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Abstract: Leishmaniasis, a life-threatening tropical disease that is endemic in 
nearly 100 countries, contributes to millions of deaths each year. However, 
very few antileishmanial compounds are available in the market and that too 
possess many drawbacks. Hence, the therapeutic arsenal requires potential and 
novel anti-leishmanial compounds to treat Leishmaniasis. In the present study, 
quantitative structure activity relationship (QSAR) model and Pharmacophore 
model were developed with a set of antileishmanial compounds collected  
from literature and commercial antileishmanial drugs. A ligand-based 
pharmacophore model was developed using active compound as template and it 
was used for searching the purchasable compound dataset of ZINC database for 
matching compounds. Thirteen novel, readily purchasable compounds were 
obtained from this approach, which shows good predicted activity, ADME and 
druglikeness. These compounds can be regarded as potential candidates to be 
developed as novel antileishmanial drugs with improved activity and reduced 
side effects. 

Keywords: antileishmanial compounds; descriptor; pharmacophore; 
ZINCPharmar; pharmacophore search; QSAR; quantitative structure activity 
relationship. 
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1 Introduction 

Leishmaniasis is one of the neglected tropical diseases affecting about 350 billion people 
all over the world (Kedzierski, 2010). This vector-borne disease is transmitted to humans 
by sandfly and caused by one of the several different species of the genus Leishmania, an 
obligate protozoan parasite. It holds the second place in mortality and fourth place in 
morbidity among all the tropical diseases according to the disease burden estimate (Bern 
et al., 2008). At present, 53 Leishmania spp. are known and 21 among them are reported 
to be pathogenic to humans (Akhoundi et al., 2016). Leishmanial infections occur in six 
different clinical forms: post-kala-azar dermal leishmaniasis (PKDL), mucocutaneous 
(MCL), mucosal (ML), diffuse cutaneous (DCL), cutaneous (CL) and visceral (VL) 
leishmaniasis. Among them, the most common form of infection reported is CL followed 
by VL. Worldwide annual incidence of visceral leishmaniasis (VL) and Cutaneous 
Leishmaniasis (CL) is estimated as ~0.3 million and ~0.95 million cases respectively 
(Alvar et al., 2012). It is now found that 70–100 countries are endemic to CL and VL 
(Desjeux et al., 2004; van Griensven and Diro, 2012; Burza et al., 2018; Kedzierski, 
2010). Leishmania major is responsible for most of the cases of CL in the Mediterranean 
littoral, the Middle East, the Indian subcontinent, and central Asia and is endemic in 
many of the rural areas of various countries (Richard et al., 2005). Leishmania species  
causing CL were also reported to develop resistance to antileishmanial drugs (Molina  
et al., 2003; Croft et al., 2006). 

During its life cycle, Leishmania occurs in tow forms namely:  

i promastigote- flagellated, motile, non-dividing (metacyclic) organisms that live 
within sand-flies 

ii amastigote- non motile form that lives in the host (Kaye and Scott, 2011).  

There are number of antileishmanial drugs (ALD) available in the market to treat 
leishmanial infections. Antileishmanial drug resistance and toxicity were reported in 
many cases of leishmanial infections (Sangshetti et al., 2015). Also, these drugs were 
reported to have certain drawbacks that limit the usage of these drugs in therapy. The list 
of drugs available for treating Leishmaniasis and their drawbacks are listed in Table 1. 

Clearly, the hunt for a better drug to treat Leishmaniasis is not yet over and the need 
for more effective and safer medications against Leishmania species is getting increased. 
Khraiwesh et al. have reported a set of 14 compounds that possess antileishmanial 
activity against Leishmania major (Khraiwesh et al., 2016). In the current work, these 14 
compounds along with three commercial drugs and their IC50 values are used to derive 
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QSAR and Pharmacophore models. The pharmacophore model was then used for 
database search to obtain novel compounds that could potentially be developed as 
antileishmanial compounds against Leishmania major. 

Table 1 List of commercially available anti-leishmanial drugs and their limitations 

Antileishmanial drugs Limitations References 
Pentamidine Nephrotoxicity, hypotension, 

hypoglycaemia or local reactions 
Goa and Campoli-Richards 
(1987) 

Pentavalent antimonials Nephrotoxicity Veiga (1990) 
Miltefosine Gastrointestinal side effects Jha et al. (1999) 
Sitamaquine Nephrotoxicity, Kidney failure causes 

methemeglobinemia 
Yeates (2002) 

Amphotericin B Nephrotoxicity Laniado-Laborín and Cabrales-
Vargas (2009) 

2 Materials and methods 

2.1 Compounds (Dataset) 
The antileishmanial compounds and their half maximal inhibitory concentration (IC50) 
were collected from literature (Khraiwesh et al., 2016). In addition, 4 commonly used 
Leishmanial drugs were also chosen. Hence, the dataset (Table 2) is composed of 14 
antileishmanial compounds and 4 commercial antileishmanial drugs (Amphotericin B, 
Miltefosine, Paromomycin, Pentamidine). Out of these 18 compounds, 15 were regarded 
as training set while the remaining 3 were used as test set. The IC50 values of the 
compounds were obtained in nM unit and then were converted into negative logarithmic 
scale (pIC50 = –log IC50). 

