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Abstract: In this paper, the noise samples of pure electric vehicles under 
unsteady-state are collected. Then, the subjective evaluation test is carried out 
after pre-processing such as screening and intercepting. The subjective sound 
quality scores of the noise samples are obtained. Meanwhile, the noise  
samples are calculated of four conventional psychoacoustic objective 
parameters such as loudness, sharpness, roughness, and speech intelligibility. 
Preprocessing by ensemble empirical mode decomposition (EEMD) is 
performed. Characteristic parameters of noise samples such as time-frequency 
domain fractal dimension difference and sample entropy of noise samples are 
obtained based on fractal dimension and sample entropy theory. Finally, the 
quality prediction model of vehicle interior sound is established based on six 
characteristic parameters and BP neural network. The results show that the 
prediction effect is excellent for the subjective scores of sound quality of 
unsteady interior sound in the vehicle. 

Keywords: BP neural network; unsteady state signal; sound quality; ensemble 
empirical mode decomposition; EEMD. 
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1 Introduction 

Many researchers at home and abroad have done abundant work on the sound quality of 
conventional fuel vehicles (Qatu, 2012; Qatu and Asadi, 2012; Qatu and Mohamad, 
2012). Many novel concepts and research methods are continuously emerging. They have 
achieved great practical accomplishments after being applied on the practical research 
and development of vehicles. With the increasing awareness of environmental protection 
and the consumption of fossil fuels such as petroleum, pure electric vehicles have 
gradually become the focus of research and development of vehicles. Research on the 
sound quality of pure electric vehicles interiors has become increasingly active. 

Pure electrical vehicles (BEVs) are equipped some devices such as motors and 
reducers instead of internal combustion engines and gearboxes compared to conventional 
fuel vehicles. For noise sources in vehicles, pure electrical vehicles lack the  
low-frequency masking effect of internal combustion engines (Xie, 2005). Passengers of 
pure electrical vehicles will have more obvious feelings of road noise and wind noise 
under the same conditions. 

Researchers have done abundant work to solve this problem. They analysed the sound 
quality of electric vehicle and found out the main noise factors that produced the interior 
noise. They combined with active and passive de-noise technology of NVH to control the 
vehicle interior noise that obtained good results (Qatu et al., 2009, 2011). In the research 
of sound quality, Honda Motor Company in Japan put forward more than ten subjective 
feelings such as loud, roaring, sharp and stable as the evaluation standard of sound 
quality (Hoeldrich and Pflueger, 1999). At present, the international research on 
automobile sound quality is still in continuous improvement. Due to the different factors 
such as nationality, culture, region and economic development level, the sound quality 
researchers in different countries around the world have different understanding of sound 
quality, so it is difficult to form a generally applicable sound quality evaluation standard. 
Therefore, the research on sound quality has the diversity of research methods and the 
differences of research results. Mitsubishi Motors Corporation found the main noise 
factors causing the noise of electric vehicle by analysing the sound quality in the vehicle 
(Nakashinnkiri and Okazaki, 2011). In 2013, Zhu researched sound quality of electric 
vehicles and proposed de-noise measures. In 2016, Qian deeply researched the evaluation 
and control technology of sound quality of pure electric vehicles. In 2018, Wang et al. 
studied and analysed the impact of electromagnetic noise on sound quality of pure 
electric vehicles. With the emphasis on the development of electric vehicles, different 
research institutes and R&D teams have begun to pay attention to the research on the 
interior sound quality of pure electric vehicles. However, there are relatively few studies 
on the analysis and evaluation of unsteady sound quality. 

In this paper, the unsteady-state noise samples of pure electric vehicle are taken. The 
acquisition and subjective evaluation test of the vehicle noise samples are introduced. 
Four psychoacoustic objective parameters, such as loudness, sharpness, roughness and 
speech intelligibility, are calculated after screening and intercepting the noise samples. At 
the same time, pre-processing of the ensemble empirical mode decomposition (EEMD) 
on the noise samples is performed. The fractal dimension difference and sample entropy 
in time-frequency domain are obtained based on fractal dimension and sample entropy. 
Finally, the six-dimensional input eigenvector is established according to the extracted 
characteristic parameters. The vehicle interior sound quality prediction model based on 
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BP neural network is established, and the predicted results are compared with subjective 
grading scores. 

