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Abstract: In the modern world, small and medium scale manufacturing 
industries face a lot of challenges to achieve the reliability, availability, and 
safety as important performance attributes of the shop floor. In which planning 
and scheduling of preventive maintenance activities are considered to be a 
major issue in SMEs. This study is to propose the optimal framework of the 
preventive maintenance (PM) planning and scheduling process in SMEs. The 
optimal maintenance parameters (failure rate and repair rate), availability 
variations of the systems have been predicted through the utilisation of the 
Markov birth-death approach. To overcome the drawbacks associated with the 
existing optimal PM plan, a new approach is proposed in this study to develop 
an optimal preventive maintenance plan for electronic actuating switch 
manufacturers through the digital ecosystem. This proposed method integrates 
manufacturing subsystem failure into smart digital ecosystems and also to 
estimate the actual remaining useful life of the machines. 

Keywords: small and medium sized enterprises; preventive maintenance; 
Markov birth-death process; remaining useful life; optimal planning and 
scheduling. 
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1 Introduction 

Manufacturing and production industries have grown rapidly around the world due to the 
expansion of the human population. Nowadays, the manufacturers start implementing a 
smart and effective maintenance process to increase productivity, employee performance, 
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customer satisfaction and reduce machine idle time, production delay in the 
manufacturing industry’s shop floor area and it becomes the need of the hour (Hajej  
et al., 2018). The RUL of critical machine components is one of the most important 
functions in maintenance management systems of the manufacturing industry. Sudden 
failures of the complex system and its subsidiaries in the maintenance system of the 
manufacturing plant led to capital investment and unexpected production loss of the 
industry (Tang et al., 2019). Therefore, it is to introduce a planned and PM process to 
reduce capital investment, sudden failure, and idle time of critical machine components in 
the industry. Sudden failures of complex systems and subsystems are very critical in the 
process because these failures can lead to the destruction of the entire sequence of 
manufacturing processes in the industry. Effective PM planning and scheduling strategies 
lead to the reduction of unplanned workforce and production delays in the industry. 
Achieving maximum reliability of complex systems is of paramount importance in the 
recent competitive production environment. Optimal reliability and availability of 
complex systems can be streamlined by scheduling the working hours of maintenance 
employees. 

There are several definitions of maintenance, which are defined as restoring or 
retaining machine components to their original condition by performing routine testing 
and operation in the industry. It is divided into two types as PM and corrective 
maintenance (CM). Of these, PM is further classified into two categories: conditional 
Based Maintenance (CBM) and age-based maintenance (ABM). This study is mainly 
focused on the ABM function of the complex systems in the manufacturing plant (Wang 
et al., 2019). Availability simulation of complex systems is organised by making the 
Markov birth-death approach. Mathematical models of complex systems in the 
production process are obtained with the transition state diagram of a particular 
manufacturing system with the utilisation of first-order differential equations. These 
equations are solved by using MATLAB R2019a software to identify the optimal solution 
of a given availability simulation (Velmurugan et al. 2019a). The real-time prediction of 
the RUL of the manufacturing subsystems has not been considered during the current 
maintenance management system for SMEs, but this factor is the most critical in the  
day-to-day operations for the smooth running of EAS manufacturing process machines. 
Upon reviewing the literature and applying Industry 4.0 applications to SMEs, the 
reliability availability maintainability (RAM) might be improved by integrating Industry 
4.0 technology. Therefore, this study is relevant to measuring the RAM of PM in the EAS 
process of sensor manufacturing. 

This study considers three types of conditioning machines as follows, 

a the original or raw level machines are ready to run the state 

b The machine has minor faults, but it is in an operating condition which is called 
under maintenance conditions 

c the machine has a big fault, and it cannot work by the so-called failed condition 
machines. 

Using IIoT is used to constantly monitor the complex system behaviours, usage, and 
downtime of the manufacturing machines. The ICT is one of the autonomous  
human-machine communications that helps in monitoring a complex system. This 
simulation of research mainly proposes new optimal and autonomous PM planning and 
scheduling of complex systems in the manufacturing plant. The objective of this study is 
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to measure the availability variation of the individual machine for identifying the critical 
subsystems in the EAS process in the manufacturing industry. The continuous monitoring 
systems in the critical subsystem are to develop the optimal PM planning and scheduling 
process in the industry. And it helps to organise the suitable and effective workforce 
allocation of maintenance teams in the given manufacturing plant based on this research 
prediction. The Markov birth-death process is a widely used technique for the RAM 
evaluations of the machines and their components. This study analyses the performance 
of the individual machines based on the availability changes. The importance of this 
study is to explore the optimal PM planning and scheduling framework in the shop floor 
area. To improve the productivity of the manufacturing plant through the effective 
workforce allocation of the maintenance department in the industry. The smart and 
optimal schedule increases the efficiency of the manufacturing machines, maintenance 
team, productivity, and customer satisfaction in small and medium-sized enterprises. 