Table 2 Structure and IC50 values of compounds in dataset for ligand -based drug designing 
for Leishmaniasis 

Compound ID 2D Structures IUPAC name 
IC50 
(nM) 

Training dataset 
MMV000444 

CH3

O
OH

N
N

NH
CH3

 

1-(2-imino-3-
pentylbenzimidazol-1-yl)-3- 
(3-methylphenoxy)propan-2-ol 

267.2 

MMV006169 

NH

N

N

NH

 

N-phenyl-N′-
(phenylmethyl)quinazoline-2,4-
diamine 

466.6 
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Table 2 Structure and IC50 values of compounds in dataset for ligand -based drug designing 
for Leishmaniasis (continued) 

Compound ID 2D Structures IUPAC name 
IC50 
(nM) 

Training dataset 
MMV007396 

CH3

O

S
N

S NH

S

O

 

2-{2-[(4-nitrophenyl) 
methylidene]hydrazin-1-yl}- 
1H-1,3-benzodiazole 

119.8 

MMV007557 

F

S

NHO

S

O

O
N

CH3

CH3

O

O
CH3

CH3

 

N-[2-(3,4-
dimethoxyphenyl)ethyl]-5-(3,5-
dimethylpiperidin- 
1-yl)sulfonyl-2-(4-
fluorophenyl)sulfanylbenzamid
e 

179.9 

MMV007564 

O

S

NH

N
N

N

CH3 

1-[1-[(4-
methylphenyl)methyl]benzimid
azol-2-yl]-N- 
(thiophen-2-
ylmethyl)piperidine-4-
carboxamide 

60.8 

MMV007881 

N

CH3

CH3

S

NH O

O

O O

 

N-[4-
(dibutylsulfamoyl)phenyl]furan-
2-carboxamide 

417.7 

MMV008149 F

NCH3

CH3

NH

O
O  

1-[(4-fluorophenyl)methyl]-N-
(furan-2-ylmethyl)-2,3- 
dimethylindole-5-carboxamide 

228.9 

MMV396693 
NH

CH3

N
+

N

OH

 

2-[(10-methylphenazin-10-ium-
2-yl)amino]ethanol 

53.4 
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Table 2 Structure and IC50 values of compounds in dataset for ligand -based drug designing 
for Leishmaniasis (continued) 

Compound ID 2D Structures IUPAC name 
IC50 
(nM) 

Training dataset 
MMV665827 

NN

CH3

O O

CH3

O
F

 

ethyl 1-ethyl-6-fluoro-4-oxo-7-
piperidin-1-ylquinoline- 
3-carboxylate 

477.7 

MMV666023 

NH

N

N
N

N

 

2-{2-[(4-
nitrophenyl)methylidene]hydraz
in-1-yl}- 
1H-1,3-benzodiazole 

91.7 

MMV666069 

N
N

N
CH3

N

O

CH3

 

({1-[2-(4-
methoxyphenyl)ethyl]piperidin-
4- 
ylmethyl)(methyl)[(1-phenyl-
1H-pyrazol-4-yl)methyl]amine 

366.5 

MMV666080 
NH

N

O OH

 

N-[(8-hydroxyquinolin-7-yl)-
phenylmethyl]benzamide 

14.9 

MMV666607 N

N
H

NH

N

N
+

O

OH  

2-{2-[(4-
nitrophenyl)methylidene]hydraz
in-1-yl}- 
1H-1,3-benzodiazole 

133.6 

MMV667486 

N

N

N

NH2

CH3

CH3
NH2

O

CH3

 

1-(4-ethoxyphenyl)-6,6-
dimethyl-1,3,5-triazine-2,4-
diamine 

192.8 
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Table 2 Structure and IC50 values of compounds in dataset for ligand -based drug designing 
for Leishmaniasis (continued) 

Compound ID 2D Structures IUPAC name 
IC50 
(nM) 

Training dataset 
Amphotericin B 

O

OH

OH

O

OH

O

OH

O

OH

OH

NH2

CH3

OH

OH

OHOH

O

O

CH3

CH3

CH3

OH

H

(1R,3S,5R,6R,9R,11R,15S,16R,1
7R,18S,19E,21E,23E,25E,27E,2
9E,31E,33R,35S,36R,37S)-33-
[(2R,3S,4S,5S,6R)-4-amino-3,5-
dihydroxy-6-methyloxan-2-
yl]oxy-1,3,5,6,9,11,17,37-
octahydroxy-15,16,18-
trimethyl-13-oxo-14,39-
dioxabicyclo[33.3.1]nonatriaco
nta-19,21,23,25,27,29,31-
heptaene-36-carboxylic acid 

