row of Table 14 confirm that the MOPSO algorithm generates the more appropriate Pareto sets compared to ε -constraint algorithm. The results also are statistically compared by both parametric and non-parametric tests. The considered hypothesises and their corresponding P-values are given in Table 15. The obtained P-values confirm that the NSGA-II generates significantly the better Pareto sets and also show the better performance of MOPSO algorithm in comparison with ε -Constraint method.

3.2.1 Comparison of the proposed method with existing posterior methods in example 2

In this section, the suggested approach is compared with some posterior preference articulation methods. The control variable vectors given in third column of Table 16 are obtained through conducting VIKOR method on the generated Pareto sets. The obtained results in Table 16 confirm the mentioned discussion in example 1.

;	;	5			y_I					y_2		
14	7 Y	5Y	Ι	2	3	4	5	Ι	2	3	4	5
-1.000	1.000	-1.000	74.432	73.016	74.5	74.009	74.125	51.404	52.508	54.188	53.485	53.303
1.000	1.000	-1.000	50.159	50.321	51.49	51.69	51.203	63.203	62.397	63.678	63.173	62.654
-1.000	-1.000	1.000	87.587	88.761	88.961	87.718	88.613	53.961	52.847	53.608	53.311	54.174
1.000	-1.000	1.000	70.083	70.643	69.448	69.52	69.542	62.779	62.694	62.873	63.312	61.789
-1.000	1.000	1.000	70.094	69.522	71.063	71.564	70.456	56.401	56.899	57.09	58.295	56.746
1.000	1.000	1.000	90.366	90.689	89.818	90.387	89.714	68.258	67.559	67.927	68.373	68.327
-1.682	0.000	0.000	66.539	65.991	66.505	65.967	66.475	60.092	59.885	60.622	59.248	59.721
1.682	0.000	0.000	96.318	96.95	96.819	97.51	96.119	67.844	68.886	67.333	67.591	67.419
0.000	-1.682	0.000	76.951	74.43	76.57	78.137	77.632	59.064	58.809	58.867	59.087	59.055
0.000	1.682	0.000	78.619	78.017	78.309	76.373	78.549	66.04	65.688	66.064	65.928	66.128
0.000	0.000	-1.682	85.768	84.901	86.418	84.369	85.65	58.592	60.563	62.376	59.375	62.055
0.000	0.000	1.682	93.825	102.277	94.842	97.683	100.255	56.776	62.938	60.095	63.333	58.975
0.000	0.000	0.000	54.936	55.102	55.02	54.895	55.136	57.457	58.017	57.368	57.532	57.114
0.000	0.000	0.000	81.09	80.916	80.983	80.989	81.008	63.284	63.59	63.315	62.834	63.455
0.000	0.000	0.000	90.903	85.439	70.546	78.373	86.978	61.607	58.899	56.19	58.608	62.974
0.000	0.000	0.000	79.464	72.3	78.765	84.358	82.01	63.279	61.181	57.124	56.218	61.435
0.000	0.000	0.000	77.671	81.747	77.608	73.247	74.151	61.142	63.578	60.81	64.414	63.677
0.000	0.000	0.000	86.053	80.349	83.103	80.442	91.657	62.486	60.453	61.927	61.968	61.235
-1.000	1.000	-1.000	82.035	78.625	80.23	81.935	72.136	62.038	59.658	60.793	60.127	63.178
1.000	1.000	-1.000	90.213	85.786	86.64	90.861	88.702	62.406	58.563	55.698	56.693	61.782

Table 10The Experimental results of numerical example 2

\overline{y}_1	$\overline{\mathcal{Y}}_2$	σ_1^2	σ_2^2	σ_{12}
74.0164	0.1082	1.13129	0.3548	52.9776
50.9726	0.1557	0.25299	0.4805	63.021
88.328	-0.0622	0.27711	0.3976	53.5802
69.8472	0.0056	0.31003	0.2621	62.6894
70.5398	0.4411	0.52037	0.6411	57.0862
90.1948	-0.0579	0.11825	0.1709	68.0888
66.2954	0.0962	0.25365	0.084	59.9136
96.7432	0.062	0.3968	0.3017	67.8146
76.744	0.1621	0.01652	2.0392	58.9764
77.9734	0.0557	0.03	0.856	65.9696
85.4212	0.6788	2.70124	0.636	60.5922
97.7764	5.7079	7.57456	12.658	60.4234
55.0178	-0.0007	0.10914	0.0107	57.4976
80.9972	-0.0049	0.08142	0.0039	63.2956
82.4478	18.6962	7.12501	64.8043	59.6556
79.3794	-5.3426	9.16607	20.5523	59.8474
76.8848	-1.8072	2.66494	11.3723	62.7242
84.3208	0.3968	0.61881	22.2809	61.6138
78.9922	-3.5267	2.07525	16.6483	61.1588
88.4404	2.0715	8.93819	4.8393	59.0284