2 The vehicle interior noise acquisition and the calculation of subjective 
and objective parameters 

2.1 The vehicle interior noise acquisition 

There should be no large interference objects within 20 m around the road during test 
following the requirements of the acoustic test environment specified in GB/T  
18697-2002 ‘Acoustics-measurement of noise inside motor vehicles’. LMS SCM205 data 
acquisition front-end, PCB 378B02 free field microphone and LMS Test.Lab 17A data 
acquisition and processing software are used to collect the interior noise samples in the 
vehicle. The microphones are fixed on the driver’s right ear. The test system is visible in 
Figure 1. The sampling frequency of data acquisition is 44.1 kHz and the frequency 
resolution is 1 Hz. The noise samples of three working conditions are obtained from two 
different BEVs such as starting, acceleration and sliding conditions. Three tests were 
performed under each working condition. Except for meeting the requirements of the test 
environmental conditions, the doors and windows of vehicles must be closed during the 
acquisition progress of samples. Other factors that may affect the test results should be 
minimised. 

Figure 1 Sound test system, (a) main driver’s right ear measuring point (b) LMS SCM205 
system (see online version for colours) 

  
(a)     (b) 

2.2 Acoustic parameters calculation 

The noise samples are screened and intercepted after completing the samples acquisition. 
Every signal was intercepted by every 5S as an effective research sample. Finally, 168 
effective noise samples are obtained and numbered according to S1~S168. The 168 
unsteady noise samples are calculated by LMS Test.Lab 17A software. Then four 
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acoustic objective parameters such as loudness, sharpness, roughness and speech 
intelligibility are obtained. The results are shown in Table 1. 
Table 1 Psychoacoustic objective parameters of samples 

Number Loudness (sone) Sharpness (acum) Roughness (asper) Speech intelligibility 
(AI) 

S1 8.63574 1.17088 0.19584 96.54603 
S2 11.73765 0.91790 0.16399 92.74586 
S3 17.11755 0.86283 0.17780 79.57755 
S4 20.61245 0.85023 0.18180 70.07233 
S5 25.02789 0.86004 0.19146 59.58890 
S6 23.46342 0.84330 0.22102 62.57755 
… … … … … 
S168 7.27750 0.93388 0.11562 96.78094 

2.3 Subjective evaluation 

The subjective evaluation of vehicles sound quality needs to be based on human beings 
and their subjective feelings (Yan, 2009). The subjective evaluation results of the noise 
samples under different working conditions are obtained through evaluation tests. The 
essence of subjective evaluation test is to numerically quantify or to rank the sound 
quality of the noise samples. In this paper, the grading method is adopted as the 
evaluation method. The subjective evaluation index is the degree of pleasure, which is a 
parameter that reflects people’s subjective acceptance of noise signals. A jury with 21 
participants are composed of students, teachers and drivers, including 15 males and 6 
females, which is selected for the evaluation. The participants were briefly trained before 
evaluation to meet the requirements of the subjective evaluation test. For these 
participants, the basis requirements are good hearing condition, a certain understanding 
of vehicle interior sound quality and normal emotion during the subjective evaluation. 
Table 2 displays the subjective evaluation results. 
Table 2 Subjective scores of the noise samples 

Number Score Number Score 
S1 7.0 S85 6.8 
S2 6.5 S86 7.0 
S3 6.0 S87 8.0 
S4 5.0 S88 7.9 
S5 4.9 S89 7.8 
S6 4.7 S90 7.2 
… … … … 
S84 6.5 S168 8.0 
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3 Time-frequency characteristic parameter extraction 

3.1 Pre-processing 

The spectrum diagrams are obtained by Fourier transform of the samples. The results 
show that the main frequency part of the samples is concentrated in the low frequency, 
and the high frequency has little influence. The auditory frequency range of the human 
ear is concentrated in the range of 20 Hz to 20 kHz. In order to highlight the main 
influencing factors, the samples are resampled and high-pass filtered to filter out low-
frequency components below 20 Hz, as shown in Figure 2. 

Figure 2 (a) Before high-pass filtering (b) After high-pass filtering (see online version  
for colours) 

  
(a)     (b) 

3.2 Time-frequency domain fractal dimension difference based on EEMD 

The time domain and frequency domain waveform diagrams of the noise samples show 
the noise amplitudes changing with time and frequency. There are different expressions 
of the essential properties of the signals from different angles. To get the more 
comprehensive description of sound quality, Liu et al. (2018) have researched from the 
perspective of time domain and frequency domain waveforms based on fractal theory. 
They proposed a parameter based on time-frequency domain fractal dimension difference 
was used to objectively describe the sound quality. The conclusion is that the smaller the 
time-frequency domain fractal dimension difference, the better the sound quality; the 
higher the dimensional difference, the worse the sound quality. 