27 

Test set 
Miltefosine 

O O
N

+ CH3

CH3
CH3

P

O

O
–

CH3

 

hexadecyl 2-
(trimethylazaniumyl)ethyl 
phosphate 

55 

Paromomycin 

O

O

O

O

OH

O

OOH

OH

OH

OH

OH

OH

OH NH2
NH2

NH2

NH2

NH2

 

(2S,3S,4R,5R,6R)-5-amino-2-
(aminomethyl)-6-
[(2R,3S,4R,5S)-5-
[(1R,2R,3S,5R,6S)-3,5-diamino-
2-[(2S,3R,4R,5S,6R)-3-amino-
4,5-dihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy-
6-hydroxycyclohexyl]oxy-4-
hydroxy-2-
(hydroxymethyl)oxolan-3-
yl]oxyoxane-3,4-diol 

78 

Pentamidine 

O

O

NH2

NH2

NH

NH

 

4-[5-(4-
carbamimidoylphenoxy)pentox
y]benzenecarboximidamide 

342 

2.2 Computational data 

The compounds were sketched using a freeware, ACD/ChemSketch (version C60E41). 
They were then converted into 3D structures using Discovery Studio 2019 (Discovery 
Studio Visualizer v19.1.0.18287). The structures of commercial drugs were obtained  
from PubChem database (https://pubchem.ncbi.nlm.nih.gov/). All these programs were 
administered on a machine with Core i3 2.30GHz processor running on Windows 10 
operating system. 



   

 

   

   
 

   

   

 

   

   322 C.F. Rencilin et al.    
 

    
 

   

   
 

   

   

 

   

       
 

2.3 Generation of descriptors 

SwissADME (http://www.swissadme.ch/index.php), a free web tool to compute 
physiochemical descriptors like ADME, druglikeness nature, pharmacokinetics 
properties, etc. provided by Molecular Modelling Group of Swiss Institute of 
Bioinformatics was used (Daina et al., 2017). From the computed properties, a set of 11 
descriptors were picked for each compound for developing QASR models, which are 
listed in Table 3. The overall workflow is provided in Figure 1. 

Figure 1 Overall workflow 

 

2.4 QSAR – Activity predictions 

The compounds were subjected to QSAR model generation by EasyQSAR software. The 
molecular descriptors and respective experimental IC50 values were used for modelling 
using multiple linear regression (MLR). For each model, descriptors were chosen 
randomly in the ratio of 5 : 1 (compounds: descriptors) (Rosy et al., 2016). Models were 
generated utilising all possible combinations of descriptors. The generated models were 
validated with the test set compounds and the best model was selected (Chowdhury et al., 
2012; Das et al., 2017). 
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Table 3 Molecular descriptors computed by SwissADME for generation of QSAR models 
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2.5 Phamacophore model generation 

All the compounds were converted and combined in a single mol2 file. Pharmacophore 
features were fabricated using PHARMAGIST (Schneidman-Duhovny et al., 2008). 
Various models were generated with all possible combinations of compounds, out of 
which best scoring pharmacophore model was chosen for further studies. The 
pharmacophore features of the best scoring pharmacophore were visualised using 
PyMOL molecular visualisation tool and analysed further by Discovery Studio 2019 
visualiser. 

2.6 Pharmacopohore database search 

The pharmacophore generated was used to search in ZINC database for compounds that 
match the generated pharmacacophore model. The tool, ZINCPharmer was used for this 
purpose (Lipinski et al., 1997). The top matching compounds were chosen and their 
ADME and Druglikeness properties were predicted. The theoretical antileishmanial 
activities (IC50) were also predicted using the generated QSAR model. 

Table 4 Druglikeness filters used in the study 

Lipinski (Ghose 
et al., 1999) 

Ghose 
(Veber et al., 

2002) 

Veber 
(Egan et al., 

2000) 

Egan 
(Muegge et al. 