 Table 11
 The results of sample mean, variance and covariance of example 2

Table 12 The results of constructing the new responses of example	Table 12	The results o	f constructing t	the new responses o	f example	2
--	----------	---------------	------------------	---------------------	-----------	---

_		Ln(WSD)	
Ln(CpM)	$W = \begin{bmatrix} 0.5 & 0\\ 0 & 0.5 \end{bmatrix}$	$W = \begin{bmatrix} 0.16 & 0\\ 0 & 0.84 \end{bmatrix}$	$W = \begin{bmatrix} 0.79 & 0\\ 0 & 0.21 \end{bmatrix}$
0.6024	6.8635	5.6925	7.3263
0.901	8.1977	7.352	8.4351
0.9256	5.4513	4.8817	5.7664
1.0017	7.4896	6.4599	7.9268
0.6486	7.3689	6.1773	7.835
1.3496	6.3081	6.5598	6.028
1.3363	9.4433	8.4138	9.7603
0.9048	5.1628	5.5471	4.6525
1.2218	7.4107	7.2777	7.5117
1.2897	7.6697	7.9544	7.34
0.2389	5.5416	4.6198	5.9561

		Ln(WSD)	
Ln(CpM)	$W = \begin{bmatrix} 0.5 & 0\\ 0 & 0.5 \end{bmatrix}$	$W = \begin{bmatrix} 0.16 & 0\\ 0 & 0.84 \end{bmatrix}$	$W = \begin{bmatrix} 0.79 & 0\\ 0 & 0.21 \end{bmatrix}$
-0.7666	0.5519	0.7497	0.3453
2.0623	11.4573	10.3179	11.9147
2.3879	10.7886	9.5862	11.2566
-1.1596	2.8583	2.4588	3.1058
-0.9355	2.3913	1.0573	2.8789
-0.4787	3.178	2.3022	3.5818
-0.2818	3.0583	3.2922	3.8036
-0.5114	2.602	1.0418	3.117
-0.5676	2.798	1.8062	3.2275

 Table 12
 The results of constructing the new responses of example 2 (continued)

$W = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$ $\hat{v} = -0.70160 + 1.57337 r^2 + 2.83073 r^2 - 1.08023 r r$	(20)
$y_{Ln(WSD)} = 0.70109 - 1.57557x_1^2 + 2.85975x_3^2 - 1.08925x_1x_3$	
$W = \begin{bmatrix} 0.16 & 0 \\ 0 & 0.84 \end{bmatrix}$	(21)
$y_{Ln(WSD)} = 2.10149 - 0.51168x_2 + 1.83921x_1^2 + 2.6649x_3^2 - 0.71524x_1x_3$	
$W = \begin{bmatrix} 0.79 & 0\\ 0 & 0.21 \end{bmatrix}$	(22)

$$\hat{y}_{Ln(WSD)} = 3.1878 - 0.8021x_2 + 1.3886x_1^2 + 2.8589x_3^2 - 1.273x_1x_3$$
(23)

Table	13	The used	parameters in	Pareto set	generation	n algorit	hms of	examp	le 2	,
			-			. /				

 $\hat{y}_{Ln(CpM)} = 0.64976 + 0.62968_1^2 + 0.1007x_2 + 0.97231x_3^2$

Algorithm	Parameter	Value
NSGA-II	Population size	80
	Maximum Iteration	120
	Crossover rate	0.8
	Mutation rate	0.3
MOPSO	Population Size	80
	Repository size	80
	Maximum Iteration	120
	Number of division	30
ε-Constraint	ρ	0.001
	ε	0.05

(19)