The relative knowledge of EEMD method is innovatively introduced on the basis of 
time-frequency domain fractal dimension difference (Cai et al., 2019). In this section, an 
improved method of extracting sound quality evaluation parameters based on EEMD 
time-frequency domain fractal box dimension difference (EEMD-DFDTF) is proposed. 
The pre-processed samples are disposed by EEMD to obtain a series of IMF components 
reflecting different frequency segments of the noise samples. The IMF components are 
selected, and the invalid components are eliminated. The remaining feature-sensitive 
components are reconstructed to obtain reconstructed samples that can better reflect the 
essential characteristics of the noise samples. The time-frequency domain fractal 
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dimension difference of the reconstructed samples is calculated as objective parameters 
of sound quality. 

3.2.1 The EEMD method 
Wu and Huang proposed the EEMD based on the empirical mode decomposition (EMD) 
method. They solved the modal aliasing problem existing in the EMD method by 
uniformly adding white noise in the time domain during the decomposition process 
(Meng, 2013). 

Figure 3 Ensemble empirical mode decomposition (see online version for colours) 

 

The processes of noise samples decomposition by EEMD are as follows: 

1 Add white noise to the original noise samples. 

2 Decompose the samples after adding white noise and obtain n IMF components ci(t), 
i = 1, …, n. 

3 Repeat the above steps 1 and 2 N times, the amplitude of white noise added each 
time is the same, and the frequency, phase, etc. are different. 

4 The IMF components obtained by decomposing N times are collectively averaged 
according to the same number. Finally, the ith IMF component can be expressed as: 

1

1( ) ( )
N

i ij
j

c t c t
N =

=   (1) 

When N is large enough, the noise residual in the corresponding IMF mean can be 
ignored. 

EEMD needs to set the screening times, the aggregation iterations times, and the 
amplitude of white noise added during samples decomposition. Wu and Huang proposed 
the screening stop criterion of the fixed screening times to set the screening times. 
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Generally speaking, when the screening times is 10, the upper and lower envelopes of all 
IMF components can meet the requirements of zero-axis symmetry. For the setting of 
aggregation iterations times and white noise additions times, the empirical rules for 
reference are as follow: 

n
εε
N

=  (2) 

where N is the times of white noise added. ε is the amplitude of white noise. εn is the 
average influence degree of white noise. 

In this paper, the times of EEMD aggregation iterations is set to 100. Because there is 
no guiding principle to choose the amplitude coefficient of white Gaussian noise, the 
general selection range is 0.01~0.4. Combined with the above equation and relevant 
experience, the amplitude of white noise is set to 0.4. 

According to the above, a series of IMF components arranged in descending order of 
frequency are obtained by using EEMD to decompose samples. 

3.2.2 IMF component selection and reconstruction 
There may be meaningless components in the IMF components obtained after EEMD 
decomposition of noise samples. These meaningless false natural modal components in 
low frequency components are very common, especially the last few-order IMF 
components obtained by decomposition. If you do not pay attention to rejection in the 
actual analysis, the subsequent analysis will be interfered. 

In this paper, the correlation coefficient rejection method is taken as the false IMF 
components rejection method (Chen et al., 2012). That is, the correlation values between 
each IMF component and the noise samples before decomposition is calculated. 
Generally, the threshold value is set to 1/10 of the maximum of all correlation 
coefficients. The IMF component whose correlation value is less than the threshold value 
will be regarded as a meaningless component, which should be rejected in the actual 
analysis. The correlation value of the two samples X and Y are calculated as follows: 

( )( )

( ) ( )
,

2 2
X Y

X X Y Y
ρ

X X Y Y

− −
=

− −


 

 (3) 

where ρX,Y is the Pearson correlation coefficient between the samples X and Y. 
After the invalid components are rejected, the remaining IMF components are 

considered to be sensitive modal components, which retain more original samples 
information. These IMF components are selected for reconstruction to obtain noise 
samples reconstructed, which can reflect original samples characteristic information (Xie 
et al., 2020). 