The rest of this paper is organised as follows: The review of literature of this study 
and research gap is discussed in Section 2. In Section 3, the problem description of the 
research study and production process is presented. In Section 4, the smart PM strategy of 
the production system, mathematical modelling is detailed. The numerical results, 
Discussion application, proposed simulation of the complex system in SMEs, are 
described in Section 5. Finally, in Section 6, the conclusion, limitations, and future scope 
of this availability simulation research of critical part production systems in SMEs are 
given. 

2 Literature review 

Initially, to expand our survey of the literature, we have included recent research work on 
the product functionality and PM upgrades of the sensor manufacturing industry. In many 
production areas, a variety of strategies have proven to be effective. Through an overview 
of large numbers of maintenance management with Markov birth-death process related 
research studies, the various factors and challenges, applications considered to optimal 
maintenance management systems in SMEs, and the research gap have been illustrated in 
the following sections. 

The imperfect effect of the IoT-enabled diagnostic system of service and maintenance 
architecture has been described (Sun et al., 2021). Analysed the maintenance and service 
provider decision-process through the strategic quenching model, predictive maintenance 
tools for developing the optimal maintenance policy with a cost-effective  
decision-making process. Zhao et al. (2021) investigated the maintenance management 
system of the nuclear power plant. They have predicted the degradation of the nuclear 
power plant systems through the utilisation of Bayesian network, hidden Markov and 
sequential algorithm models for organising the suitable and optimal maintenance 
management system in the power plant. Lee et al. (2021) examined e-maintenance 
capability with continuous monitoring of semiconductor fabrication equipment. Based on 
their findings, IoT-enabled web-controlled maintenance and service action prediction 
benefits the semiconductor industry. This prediction has initiated the IoT-enabled  
web-controlled maintenance and service action in the semiconductor manufacturing 
domain for the better maintenance management system. A smart optimal PM plan with 
the IIoT enabled continuous machine health monitoring system has been organised with 
the utilisation of the machine learning algorithm and logistic regression analysis approach 
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(Velmurugan et al. 2021a). Tewari and Malik (2016) have reviewed numerous reviews of 
the literature on the performance modelling, reliability, availability, maintenance, and 
economic analysis of key subsidiaries in coal-fired thermal power plants. In another 
research that followed, the forecast issues of a manufacturing plant based on quality 
issues were discussed (Hajej et al., 2018) and then analysed the production, failure, and 
defect rates and organised the industry to improve maintenance operations with minimum 
maintenance cost policy. Velmurugan et al. (2021b) investigated the performance 
analysis of the rubber industry. The performance of the individual machines has been 
analysed and predicted as the most critical subsystem in the manufacturing process by the 
application of the Markov birth-death process, MATLAB R2019a software. Similarly, 
Kim et al. (2015) investigated the optimal planning and scheduling process of the 
maintenance management system of the mainstream purification method. It has been 
proposed through the application of the conventional dynamic programming model and 
Markov birth-death process analysis. Wang et al. (2019) describe the opportunistic 
maintenance (OM) policy of two series systems in turbines, which analyse two different 
units of maintenance policies using an ABM policy and compare it with other 
maintenance methods and advise on optimal maintenance action of the Semi-Markov 
decision process (SMDP) wind turbine. It used this to predict critical components and 
proposed a new framework for optimal CM, PM, and OM policy. Not only that but Tang 
et al. (2019) explained the state-of-the-art RUL prediction that would degrade the 
complex engineering system, analysing the aircraft and space vehicle system with 
different dynamic operating conditions through the unique-time Markov chain process 
and the SMDP and the new RUL forecast model and critical engineering system optimal 
maintenance planning has been proposed. In another research, Hajej et al. (2020) 
developed an optimal integrated production and maintenance policy for a wind turbine. 
They analyse the relationship between wind turbine production rate and failure rate 
through the cost model of wind models and describe a large-scale, maintenance strategy 
that is optimally integrated with energy consumption for multiple mechanical systems. A 
sensitivity analysis was conducted by Wang et al. (2020) to reduce maintenance costs and 
guarantee maximum availability by using a dynamic and imperfect PM model of wind 
turbines. Akbarinasaji et al. (2020) described the analysis of software usage problems 
such as development of bug message during the online software used. They have 
predicted and prioritised the errors, and resolving the bug message in the software usage 
problem in the firebox software by the utilisation of the partially observable Markov 
decision process, partially observable Monte Carlo planning approaches. Wang and Miao 
(2021) Formulated the optimal PM model of the balanced system through the application 
of the SMDP. The challenges in the implementation of the IoT-enabled condition-based 
maintenance management system has been described by Ingemarsdotter et al. (2021). 
They have analysed the effects of applications and challenges in the integration of the 
CBM with IoT technology. The optimal maintenance scheduling process of the chemical 
plant and natural gas regulating, and metering stations has been proposed through the 
application of the dynamic Bayesian network model with the influence diagrams and 
Markov model (BahooToroody et al., 2019). Table 1 has described the recently published 
and most relevant research articles overviews in detail. 
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Table 1 Critical overview of the most relevant research articles 
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Through the review of recently published research papers show that various mathematical 
techniques are effectively used to assess the RAM of machines for an optimal PM 
management system. They are also widely used in high-end original equipment 
manufacturing, wind farms, mining, ship, and aircraft construction industries.As a result 
of the literature review, the availability of manufacturing subsystems was not considered 
in PM planning. Implementing PM through smart ecosystem frameworks in SMEs in 
Tamil Nādu, India, to achieve optimal decision making. The following three research 
questions (RQ) were formulated to address the research gaps in this study. 