		NSC	II-F			OW	OSde			<i>e</i> -Constra	aint	
Weight matrix	V	$\overline{C}(A,B)$	$\overline{C}(A,C)$	SdN	Γ	$\bar{C}(B,A)$	$\overline{C}(B,C)$	NSP	∇	$\overline{C}(C,A)$	$\bar{C}(C,B)$	NSP
[0.5 0]	0.0590	1.0000	1.0000	80	0.0847	0.0000	1.0000	80	0.6092	0.0000	0.0000	20
$W = \begin{bmatrix} 0 & 0.5 \end{bmatrix}$	0.0703	1.0000	1.0000	80	0.1062	0.0000	0.9540	80	0.8221	0.0000	0.0460	18
	0.0614	1.0000	0.9868	80	0.0966	0.0000	0.9552	80	0.6023	0.0132	0.0448	15
	0.0641	1.0000	1.0000	80	0.1046	0.0000	1.0000	80	0.5549	0.0000	0.0000	17
	0.0558	1.0000	1.0000	80	0.1032	0.0000	0.8000	80	0.6041	0.0000	0.2000	16
	0.0647	1.0000	1.0000	80	0.0913	0.0000	1.0000	80	0.8990	0.0000	0.0000	18
	0.0541	1.0000	1.0000	80	0.1004	0.0000	0.6452	80	0.3917	0.0000	0.3548	16
	0.0628	1.0000	0.866	80	0.0918	0.0000	0.9773	80	0.8052	0.0134	0.0227	13
[0.16 0]	0.0720	1.0000	1.0000	80	0.0936	0.0000	0.8983	80	0.3692	0.0000	0.1017	22
$W = \begin{bmatrix} 0 & 0.84 \end{bmatrix}$	0.0625	1.0000	0.9870	80	0.1128	0.0000	0.8672	80	0.5495	0.0130	0.1328	21
1	0.0638	0.9821	1.0000	80	0.0835	0.0179	1.0000	80	0.3333	0.0000	0.0000	22
	0.0780	1.0000	1.0000	80	0.1274	0.0000	0.8791	80	0.4013	0.0000	0.1209	19
	0.0735	0.9848	1.0000	80	0.0964	0.0152	0.9586	80	0.3955	0.0000	0.0414	24
	0.0624	1.0000	1.0000	80	0.0990	0.0000	0.9845	80	0.3627	0.0000	0.0155	23
	0.0645	1.0000	1.0000	80	0.0827	0.0000	0.8743	80	0.4207	0.0000	0.1257	24
	0.0813	1.0000	1.0000	80	0.1074	0.0000	0.9043	80	0.3360	0.0000	0.0957	14
[0.79 0	0.0558	1.0000	0.9867	80	0.0969	0.0000	0.6349	80	0.5498	0.0133	0.3651	12
$W = \begin{bmatrix} 0 & 0.21 \end{bmatrix}$	0.0621	1.0000	0.9852	80	0.0855	0.0000	0.9211	80	0.6667	0.0148	0.0789	13
	0.0656	1.0000	0.9736	80	0.0651	0.0000	0.9610	80	0.5634	0.0264	0.0390	14
	0.0681	1.0000	0.9867	80	0.0759	0.0000	0.9809	80	0.6590	0.0133	0.0191	17
	0.0602	1.0000	0.9869	80	0.0934	0.0000	0.9839	80	0.4231	0.0131	0.0161	13
	0.0581	1.0000	0.9866	80	0.0990	0.0000	0.9326	80	1.1072	0.0134	0.0674	17
	0.0539	1.0000	1.0000	80	0.1007	0.0000	1.0000	80	0.3941	0.0000	0.0000	12
	0.0614	1.0000	0.9852	80	0.0928	0.0000	1.0000	80	0.6063	0.0148	0.0000	20
Average	0.0640	0.9921	0.9931	80	0.0955	0.0014	0.9214	80	0.5594	0.0069	0.0786	17.5

Table 14	The results of performance metrics of example 2
Table 14	The results of performance metrics of example 2

Table 15Statistical test results of example 2

	<i>P–value</i>	0.00	0.00	0.00	0.00	0.00
<i>vetric test</i>	Hypothesis	$\left\{ \begin{matrix} H_0:m_A=m_C\\ H_1:m_A < m_C \end{matrix} \right.$	$\begin{cases} H_0: m_A = m_C \\ H_1: m_A < m_C \end{cases}$	$\begin{cases} H_0: m_B = m_C \\ H_1: m_B < m_C \end{cases}$	$\begin{cases} H_0: m_A = m_C \\ H_1: m_A < m_C \end{cases}$	$\begin{cases} H_0: m_B = m_C \\ H_1: m_B < m_C \end{cases}$
Nonparan	P-value		0.00		0.00	
	Hypothesis	I	$\begin{cases} H_0: m_A = m_B \\ H_1: m_A < m_B \end{cases}$	I	$\begin{cases} H_0: m_A = m_B \\ H_1: m_A < m_B \end{cases}$	I
	P-value	0.00	0.00	0.00	0.00	0.00
etric test	Hypothesis	$\begin{cases} H_0: \mu_A = \mu_C \\ H_1: \mu_A > \mu_C \end{cases}$	$\begin{cases} H_0: \mu_A = \mu_C \\ H_1: \mu_A > \mu_C \end{cases}$	$\begin{cases} H_0: \mu_B = \mu_C \\ H_1: \mu_B > \mu_C \end{cases}$	$\begin{cases} H_0: \mu_A = \mu_C \\ H_1: \mu_A > \mu_C \end{cases}$	$\begin{cases} H_0: \mu_B = \mu_C \\ H_1: \mu_B > \mu_C \end{cases}$
Parame	P-value		0.00		0.00	
	Hypothesis	I	$\begin{cases} H_0: \mu_A = \mu_B \\ H_1: \mu_A > \mu_B \end{cases}$	I	$\begin{cases} H_0: \mu_A = \mu_B \\ H_1: \mu_A > \mu_B \end{cases}$	I