The noise samples S1~S168 are pre-processed by screening and resampling, and then 
decomposed by EEMD. The samples obtained by reconstructing after rejecting the 
invalid IMF components are used as input. The multi-scale box dimension difference in 
the time-frequency domain is calculated as the objective evaluation parameters of vehicle 
interior sound quality. As shown in Table 3, where Ti is the time domain fractal 
dimension. Pi is the frequency domain fractal dimension. Ci is the time-frequency domain 
fractal dimension difference. 
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Table 3 Time-frequency domain fractal dimension difference of noise samples 

Sample Si Pi Ci Sample Si Pi Ci 
S1 1.5632 1.5239 0.0393 S85 1.5553 1.5000 0.0553 
S2 1.5239 1.4589 0.0650 S86 1.5676 1.4829 0.0847 
S3 1.5314 1.5182 0.0132 S87 1.5262 1.4893 0.0369 
… … … … … … … … 
S84 1.5771 1.4909 0.0862 S168 1.5426 1.4933 0.0493 

3.3 Sample entropy feature extraction based on EEMD 

3.3.1 Sample entropy theory 
Entropy value was first used to describe the complexity of the physical systems. Later, 
with the widespread application, entropy theory was also applied to the field of signal 
processing. Firstly, the approximate entropy is applied to accurately classify the samples 
according to the deterministic and random samples, which has low requirements on data 
points. Therefore, it is often used to describe the characteristics of the samples. Although 
the approximate entropy is widely used, it also has a lot of congenital defects. For 
example, the own data will be compared in the actual operation process, resulting in 
significant deviation of the calculation results. For the low-complexity samples, the 
entropy values cannot be distinguished. In the view of the shortcomings of approximate 
entropy, sample entropy theory has been gradually developed. The sample entropy is 
developed based on the improvement of the approximate entropy theory. It has the 
advantages of anti-interference, anti-noise, good consistency and few data points 
requirement (Huang et al., 2017). 

According to the sample entropy theory, the sample entropy of noise samples 
reconstructed by EEMD is calculated. The calculated results are used as an objective 
evaluation parameter of vehicle interior sound quality, as shown in Table 4. 
Table 4 Sample entropy of noise samples 

Number Sample 
entropy Number Sample 

entropy Number Sample 
entropy Number Sample 

entropy 
S1 0.91904 S43 0.95361 S85 0.97402 S127 0.38875 
S2 0.80040 S44 0.96856 S86 1.05465 S128 0.83218 
S3 0.83754 S45 1.09016 S87 0.90350 S129 1.20130 
… … … … … … … … 
S42 0.94564 S84 1.00646 S126 0.0.87537 S168 0.87890 

4 Sound quality prediction model construction 

According to the noise samples characteristic parameters and subjective evaluation scores 
extracted in the previous chapters, the sound quality prediction model is established 
based on BP neural network. The prediction accuracy of prediction model is verified. 
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4.1 Characteristic parameters pre-processing 

In the previous chapters, the psychoacoustic objective parameters, the EEMD-based 
domain fractal dimension difference in the time-frequency domain and the sample 
entropy based on EEMD reconstruction of noise samples are extracted. The values of the 
above characteristic parameters are quite different, and as input parameters of neural 
network, the prediction accuracy of neural network will be decrease. The parameters need 
to be normalised before being used as input (Tang, 2017). In this section, these 
parameters are normalised to [–1, 1].The equation is as follows: 

max min

2
x xx +=  (4) 

( )
max min

2 i
i

x xx
x x

−=
−

 (5) 

where xmax is the maximum of each type of characteristic parameters. xmin is the minimum 
of each type of characteristic parameters. xi is the normalised value. 

Figure 4 BP network composition 

....

Hidden layerInput layer Output layer

1X

2X

mX

Y

ihϖ

1Y

ψ

....
2Y

mY

hfϖ

 

4.2 Prediction of model structure parameters 

Back propagation network is also called back propagation neural network. It is a neural 
network model widely used in data prediction that mainly composed of input layer, 
hidden layer and output layer, as shown in Figure 4. The determination of the number of 
hidden layer nodes in BP neural network has a great influence on the accuracy and 
convergence rate of the neural network. Insufficient number of hidden layer nodes will 
lead to neural network learning ability declined, insufficient information processing 
capability. For too many nodes, BP neural network will increase network complexity, 
make the training time longer, and easily get trapped in local minima. There is no good 
method to determine the number of hidden layer nodes. The commonly used methods are 
the trial and error method and the empirical formula method. In this paper, equation (6) is 
used to determine the number of hidden layer nodes. 



   

 

   

   
 

   

   

 

   

   64 X. Xie and Z. Wen    
 

    
 
 

   

   
 

   

   

 

   

       
 

( )en m n a+ +=  (6) 

where m and n are the number of input and output layer nodes respectively. The value of 
a is generally between 1 to 10 and larger than m. If (m + n) increase, a should be 
increased synchronously to ensure that the system has sufficient resources for calculation. 