RQ1 Why is the optimal maintenance management system a necessity in SMEs? 

RQ2 How to measure the performance of the maintenance workforce in SMEs? 

RQ3 How to develop smart and optimal PM management systems in SMEs? 

Furthermore, this study analysed a real-time case study on electronic switches and 
sensors manufacturing industry by utilising the novelty of integrated analysis approaches 
like Markov decision model, and the latest technologies (Industry 4.0) such as IIoT, ICT. 
Detailed explanations of this study have been described in the following section. 

3 Problem description 

Initially, the assumptions used to create the optimal planning and production model of the 
PM management system are provided. The production method of the EAS production 
process is briefly described, and the maintenance issues of this system are discussed. This 
availability analysis of the maintenance model confirms the following assumptions. 

• Initially, each critical systems are in its original state or better (A, B, C, D, AB, and 
CD). 

• The repair and failure rate of each complex system is constant and statistically 
independent ( λ M, µ M ) (M = A, B, C, D, AB, and CD) 

• Every system that is repaired is considered new. 

• Single maintenance team to handle the PM activity of the system. 

• Every critical system has three states as original, maintenance, and repair  
(e.g., A, a, and a*). 

• Simultaneous failure of the required systems (AB and CD) is also considered. 

• The rate of PM and transition of the critical systems are taken as constant  
(ƞM, ɸM = constant). 

3.1 Complex product production model 

The real-time case study is to investigate the sensors and switch manufacturing industry 
located in Tamil Nadu, India. They have produced automotive parts for various 
customers around the world. Which EAS is the most important assembly unit in the 
industry. These parts are mainly used for automatic control window glass operation in 
modern vehicles. This EAS has numerous critical child parts, and it is the most critical 
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part production system in the industry. In the critical part production region, the 
manufacturing flow process involves complex systems within the shop floor area. These 
production units operate three-shift (working hours) due to high demand from customers. 
Because of improper PM maintenance planning leads to product delays and production 
loss. The purpose of this research is to reduce the unnecessary repair time of 
manufacturing machines through the proposed optimal PM planning and scheduling 
framework in the industry. This EAS process includes the following sequence of the 
manufacturing operation in the shop floor area of the SMEs such as power insertion 
loading, lancing, seal loading, welding, board insertion, and testing. A graphical 
representation of the sequential production flow process of the EAS part is shown in 
Figure 1. 

Figure 1 Production flow process of the electronic actuating switch (see online version  
for colours) 

  

In this production model, four machines are operated during the operation. The service 
and maintenance policy of each machine depends on the RUL of the critical machine 
components. The purpose is to create the optimal PM scheduling and planning process of 
the critical machines in the production plant, which is the forecast of the RUL of the 
machine components, achieving maximum profit, productivity in the shop floor area of 
the SMEs. The availability analysis of each production model and the RUL estimation of 
the machine components are determined in the following sections. 

4 Research methodology of smart preventive maintenance strategy 

The optimal PM strategy of this research study consists of several sequences of research 
procedures to achieve the smart PM planning and scheduling process of the given EAS 
manufacturing plant in the SMEs. The pictorial representation flow process is shown in 
Figure.2. 
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Figure 2 Research steps for the smart pm planning and scheduling process in the SMEs  
(see online version for colours) 

 

4.1 Data collection 

The EAS machine maintenance and utility data in 2019 to 2020 of selected complex 
production systems are collected from the maintenance department based on historical 
records sheets. A time series of machine running time, optimal time, actual maintenance, 
production delay time, and PM schedule time has been gathered from the maintenance 
department of the sensor manufacturing industry for the EAS process. In order to 
determine the optimal PM plan of SME, the collected data were evaluated through a 
ranking process by industry experts. The following data were used for performance and 
availability analysis of the manufacturing subsystem. The manufacturing subsystems 
such as failure rate, repair rate, and PM rate (shown in Table 2) have been determined to 
be appropriate to estimate the availability variation as well as the maintenance workforce 
performance in the EAS manufacturing process in industry. 