Weigh matrix	Model	X	$\hat{\mathcal{Y}}_{\ln(\sigma 1)}$	$\hat{\mathcal{Y}}_{\ln(\sigma 2)}$	$\hat{\mathcal{Y}}_{Ln(CpM)}$	$\hat{\mathcal{Y}}_{Ln(WSD)}$	SdN	∇
[0.5 0]	Lee et al. (2011)	(-0.6461, 1.6820, -0.4298)	0.1594	0.1703	-0.2074	2.5145	6	9.5769
$W = \begin{bmatrix} 0 & 0.5 \end{bmatrix}$	Salmasnia et al. (2013b)	(1.6646, -1.6096, 1.6760)	-4.3729	-3.2943	3.8197	13.2428	13	0.1589
1	Costa and Lourenço (2015) moddel1	(-0.6212, 1.682, -0.4143)	0.1909	0.2040	-0.2399	2.4498	12	0.2330
	Costa and Lourenço (2015) moddel2	(-0.6576, 0.0468, -0.3547)	1.0642	0.1917	-0.2553	3.5666	9	0.4698
	The proposed method (NSGA–II)	(1.5572, 1.6590, 0.9546)	-1.6736	-1.9149	1.7577	6.4357	80	0.0631
	The Proposed Method (MOPSO)	(1.3403, 1.3659, 0.8782)	-0.9519	-1.3124	1.2274	5.5918	80	0.0918
[0.16 0]	Lee et al. (2011)	(-0.6461, 1.6820, -0.4298)	0.1594	0.1703	-0.2074	2.3023	6	9.5769
W = 0 0.84	Salmasnia et al. (2013b)	(-1.6812, 1.6700, -1.6731)	-4.4416	-3.3349	3.8451	11.8933	13	0.1589
1	Costa and Lourenço (2015) moddel1	(-0.6215, 1.682, -0.4139)	0.1912	0.2039	-0.2400	2.2238	12	0.2330
	Costa and Lourenço (2015) moddel2	(-0.5988, 1.682, -0.4511)	0.1590	0.2084	-0.2261	2.2494	9	0.4698
	The proposed method (NSGA–II)	(1.1510, 1.6462, 1.1853)	-1.8654	-1.2854	1.5479	6.4640	80	0.0625
	The proposed method (MOPSO)	(-1.1690, 1.0444, -1.1882)	-1.4170	-1.3241	1.5808	6.8494	80	0.1128
[0.79 0]	Lee et al. (2011)	(-0.6461, 1.6820, -0.4298)	0.1594	0.1703	-0.2074	2.5929	6	9.5769
$W = \begin{bmatrix} 0 & 0.21 \end{bmatrix}$	Salmasnia et .al (2013b)	(1.6637, -1.6767, 1.6757)	-4.4350	3.2912	3.8169	12.8549	13	0.1589
	Costa and Lourenço (2015) moddel1	(-0.7586, 1.682, -0.5015)	0.0003	0.0006	-0.0434	2.8725	12	0.2330
	Costa and Lourenço (2015) moddel2	(-0.7755, 1.0616, -0.1614)	0.7979	0.1088	-0.2464	3.0865	9	0.4698
	The proposed method (NSGA-0II)	(-1.6171, 1.6487, -0.8678)	-1.5386	-1.9818	1.7230	5.8631	80	0.0625
	The proposed method (MOPSO)	(1.4551, 1.4140, 0.8623)	-1.0909	-1.5630	1.4017	5.5222	80	0.0855

Table 16	Comparison	of the pro	oposed method	with some	posterior a	approaches i	n example 2
----------	------------	------------	---------------	-----------	-------------	--------------	-------------

3.2.2 Comparison of the proposed method with existing posterior methods in example 1

As mentioned earlier to illustrate the main advantages of the suggested method including consideration of customer satisfaction and variance-covariance structure of quality characteristics, the suggested method is compared to some popular methods in the literature. The obtained results from Costa and Pereiria (2010) and Sharma et al. (2013) approaches imply that these models only focus on the location effects of responses, ignoring the dispersion effects of the quality characteristics and customer satisfaction. Awad and Kovach (2011), Yadav et al. (2014a) and the suggested process capability index mostly pay attention to customer satisfaction. However, these methods do not consider the weighted statistical distance of mean responses from their corresponding target values. Eventually, the obtained results of the suggested approach confirm the superiority of this model against the other considered approaches.