The 168 noise samples obtained in previous section are sorted in ascending order of 
the subjective scores. SX21, SX42, SX63, SX84, …, SX168 are selected as test samples 
in turn. Those samples are renumbered as SX1~SX168. The rest of the samples are used 
as training samples. 

4.3 Prediction effect analysis of prediction model 

For comparing the results, the following three cases are analysed. 

1 Taking the EEMD-based time-frequency domain fractal dimension difference and 
sample entropy based on EEMD reconstruction as input parameters. Then a  
two-dimensional input eigenvector is constructed. So m = 4 and n = 1, set a = 4.268, 
get ne = 6 according to equation (6). The two-dimensional feature vector is taken as 
the input parameters. The subjective scores of the noise samples are taken as the 
output. The sound quality prediction model is established based on BP neural 
network, with a structure of 2-6-1. The prediction results are shown in Table 5. 

Table 5 Comparison of prediction results of 2-6-1 BP model 

Number Actual 
result 

Prediction 
result 

Error 
(%) Number Actual 

result 
Prediction 

result 
Error 
(%) 

SX1 5.2 5.4 3.85 SX5 7.0 7.0 0 
SX2 6.0 6.7 11.67 SX6 7.3 6.9 5.48 
SX3 6.3 6.9 9.52 SX7 7.8 6.9 11.54 
SX4 6.6 6.4 3.03 SX8 8.3 6.7 19.28 

2 Take four psychoacoustic objective parameters loudness, sharpness, roughness, and 
speech intelligibility as the input parameters. Then a four-dimensional input 
eigenvector is constructed. So m = 4 and n = 1, set a = 6.764, get ne = 9 according to 
equation (6). The four-dimensional feature vector is taken as the input parameters. 
The subjective scores of the noise samples are taken as the output. The sound quality 
prediction model is established based on BP neural network, with a structure of  
4-9-1. The prediction results are shown in Table 6. 

3 The six objective parameters as the EEMD-based time-frequency domain fractal 
dimension difference, sample entropy based on EEMD reconstruction. The four 
psychoacoustic objective parameters as loudness, sharpness, roughness, and speech 
intelligibility are obtained. A six-dimensional eigenvector is taken as the input. The 
subjective scores of the noise samples are taken as the output. So m = 6 and n = 1, set 
a = 8.354, get ne = 11 according to equation (6). The sound quality prediction model 
is established based on BP neural network, with a structure of 6-11-1. The prediction 
results are shown in Table 7. 
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Table 6 Comparison of prediction results of 4-9-1 BP model 

Number Actual 
result 

Prediction 
result 

Error 
(%) Number Actual 

result 
Prediction 

result 
Error 
(%) 

SX1 5.2 5.1 1.92 SX5 7.0 7.3 4.29 
SX2 6.0 7.0 16.67 SX6 7.3 7.3 0 
SX3 6.3 5.9 6.35 SX7 7.8 7.3 6.41 
SX4 6.6 7.0 6.06 SX8 8.3 7.0 15.66 

Table 7 Comparison of prediction results of 6-11-1 BP model 

Number Actual 
result 

Prediction 
result 

Error 
(%) Number Actual 

result 
Prediction 

result 
Error 
(%) 

SX1 5.2 5.3 1.92 SX5 7.0 7.0 0 
SX2 6.0 6.7 11.67 SX6 7.3 7.2 1.37 
SX3 6.3 5.5 12.70 SX7 7.8 7.1 8.97 
SX4 6.6 7.2 9.09 SX8 8.3 7.2 13.25 

From the prediction results, the actual scores and theoretical values of most prediction 
samples fit well, and the prediction effect is good. The following is a further comparative 
analysis of the above three prediction models from the perspectives of maximum error, 
mean absolute error (MAE) and mean square error (MSE). As shown in Table 8. 
Table 8 Comparison of three prediction model 

 Model 1 Model 2 Model 3 
Maximum error (%) 19.28 16.67 13.25 
MAE 0.60 0.50 0.50 
MSE 0.56 0.42 0.40 

From the perspective of maximum error, model 3 has the best effect. From the 
perspective of MAE, the three models are close. The errors of model 2 and model 3 are 
consistent, slightly better than model 1. From the perspective of MSE, model 3 is the best 
and most stable. To sum up, the effect of model 3 in the three prediction models is 
relatively good. The prediction results are more accurate. 
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