4.2 Data processing in advance 

In Pre-processing data collected related to the availability appropriate analysis of the 
reliability and availability of the production system in the machine maintenance data are 
included. The groups of machine data are classified separately for our availability 
analysis based on the measured individual critical machine repair rate, failure rate, and 
PM rate using the mathematical expression given in equation (1) and equation (2). 

The repair rate (µ) of the individual complex system is defined as the ratio of the total 
failures (X) that occur on the complex machine to the total maintenance time (Y) of that 
critical machine in the production plant. The identified critical lancing machine receives 
216 failures per year, and the machine maintenance time in the annual production 
schedule is 5 days per month in the industry. Its measures the repair rate (µ = 0.150) of 
the lancing machine in the automotive parts manufacturing system. The expression of the 
repair rate estimate is explained below: 

( ) 216μ 0.150
24 5 12

X
Y

 =  = × × 
 (1) 

Lansing machine repair rate (µA) = 0.150 failures/hour. Likewise, all the other machine’s 
repair rates are evaluated through the application of equation (1). 

The failure rate (λ) of the individual complex system of the production unit is defined 
as the ratio of the total number of failures (X) occurring on the complex machine, to the 
total usage time (Z) of that critical machine in the production unit. The Lancing machine 
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receives 216 failures throughout the year, and that machine contributes 24 hours a day 
and 30 days per month in the production unit measuring the Lansing machine-specific 
failure rate (λ = 0.025). The mathematical expression of the failure rate calculation is 
explained below. 

( ) 216λ 0.025
24 30 12

X
Y

 =  = × × 
 (2) 

Lancing machine failure rate (λA) = 0.025 failures/hour. Similarly, the other 
manufacturing machine’s failure rates are measured by the utilisation of equation (2). The 
maintenance parameters of the machine in the manufacturing unit are shown in Table 2. 
Table 2 Maintenance parameters of the automotive spare part production unit 

Machine 

Total 
numbers of 
failures per 

year (X) 

Total 
maintenance 
time per year 

(Y) Hrs 

Total 
utilisation 

time per year 
(Z) Hrs 

Repair rate 
(µ) X/Y 

Failure 
rate (λ) 

X/Z 

Machine A 216 1,440 8,640 0.150 0.025 
Machine B 120 864 5,760 0.138 0.020 
Machine C 84 288 2,880 0.290 0.029 
Machine D 228 1,440 8,640 0.158 0.026 
Machine AB 168 1,152 7,200 0.145 0.023 
Machine CD 156 864 5,760 0.090 0.027 

4.3 Mathematical modelling 

The transition state diagram of the critical machine is illustrated in Figure 3. Based on 
this transition state diagram the individual machine consists of three-phase operations 
(original, reduced capacity, and failure) to generate the first-order differential availability 
analytical equations of the critical systems in the manufacturing plant. Mathematical 
equations in availability analytics are generated by using the first-order differential 
equations (Velmurugan et al., 2019b). The future behaviour of the current critical part 
production system was finally evaluated through the application of the Markov  
birth-death approach. In this scenario, all systems of the critical machines consider three 
states. Original, under maintenance, and failed condition. 

The probability function of machines in the critical part production system initially 
began to shift from a good condition to a low level of maintenance. The mathematical 
representation of the Markov model equation is given below 

0η ( ) ( )M i MP t P t= φ  (3) 

The probability function of the machines in the critical part production system began to 
transform from the maintenance stage to the repaired stage. After maintenance and 
service operation, those production machines are restored to good condition. The 
mathematical representation of the Markov decision model equation is illustrated below: 

0μ ( ) η ( ) λ ( )M j M i MP t xP t P t= +  (4) 
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4.4 Stable position of critical part production model 

The production process of the critical part of all systems is steady state. In all these 
conditions the transition time of all systems is assumed to be zero (through t = 0). at 
equilibrium above equation (3) and equation (4). Finally, we obtain the equilibrium 
probability equations produced by the critical part production systems (Velmurugan  
et al., 2019a). 

0d
dt

→  Value available to us, such as t→∞ 

0ηM j MP P= φ  (5) 

0μ η λM j M i MP xP P= +  (6) 

The solves the equations (above 3–4) again and again and the value we get 

0 0,i i j jP D P P D P= =  (7) 

where 

i 1, 3, 5, 7, 9 and 11 

j 2, 4, 6, 8, 10, and 12 

The static-level probability equations of the critical part production systems are obtained 
and then apply the default state of the above equations. The normalisation level equation 
is described below as the sum of all the probabilities of the critical part production system 
is equal to 1. 