Model		X	$\hat{y}_{1\sigma}$	$\hat{y}_{2\sigma}$	$\hat{\mathcal{Y}}_{Ln(CpM)}$	$\hat{y}_{Ln(WSD)}$
Sharma et al. (2013)		(-0.5440, -0.0920, -0.4800)	0.9777	0.2449	-0.2392	3.7158
Awad and Kovach (2011)		(1.6820, -0.5320, -0.6697)	-0.4880	-1.9844	1.5611	10.1409
Yadav et al. (2014a)		(1.6820, -1.6820, 1.6820)	-4.4955	-3.3543	3.8758	13.3977
Costa and Pereira (2010)		(-0.6428,1.6820, -0.3182)	0.2756	0.2219	-0.2912	2.3504
Individual CpM		(-1.6820, 0, -1.6820)	-3.6643	-3.3543	3.8758	12.2194
Individual WSD		(0,1.6820, 0)	-0.5914	0.6233	-0.6488	1.6356
The proposed	NSGA-II	0.9777	0.2449	-0.2392	3.7158	2.0124
method	MOPSO	-0.4880	-1.9844	1.5611	10.1409	1.1820

 Table 17
 Comparison of the proposed method with some prior approaches in example 2

4 Conclusions

With respect to the current competitive world, this study aims to find the controllable variable values that maximise the customer satisfaction. For this purpose, a multivariate process capability index was suggested. This index considers dispersion effect of quality characteristics as well as covariance of among responses. However, it cannot guarantee falling all quality characteristics within their corresponding specification limits. On one hand, to overcome this shortcoming, and on the other hand, since relative importance of quality characteristics in most of the real-world problems is different, the weighted statistical distance as another index was considered. This index is able to consider the deviation of the mean responses from their corresponding target values. Therefore, by combination of these two criteria, a multi-responses problem was converted to a biobjective problem. Moreover, to reduce the cognitive effort on DM, the NSGA-II and MOPSO algorithms were suggested as two posterior preference articulation approaches. Then, these two approaches were statistically compared with the ε -constraint method, which was presented in Lee et al. (2011), based on the three quality performance measures for generating Pareto optimal sets. The comparison results indicated that the NSGA-II algorithm has the better performance than MOPSO and ε -constraint methods. Finally, the proposed approach was compared with the most well-known methods in the MRO literature. The obtained results demonstrated the superiority of the suggested method compared to the existing approaches.

References

- Ahmadi-Javid, A. and Moeini, A. (2016) 'An economical acceptance-rejection algorithm for uniform random variate generation over constrained simplexes', *Statistics and Computing*, Vol. 26, No. 3, pp.703–713.
- Allende, H., Bravo, D. and Canessa, E. (2010) 'Robust design in multivariate systems using genetic algorithms', *Quality & Quantity*, Vol. 44, No. 2, pp.315–332.
- Amiri, A., Bashiri, M., Mogouie, H. and Doroudyan, M.H. (2012) 'Non-normal multi-response optimization by multivariate process capability index', *Scientia Iranica*, Vol. 19, No. 6, pp.1894–1905.
- Antony, J. (2000) 'Multi-response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis', *Quality and Reliability Engineering International*, Vol. 16, No. 1, pp.3–8.
- Arora, R., Kaushik, S. C., Kumar, R. and Arora, R. (2016) 'Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making', *International Journal of Electrical Power & Energy Systems*, Vol. 74, No. 1, pp.25–35.
- Awad, M.I. and Kovach, J.V. (2011) 'Multiresponse optimization using multivariate process capability index', *Quality and Reliability Engineering International*, Vol. 27, No. 4, pp.465–477.
- Babu, P.D., Buvanashekaran, G. and Balasubramanian, K.R. (2013) 'Experimental investigation of laser transformation hardening of low alloy steel using response surface methodology', *The International Journal of Advanced Manufacturing Technology*, Vol. 67, No. 5–8, pp.1883–1897.
- Baril, C., Yacout, S. and Clément, B. (2011) 'Design for Six Sigma through collaborative multiobjective optimization', *Computers & Industrial Engineering*, Vol. 60, No. 1, pp.43–55.
- Bera, S. and Mukherjee, I. (2013) 'An integrated approach based on principal component and multivariate process capability for simultaneous optimization of location and dispersion for correlated multiple response problems', *Quality Engineering*, Vol. 25, No. 3, pp.266–281.
- Carlyle, W. M., Fowler, J. W., Gel, E. S. and Kim, B. (2003) 'Quantitative comparison of approximate solution sets for bi-criteria optimization problems', *Decision Sciences*, Vol. 34, No. 1, pp.63–82.
- Chakraborty, S., Jana, T.K. and Paul, S. (2019) 'On the application of multi-criteria decision making technique for multi-response optimization of metal cutting process', *Intelligent Decision Technologies*, Vol. 13, No. 1, pp.1–15.
- Ch'ng, C.K., Quah, S.H. and Low, H.C. (2004) 'Index C_{pm}^* in multiple response optimization', *Quality Engineering*, Vol. 17, No. 1, pp.165–171.
- Coello, C.A.C., Pulido, G.T. and Lechuga, M. S. (2004) 'Handling multiple objectives with particle swarm optimization', *IEEE Transactions on Evolutionary Computation*, Vol. 8, No. 3, pp.256–279.
- Costa, N.R. and Lourenço, J.A. (2015) 'Exploring pareto frontiers in the response surface methodology', *Transactions on Engineering Technologies*, pp.399–412, Springer, Dordrecht.
- Costa, N.R. and Pereira, Z.L. (2010) 'Multiple response optimization: a global criterion-based method', Journal of Chemometrics, Vol. 24, No. 6, pp.333–342.
- Costa, N.R., Lourenço, J. and Pereira, Z.L. (2011) 'Desirability function approach: a review and performance evaluation in adverse conditions', Chemometrics and Intelligent Laboratory Systems, Vol. 107, No. 2, pp.234–244.