Figure 3 Transition state diagram of the critical part production system 
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Using the normalisation position 
11 12

1 2

1i j
i j

P P
= =

+ =   (8) 

11 12

1 2

1 i
i j

Av P Pj
= =

 
= + +  
 
   (9) 

0vA P=  (10) 

5 Numerical result of the critical part production system 

The numerical values of the individual production machines are used in the above 
equations to measure the availability changes of the critical part production system in the 
sensor manufacturing industry. The input numerical values are shown in Table 3. These 
standard values are used directly for the availability measurement equations with two 
different conditions, the machines are in the faulty position, and the machines are in the 
idle position. Thereafter, these values are categorised into higher models with our control 
limits using MATLAB R2019a software. These randomly generated values are used in 
equation (9) to predict the optimal and maximum availability of a given EAS 
manufacturing system in SMEs. 
Table 3 Input numeric values for the availability analysis of the system 

Machine Repair rate 
(µ) Failure rate (λ) Transition rate 

(ɸ) 
Preventive 

Maintenance rate (ƞ) 
Machine A 0.150 0.025 0.007 0.12 
Machine B 0.138 0.020 0.001 0.17 
Machine C 0.290 0.029 0.005 0.35 
Machine D 0.158 0.026 0.004 0.12 
Machine AB 0.144 0.022 0.008 0.15 
Machine CD 0.224 0.027 0.009 0.24 

The simulation of availability analysis on machine B and machine C at the beginning of 
this study is demonstrated due to the abnormal availability changes that occur in these 
two machines compared to the others. Similarly, these techniques are applied to other 
machines based on their critical conditions in production systems. Random sample 
parameters with availability variations of machine B in the fault conditions shown in 
Tables 4a and 4b. Figure 4 illustrates the result of the availability analysis obtained by 
considering the machine B with the maintenance parameters and the corresponding to the 
faulty position of the machine B (x = 1) in the critical part production section. As the 
failure rate of the machine increases and the repair rate of the machine decreases, more 
maintenance is invested in the machine. This is because the failure rate controls the decay 
of critical machines in the EAS manufacturing plant. Thus, the maximum failure rate of 
the machine will accelerate the deterioration of the critical components in the machine. In 
this situation, the maintenance machine is often done on the machine, which 
simultaneously increases the maintenance investment in the manufacturing plant. The 
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other parameter repair rate of the machine mainly contributes to controlling the extent of 
the degradation process in the work environment. The repair rate is inversely proportional 
to the degradation energy of the mechanical components. Therefore, the average 
maintenance investment in the production machine to reduce the repair rate of the 
machine is maximal. 
Table 4a The effect of the availability variation of machine B in the faulty position 

λB 
µB 

0.020 0.022 0.025 0.028 0.031 0.034 0.037 0.040 

0.138 0.484 0.479 0.475 0.470 0.465 0.461 0.457 0.452 
0.209 0.496 0.493 0.490 0.486 0.483 0.480 0.477 0.474 
0.280 0.502 0.500 0.497 0.495 0.492 0.490 0.487 0.485 
0.352 0.506 0.504 0.502 0.500 0.498 0.496 0.494 0.492 
0.423 0.508 0.507 0.505 0.503 0.502 0.500 0.498 0.496 
0.495 0.510 0.509 0.507 0.506 0.504 0.503 0.501 0.500 
0.566 0.512 0.510 0.509 0.508 0.506 0.505 0.504 0.502 
0.638 0.513 0.511 0.510 0.509 0.508 0.507 0.506 0.504 
0.709 0.513 0.512 0.511 0.510 0.509 0.508 0.507 0.506 
0.780 0.514 0.513 0.512 0.511 0.510 0.509 0.508 0.507 
0.852 0.515 0.514 0.513 0.512 0.511 0.510 0.509 0.509 
0.923 0.515 0.514 0.514 0.513 0.512 0.511 0.510 0.510 
0.995 0.516 0.515 0.514 0.513 0.513 0.512 0.511 0.510 
1,066 0.516 0.515 0.515 0.514 0.513 0.512 0.512 0.511 
1,138 0.516 0.516 0.515 0.514 0.514 0.513 0.512 0.512 