- Costa, N.R., Lourenço, J. and Pereira, Z.L. (2012) 'Multiresponse optimization and Pareto frontiers', *Quality and Reliability Engineering International*, Vol. 28, No. 7, pp.701–712.
- Deb, K. (2001) *Multi-Objective Optimization Using Evolutionary Algorithms*, John Wiley & Sons, New York, NY.
- Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2000) 'A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II' in *International Conference on Parallel Problem Solving from Nature*, pp.849–858.
- Derringer, G. and Suich, R. (1980) 'Simultaneous optimization of several response variables', Journal of Quality Technology, Vol. 12, No. 4, pp.214-219.
- Derringer, G.A. (1994) 'A balancing act: optimizing a product's properties', *Quality Progress*, Vol. 24, No. 2, pp.51–58
- Díaz-García, J. A. and Bashiri, M., (2014) 'Multiple response optimisation: An approach from multiobjective stochastic programming', *Applied Mathematical Modelling*, Vol. 38, No. 7, pp.2015–2027.
- Frutos, M. and Tohmé, F. (2013) 'A multi-objective memetic algorithm for the job-shop scheduling problem', *Operational Research*, Vol. 13, No. 2, pp.233-250.
- Fung, C. P. and Kang, P. C. (2005) 'Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis', *Journal of Materials Processing Technology*, Vol. 170, No. 3, pp.602-610.
- Ganapathy, S., Balasubramanian, P., Senthilvelan, T. and Kumar, R. (2019) 'Multi-response optimization of machining parameters in EDM using square-shaped nonferrous electrode', in *Advances in Manufacturing Processes*, pp.287–295, Springer, Singapore.
- Harrington, E. J (1965) 'The desirability function', *Industrial Quality Control*, Vol. 21, No. 10, pp.494–498.
- Hassannayebi, E., Zegordi, S.H., Amin-Naseri, M.R. and Yaghini, M. 'Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach', *Operational Research*, pp.1-43, DOI 10.1007/s12351-016-0232-2
- Hejazi, T.H., Bashiri, M., Noghondarian, K. and Atkinson, A.C. (2011) 'Multiresponse optimization with consideration of probabilistic covariates', *Quality and Reliability Engineering International*, Vol. 27, No. 4, pp.437–449.
- Hejazi, T.H., Salmasnia, A., Bastan, M. (2013) 'Optimization of correlated multiple response surfaces with stochastic covariate', Vol. 5, No. 2, pp.341–345.
- Jeong, I.J. and Kim, K.J. (2003) 'Interactive desirability function approach to multi-response surface optimization', *International Journal of Reliability, Quality and Safety Engineering*, Vol. 10, No. 2, pp.205–217.
- Jeong, I.J. and Kim, K.J. (2005) 'D-STEM: a modified step method with desirability function concept', *Computers & Operations Research*, Vol. 32, No. 12, pp.3175-3190.
- Jeong, I.J. and Kim, K.J. (2009) 'An interactive desirability function method to multiresponse optimization', *European Journal of Operational Research*, Vol. 195, No. 2, pp.412–426.
- Kazemzadeh, R.B., Bashiri, M., Atkinson, A.C. and Noorossana, R. (2008) 'A general framework for multiresponse optimization problems based on goal programming', *European Journal of Operational Research*, Vol. 189, No. 2, pp.421–429.
- Kim, K.J. and Lin, D.K. (2000) 'Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions', *Journal of the Royal Statistical Society: Series C*, Vol. 49, No. 3, pp.311–325.
- Kim, K.J. and Lin, D.K. (2006) 'Optimization of multiple responses considering both location and dispersion effects', *European Journal of Operational Research*, Vol. 169, No. 1, pp.133–145.
- Ko, K-H., Kim, K-J. and Jun, C-H. (2005) 'A new loss function-based method for multiresponse optimization', *Journal of Quality Technology*, Vol. 37, No. 1, pp.50–59.

- Köksalan, M. and Plante, R.D. (2003) 'Interactive multicriteria optimization for multiple-response product and process design', *Manufacturing & Service Operations Management*, Vol. 5, No. 4, pp.334–347.
- Köksoy, O. (2006a) 'Multiresponse robust design: Mean square error (MSE) criterion', *Applied Mathematics and Computation*, Vol. 175, No. 2, pp.1716–1729.
- Köksoy, O. and Yalcinoz, T. (2006b) 'Mean square error criteria to multiresponse process optimization by a new genetic algorithm', *Applied Mathematics and Computation*, Vol. 175, No. 2, pp.1657–1674.
- Köksoy, O. (2008) 'A nonlinear programming solution to robust multi-response quality problem', *Applied Mathematics and Computation*, Vol. 196, No. 2, pp.603–612.
- Köksoy, O. and Zeybek, M. (2019) 'An efficient loss function approach to optimize correlated multi-responses', *International Journal of Industrial Engineering*, Vol. 26 No. 2, pp.221–235.
- Korhonen, P., Moskowitz, H. and Wallenius, J. (1992) 'Multiple criteria decision support-A review', European Journal of Operational Research, Vol. 63, No. 3, pp.361–375.
- Lee, D.H. and Kim, K.J. (2012) 'Interactive weighting of bias and variance in dual response surface optimization', *Expert Systems with Applications*, Vol. 39, No. 5, pp.5900–5906.
- Lee, D.H., Jeong, I.J. and Kim, K.J. (2009) 'A posterior preference articulation approach to dualresponse-surface optimization', *IIE Transactions*, Vol. 42, No. 2, pp.161–171.
- Lee, D.H., Kim, K.J. and Köksalan, M., (2011) 'A posterior preference articulation approach to multiresponse surface optimization', *European Journal of Operational Research*, Vol. 210, No. 2, pp.301–309.
- Limon-Romero, J., Luz-Tortorella, G., Puente, C., Moreno-Jiménez, J. M. and Maciel-Monteon, M. (2018) 'An alternative to multi-response optimization using a Bayesian approach', in *New Perspectives on Applied Industrial Tools and Techniques*, pp.111–128, Springer, Cham.
- Lin, D.K. and Tu, W. (1995) 'Dual response surface optimization', *Journal of Quality Technology*, Vol. 27, No. 1, pp.34-39.
- Liu, L., Liu, X., Pei, J., Fan, W. and Pardalos, P. M., (2017) 'A study on decision making of cutting stock with frustum of cone bars', *Operational Research*, 1-18, DOI: 10.1007/s12351-015-0221-x
- Meo, S., Zohoori, A. and Vahedi, A. (2016) 'Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach', *Energy Conversion and Management*, February, Vol. 110, pp.230–239.
- Meza, J., Espitia, H., Montenegro, C. and Crespo, R.G. (2015) 'Statistical analysis of a multi-objective optimization algorithm based on a model of particles with vorticity behavior', *Soft Computing*, Vol. 20, No. 9, pp.1–16.
- Moeini, A., Abbasi, B. and Mahlooji, H. (2011) 'Conditional distribution inverse method in generating uniform random vectors over a simplex', *Communications in Statistics-Simulation* and Computation, Vol. 40, No. 5, pp.685–693.
- Moslemi, A., Seyyed-Esfahani, M. and Niaki, S.T.A. (2018a) 'A robust posterior preference multi-response optimization approach in multistage processes', *Communications in Statistics-Theory and Methods*, Vol. 47, No. 15, pp.3547–3570.
- Moslemi, A., Seyyed-Esfahani, M. and Niaki, S.T.A. (2018b) 'Robust surface estimation in multi-response multistage statistical optimization problems', *Communications in Statistics-Simulation and Computation*, Vol. 47, No. 3, pp.762–782.
- Najafi, S., Salmasnia, A., Kazemzadeh, RB. (2011) 'Optimization of robust design for multiple response problem', *Australian Journal of Basic and Applied Sciences*, Vol. 5, No. 9, pp.1566–1577.
- Noorossana, R., Zadbood, A., Zandi, F. and Noghondarian, K. (2015) 'An interactive artificial neural networks approach to multiresponse optimization', *The International Journal of Advanced Manufacturing Technology*, Vol. 76, No. 5, pp.765–777.