Table 4b Effect of availability variation of machine B in fault position 

λB 
µB 

0.040 0.042 0.045 0.048 0.051 0.054 0.057 0.060 

0.138 0.452 0.448 0.444 0.440 0.436 0.432 0.428 0.424 
0.209 0.474 0.471 0.468 0.465 0.462 0.459 0.456 0.433 
0.280 0.485 0.482 0.480 0.478 0.475 0.473 0.471 0.469 
0.352 0.492 0.490 0.488 0.486 0.484 0.482 0.480 0.478 
0.423 0.496 0.495 0.493 0.492 0.490 0.488 0.487 0.485 
0.495 0.500 0.498 0.497 0.496 0.494 0.493 0.491 0.490 
0.566 0.502 0.501 0.500 0.499 0.497 0.596 0.495 0.494 
0.638 0.504 0.503 0.502 0.501 0.500 0.499 0.498 0.497 
0.709 0.506 0.505 0.504 0.503 0.502 0.501 0.500 0.499 
0.780 0.507 0.506 0.506 0.505 0.504 0.503 0.502 0.501 
0.852 0.509 0.508 0.507 0.506 0.505 0.504 0.503 0.503 
0.923 0.510 0.509 0.508 0.507 0.506 0.505 0.505 0.504 
0.995 0.510 0.510 0.509 0.508 0.507 0.507 0.506 0.505 
1,066 0.511 0.510 0.510 0.509 0.508 0.508 0.507 0.506 
1,138 0.512 0.511 0.510 0.510 0.509 0.508 0.508 0.507 
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The machines are built to be available and have proven to be availability variants with the 
graph through the Google Drive application. The horizontal axis with the repair rate of 
machine B and the availability vertical axis will vary for machine B with faulty 
conditions. This graphical representation shows the availability variance of machine B. 
This availability analysis profile does not become identical, it is abruptly up and down in 
both faulty and idle positions of the machine. Those optimal values (highlighted in  
Figure 4) are given in the input signal of the IIoT with the maximum defined limit 
(margin values) and the associated maintenance parameter values for continuous 
monitoring and control operations. 

Due to the abnormal availability changes on the graphical representation surface, this 
machine is classified as the most critical subsystems type in the given EAS production 
system of the SMEs. Tables 4a and 4b consist of the randomly generated maintenance 
parameters of machine B. The first row of that table denoted the randomly generated 
(0.020–0.060) failure rate of machine B. The first column of that table consists of the 
randomly generated repair rate of machine B. The remaining rows and columns 
(Matrices) show the corresponding availability variations of machine B. 

Figure 4 Availability analysis of machine B in faulty condition (see online version for colours) 

  

The availability variations of machine C with faulty conditions are shown in  
Tables 5a and 5b. The horizontal axis with which the machine C has a repair rate, and the 
availability vertical axis will vary with the faulty conditions of the machine C. This 
graphical representation shows the availability variations of the machine C. This 
availability analysis profile does not become uniform, it is abruptly up and down in the 
faulty conditions of the machine. Those optimal values (highlighted in Figure 5) are 
given in the input signal of the industrial web contents of the maximum defined range 
(margin values) and the associated parameter values for continuous monitoring and 
control operations. 

Due to abnormal availability changes in the graphical representation profile, this 
machine C is also classified as the second important subsystem of the given EAS 
production system of the SMEs. Tables 5a and 5b consist of the randomly selected 
maintenance parameters of machine C. The first row of that table explained the randomly 
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generated (0.029–0.069) failure rate of machine C. The first column of that table consists 
of the randomly generated repair rate of machine C. The next row and column (Matrices) 
are denoted the corresponding availability variations of machine C. 
Table 5a Effect of availability variation of machine C in fault position 

λC 
µC 

0.029 0.031 0.034 0.037 0.040 0.043 0.046 

0.290 0.484 0.482 0.480 0.477 0.475 0.473 0.471 
0.361 0.490 0.488 0.486 0.484 0.482 0.480 0.479 
0.432 0.494 0.492 0.490 0.489 0.487 0.486 0.484 
0.504 0.496 0.495 0.494 0.492 0.491 0.489 0.488 
0.575 0.499 0.497 0.496 0.495 0.494 0.492 0.491 
0.647 0.500 0.499 0.498 0.497 0.496 0.495 0.494 
0.718 0.502 0.501 0.500 0.498 0.497 0.496 0.496 
0.0790 0.503 0.502 0.501 0.500 0.499 0.498 0.497 
0.861 0.504 0.503 0.502 0.501 0.500 0.499 0.498 
0.0932 0.504 0.504 0.503 0.502 0.501 0.500 0.500 
1,004 0.505 0.504 0.504 0.503 0.502 0.501 0.501 
1,075 0.506 0.505 0.504 0.504 0.503 0.502 0.501 
1,147 0.506 0.505 0.505 0.504 0.504 0.503 0.502 
1,218 0.507 0.506 0.505 0.505 0.504 0.504 0.503 
1,290 0.507 0.506 0.506 0.505 0.505 0.504 0.503 

Table 5b The effect of the availability variation of machine C with faulty position 