- Ouyang, L., Ma, Y. and Byun, J.H. (2015) 'An integrative loss function approach to multi-response optimization', *Quality and Reliability Engineering International*, Vol. 31, No. 2, pp.193–204.
- Park, K.S. and Kim, K.J. (2005) 'Optimizing multi-response surface problems: how to use multi-objective optimization techniques', *IIE Transactions*, Vol. 37, No. 6, pp.523–532.
- Pervez, M., Shafiq, F., Sarwar, Z., Jilani, M. and Cai, Y. (2018) 'Multi-response optimization of resin finishing by using a taguchi-based grey relational analysis', *Materials*, Vol. 11, No. 3, p.426.
- Peterson, J.J. (2004) 'A posterior predictive approach to multiple response surface optimization', *Journal of Quality Technology*, Vol. 36, No. 2, pp.139–153.
- Pignatiello Jr., J.J. (1993) 'Strategies for robust multiresponse quality engineering', *IIE Transactions*, Vol. 25, No. 3, pp.5–15.
- Plante, R. D. (2001) 'Process capability: a criterion for optimizing multiple response product and process design', *IIE Transactions*, Vol. 33, No. 6, pp.497–509.
- Rajabi-Bahaabadi, M., Shariat-Mohaymany, A., Babaei, M. and Ahn, C.W. (2015) 'Multi-objective path finding in stochastic time-dependent road networks using non-dominated sorting genetic algorithm', *Expert Systems with Applications*, Vol. 42, No. 12, pp.5056–5064.
- Safarzadeh, M.A. and Motahhari, S.M. (2014) 'Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II)', *Petroleum Science*, Vol. 11, No. 3, pp.460–468.
- Saini, T., Goyal, K. and Bhandari, D. (2019) 'Multi-response optimization of WEDM parameters on machining 16MnCr5 alloy steel using Taguchi technique. *Multiscale And Multidisciplinary Modeling, Experiments and Design*, Vol. 2, No. 1, pp.35–47.
- Salmasnia, A. and Bashiri, M. (2015) 'A new desirability function-based method for correlated multiple response optimization', *The International Journal of Advanced Manufacturing Technology*, Vol. 76, No. 5, pp.1047-1062.
- Salmasnia, A., Baradaran Kazemzadeh, R. and Tabrizi, M.M. (2012a) 'A novel approach for optimization of correlated multiple responses based on desirability function and fuzzy logics', *Neurocomputing*, August, Vol. 91, pp.56–66.
- Salmasnia, A., Bashiri, M. and Salehi, M. (2013a) 'A robust interactive approach to optimize correlated multiple responses', *The International Journal of Advanced Manufacturing Technology*, Vol. 67, No. 5, pp.1923–1935.
- Salmasnia, A., Bastan, M., Moeini, A. (2012b) 'A robust intelligent framework for multiple response statistical optimization problems based on artificial neural network and Taguchi method', *Journal of Quality and Reliability Engineering*, DOI: 10.1155/2012/494818.
- Salmasnia, A., Kazemzadeh, R. B. and Niaki, S. T. A. (2012c) 'An approach to optimize correlated multiple responses using principal component analysis and desirability function', *The International Journal of Advanced Manufacturing Technology*, Vol. 62, No. 5, pp.835–846.
- Salmasnia, A., Kazemzadeh, R.B., Seyyed-Esfahani, M., Hejazi T.H. (2013b) 'Multiple response surface optimization with correlated data', *The International Journal of Advanced Manufacturing Technology*, Vol. 64, No. 5, pp.841–855.
- Salmasnia, A., Moeini, A., Mokhtari, H. and Mohebbi, C. (2013c) 'A robust posterior preference decision-making approach to multiple response process design', *International Journal of Applied Decision Sciences*, Vol. 6, No. 2, pp.186–207.
- Salmasnia, A., Zifan, E., Mokhtari, H. (2017) 'An interactive preference decision making approach to multi-response process design with location and dispersion effects', *International Journal* of Information and Decision Sciences, Vol. 9, No. 3, pp.224–246.
- Sharma, N., Khanna, R., Gupta, R.D. and Sharma, R. (2013) 'Modeling and multiresponse optimization on WEDM for HSLA by RSM', *The International Journal of Advanced Manufacturing Technology*, Vol. 67, No. 9, pp.2269–2281.
- Steuer, R.E. (1986) Multiple Criteria Optimization: Theory, Computation, And Application, Wiley, New York.

- Su, C.T. and Tong, L.I. (1997) 'Multi-response robust design by principal component analysis', *Total Quality Management*, Vol. 8, No. 6, pp.409–416.
- Tajane, R.S. and Pawar, P.J. (2020) 'Multi-response optimization of burnishing of friction-welded AA6082-T6 using principal component analysis', in *Advanced Engineering Optimization Through Intelligent Techniques*, pp.537–551, Springer, Singapore.
- Viking, G.G. (1998) 'A compromise approach to multiresponse optimization', *Journal of Quality Technology*, Vol. 30, No. 4, pp.309–313.
- Yadav, O.P., Thambidorai, G., Nepal, B. and Monplaisir, L. (2014) 'A robust framework for multi-response surface optimization methodology', *Quality and Reliability Engineering International*, Vol. 30, No. 2, pp.301–311.
- Yadav, R.N., Yadava, V. and Singh, G.K. (2014) 'Application of non-dominated sorting genetic algorithm for multi-objective optimization of electrical discharge diamond face grinding process', *Journal of Mechanical Science and Technology*, Vol. 28, No. 6, pp.2299–2306.
- Zhang, E. and Chen, Q. (2016) 'Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization', *Reliability Engineering & System Safety*, January, Vol. 145, pp.83–92.
- Zhu, R., Wang, H., Gao, Y., Yi, S. and Zhu, F. (2015) 'Energy saving and load balancing for SDN based on multi-objective particle swarm optimization', in *International Conference on Algorithms and Architectures for Parallel Processing*, pp.176–189.
- Zitzler, E. and Thiele, L. (1998) 'Multiobjective optimization using evolutionary algorithms-a comparative case study', in *International Conference on Parallel Problem Solving from Nature*, pp.292–301.