λC 
µC 

0.051 0.054 0.057 0.060 0.063 0.066 0.069 

0.290 0.466 0.464 0.462 0.460 0.458 0.456 0.453 
0.361 0.475 0.473 0.471 0.470 0.468 0.466 0.464 
0.432 0.481 0.479 0.478 0.476 0.475 0.473 0.472 
0.504 0.485 0.484 0.483 0.481 0.480 0.479 0.477 
0.575 0.489 0.488 0.488 0.485 0.484 0.483 0.492 
0.647 0.491 0.490 0.489 0.488 0.487 0.486 0.485 
0.718 0.494 0.493 0.492 0.491 0.490 0.489 0.488 
0.0790 0.495 0.494 0.494 0.493 0.492 0.491 0.490 
0.861 0.497 0.496 0.495 0.494 0.493 0.493 0.492 
0.0932 0.498 0.497 0.497 0.496 0.495 0.494 0.493 
1,004 0.499 0.498 0.498 0.497 0.496 0.496 0.495 
1,075 0.500 0.499 0.499 0.498 0.497 0.497 0.496 
1,147 0.501 0.500 0.500 0.499 0.498 0.498 0.497 
1,218 0.502 0.501 0.501 0.500 0.499 0.499 0.498 
1,290 0.502 0.502 0.501 0.501 0.500 0.500 0.499 
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Figure 5 Availability analysis of machine C fault position 

 

5.1 Discussion 

In this study, EAS production machines’ availability changes are measured with the help 
of MATLAB software and the Markov birth-death process. Based on this proposed 
optimal solution of the maintenance parameters (failure rate and repair rate) to implement 
a better and optimal maintenance management system with an effective maintenance 
workforce allocation in the industry. From this availability analysis results, the 
availability prediction of individual manufacturing subsystems are analysed through 
mathematical modelling. The availability variation of the subsystems is classified as the 
most critical manufacturing subsystem based on the minimum or sudden reduced 
availability conditions. In the sensor manufacturing industry, the availability of the 
actuator switch manufacturing subsystems (machine B and machine C) consists of abrupt 
changes and reduction, due to which these two manufacturing subsystems have been 
considered as the most critical among all other subsystems. The similar results were 
supported by the study of Aggarwal et al. (2015) in the fertiliser manufacturing industry. 
In the present study, the effectiveness of the maintenance workforce was also measured 
through the availability variations of the individual manufacturing subsystem. The 
optimal allocations, prioritisation of the maintenance workforce in the maintenance 
department has been achieved based on the availability analysis and it is evident by the 
similar results by Kumar et al. (2014) through the proposed smart digital ecosystem 
framework in wind turbine manufacturing industry. But in this study, particularly 
introduced the novel approach of integrated analysis techniques like Markov birth-death 
process with the addition of the MATLAB software, recent Industry 4.0 technology such 
as IIoT and ICT. The critical machines of the manufacturing plant have been identified 
based on the maintenance parameters variations as well as the availability of the 
individual system Then applied with the smart continuous monitoring and controlling a 
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process to organise the autonomous planning and scheduling process of the PM in the 
SMEs. Finally, developed the real-time implementation of smart PM planning and 
scheduling process based on the smart framework of the PM planning and scheduling 
process as shown in Figure 6. The outcome analysis results of this study was compared 
with repair rates of the individual machines, and it is graphically shown in Figure 7. From 
that representation, the repair rate of machine B and machine C has a large variation, due 
to the availability reduction in which these machines are classified as the most critical 
subsystems in the entire manufacturing system of the SMEs. After introducing this 
proposed smart PM planning and scheduling process framework, the given 
manufacturing system, maintenance workforce may increase their performance and 
effectiveness without production delay and unexpected downtime of the machines in the 
SMEs. 

5.2 Applications and simulation of smart maintenance system 

In this analysis study, the EAS part production plant has analysed and identified a 
suitable, optimal availability solution of the PM planning and scheduling process in the 
industry using mathematical analysis (Markov birth-death) with MATLAB software. 
Based on this research, solutions for estimating variation limits of individual machine 
optimal maintenance parameters (repair rate and failure rate) to achieve maximum 
availability of EAS production system sensor manufacturing industry. Creating the 
optimal availability margin based on the relevant optimal maintenance parameters of the 
critical subsystems in the EAS part manufacturing plant. Those margin values of the 
maintenance parameters are given in the input values of IIoT for individual critical 
subsystems in the sensor manufacturing industry. This IIoT is used for routine monitoring 
of the behaviour of the critical subsystem, controlling the sudden failure and downtime of 
the critical subsystem during the manufacturing operations through the smart  
man-machine communication process in the industry. ICT is one of the best tools for 
maintenance and planning of system communication applied to achieve autonomous 
human-machine communications to create a consistent workforce in the maintenance 
sector and to increase the availability of the critical subsystem in the work environment 
of SMEs (Zhang et al., 2020; Devi et al., 2020; Kumar et al., 2021). 

As such, IIoT is used to monitor the continuous behavioural changes of the critical 
part manufacturing machines in the shop floor area. For this purpose, it was decided to 
provide an input control signal with the optimal failure rate detected by the analyser. 
Thus, the maintenance parameter determines the maximum availability and reliability of 
important subsystems. This IIoT device transfers the monitored data into the storage unit 
then specific critical machine behaviour of real-time data is analysed based on the stored 
data with limited (optimal) maximum critical availability subsystem concerning the value 
of machine maintenance parameters. If that data signal meets our barrier of being stored 
on a temporary data storage device, the machine will continue to run. Otherwise, 
infringed data signals are designed to share timely and accurate information (SMS 
operator, plant supervisor, and maintenance engineer) through short message service 
(SMS), tower light signal, and audio alarm. ICT with wireless network and cloud 
computing technology the graphical demonstrations of the proposed Smart PM 
architecture are shown in Figure 6. 
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Figure 6 The framework of smart PM planning and scheduling process (see online version  
for colours) 

 

Table 6 Optimal maintenance parameters of machines. 

Machine Existing repair rate (µ) Predicted 
Optimal repair rate (µ*)   
Machine A 0.150 0.2929 
Machine B 0.138 0.7094 
Machine C 0.290 0.6471 
Machine D 0.158 0.2294 
Machine AB 0.144 0.3583 
Machine CD 0.224 0.5097 

Figure 7 Repair rate analysis of machines (see online version for colours) 
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The availability variance of machine B with highlighted optimal points has shown in 
Figure 4. On selecting the optimal availability (0.5056) and the associated failure rate 
(0.0371) based on the stored data. The optimal interval time of the PM function of 
Machine B using the formula for measuring the failure rate in the data processing was 
identified. Similarly, it applies to other important subsystems of the EAS part production 
plant in the SMEs. Table 6 shows the optimal maintenance parameter values of individual 
machines in the critical part production system of SMEs. These predicted maintenance 
parameters of individual subsystems will lead to the maximum availability of SMEs and 
optimal PM maintenance performance. 

The optimal solution for the repair rate analysis of the specific EAS part 
manufacturing plant in SMEs is shown in Figure 7. The name of the machines on the 
horizontal axis and the vertical axis is the repair rates of the respective machines. In the 
machine repair rate analysis, the proposed repair rate will increase drastically compared 
to the existing values of the given working environment in the SMEs that achieve the 
maximum availability of the critical subsystems of the shop floor. 

6 Conclusions 

This study considers the PM policy for the optimal planning and scheduling process of 
the automotive spare parts manufacturing plant in the sensor manufacturing industry. 
Based on the availability results, the given automotive part production systems are easily 
classified as the least and most important production systems in the industry. The suitable 
and optimal time interval (maintenance schedule) of the PM process was predicted 
considering the maximum availability of the critical part manufacturing systems in the 
sensor manufacturing industry. The maximum availability of critical systems in the 
manufacturing plant was achieved by doing the PM with the optimal repair rate of the 
manufacturing system in the industry, so this has been demonstrated by machine repair 
rate analysis. Finally, this proposed computerising PM planning and scheduling functions 
may improve the performance of the manufacturing system, effectiveness of the 
maintenance workforce in the SME. Using the proposed autonomous, optimal PM 
framework with the ICT, it is possible to achieve greater productivity, customer 
satisfaction, profitability and it is proven in this industrial implementation. This study has 
few limitations, the ABM action through the previous year maintenance record data of 
PM planning and scheduling process was only considered. In future research, this 
proposed PM framework will utilise the PdM activity of critical sub-sub systems in the 
industry with the optimal decision-making process of SMEs operations. The optimal 
maintenance achieved through the current smart maintenance strategy enables conditional 
maintenance planning and scheduling of SMEs. 
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Notations 

A, B, C, D The working condition of the machines. 

a, b, c, d Under Maintenance condition of the machines. 

a *, b *, c *, d * Repair condition of machines 

A Lansing machine. 

B Welding machine. 

C Pressing machine. 

D Testing machine. 

λM Machine failure rate. (M = A, B, C, D, AB and CD) 

μM Machine repair rate. 

ɸM Machine transition rate. 

ȠM PM rate of the machine. 

x Constant (0 for idle and 1 for faulty) 

P0(t) Probability function of all machines is in original condition. 

Pi(t) Probability functions of the respective machines are under maintenance. (i = 
1,…3, 5, 7, 9, 11) 

Pj(t) Probability functions of the respective machines are under repair. 

j 2, 4, 6, 8, 10, 12). 