2001) 

Muegge 
(Koes and 

Camacho, 2012) 
MW ≤ 500 
MLOGP ≤ 4.15 
N or O ≤ 10 
NH or OH ≤ 5 

160 ≤ MW ≤ 480 
–0.4 ≤ WLOGP  

≤ 5.6 
40 ≤ MR ≤ 130 
20 ≤ atoms ≤ 70 

Rotatable 
bonds ≤ 10 

TPSA ≤ 140 

WLOGP ≤ 5.88 
TPSA ≤ 131.6 

200 ≤ MW ≤ 600 
–2 ≤ XLOGP ≤ 5 

TPSA ≤ 150 
Num. rings ≤ 7 

Num. carbon > 4 
Num. 

heteroatoms > 1 
Num. rotatable 

bonds ≤ 15 
H-bond acc. ≤ 10 
H-bond don. ≤ 5 

2.7 ADME and druglikeness prediction 

ADME properties and druglikeness were predicted for the top compounds obtained from 
pharmacophore database search. The ADME properties such as number of H-bond 
donors and acceptors, LogP, number of rotatable bonds, BBB permeation, GI absorption 
and Bioavailability were predicted using SwissADME. ‘Drug-likeness’ is the ability of a 
molecule to become an oral drug with respect to bioavailability. Drug likeness was 
predicted by SwissADME using rules as described by 6 different authors. These  
filters often originate from analyses by major pharmaceutical companies aiming  
to improve the quality of their proprietary chemical collections. The Lipinski filter  
is the pioneer rule, known as, rule-of-five which is used by Pfizer. Other filters, Ghose  
by Amgen, Veber by GSK, Egan by Pharmacia and Muegge by Bayer (Yeates,  
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2002). The rules describing all the above five methods are presented in Table 4. The 
compounds satisfying these rules are considered likely to be effectively developed into an 
oral drug. 

3 Results 

3.1 Generation of QSAR models 
Totally, 9 QSAR models were generated from the 15 compounds that were used as 
training set and the models were validated using compounds included in the test set. R2 
values were calculated for each model and the best model was found to have a R2 value 
of 0.4681. All the QSAR models generated and their corresponding R2 values are 
presented in Table 5. The equation for the best scoring model is given below: 

pIC50 = –9.321256040249E + 000 + –1.166262572987E + 000 * (LogS)  
              + –1.062885390742 E + 000 * (LogKp)  
              + –1.191587747759E-002 * (molwt) 

The best model was derived using three descriptors namely LogS, LigKp and molecular 
weight (molwt) and all the three descriptors were found to be negatively influencing the 
activity as indicated by their coefficients in the equation. 

Table 5 Generated QSAR models by random combination of molecular descriptors 

Eqn 
no. Generated QSAR equations R2 

1 logIC50 = –2.150910758940E + 000 + 3.256306013600E-
004*(molwt) + 1.113746379373E-002*(heavy) + –7.190811949380E-
002*(aromatic) 

0.3458 

2 logIC50 = –2.077885476677E + 000 + –1.922606884875E-
002*(rotatable) + –4.850549380525E-
002*(Hacceptors) + 1.313890645734E-001*(Hdonors) 

0.3296 

3 logIC50 = –2.506269846845E + 000 + 3.322100644032E-
003*(Molar) + 1.152261202649E-003*(TPSA) + –4.823078512426E-
002*(logP) 

0.216 

4 logIC50 = –9.321256040249E + 000 + –1.166262572987E + 000*(LogS) + –
1.062885390742E + 000*(LogKp) + –1.191587747759E-002*(molwt) 

0.4681 

5 logIC50 = –2.673077244687E + 000 + –1.314641633202E-
001*(Hacceptors) + 1.819237777897E-001*(Hdonors) + 6.101124088349E-
003*(Molar) 

0.3953 

6 logIC50 = –2.598550819236E + 000 + 2.415485477259E-003*(TPSA) + –
4.885113221145E-002*(logP) + –7.786676103476E-002*(LogS) 

0.2524 

7 logIC50 = –2.778627140556E + 000 + –2.680891280987E-002*(LogKp) + –
4.692767458284E-003*(molwt) + 8.080113123977E-002*(heavy) 

0.175 

8 logIC50 = –2.323341280251E + 000 + 9.692128808326E-
002*(Hdonors) + 5.784062327190E-004*(Molar) + –1.008510610021E-
003*(TPSA) 

0.2584 

9 logIC50 = –3.252607459717E + 000 + –6.230330795319E-002*(logP) + –
1.462392190962E-001*(LogS) + –9.481312770372E-002*(LogKp) 

0.2563 
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Validation of the models was done by predicting the activities of test set compounds and 
are presented in Table 6. It was found that the predicted values were approximately equal 
to the actual values. Model 4 predicted the activity of the test set compound Pentamidine 
as –2.49 which is almost equal to the actual activity value, –2.53. This indicates the 
model 4 is best out of the derived models and can further be used for analysis. 

3.2 Generation and analysis of pharmacophore models 

Pharmacophore models were generated with various combinations of compounds. The 
best scoring model was selected and visualised in PyMol. The features in the best scoring 
pharmacophores are given in Table 7. The pharmacophore that was generated with 8 
aligned molecules and a score of 28.46 was selected as the best model and used for 
further studies. This indicates that the model 4 is best out of the derived models and can 
further be used for analysis (Figure 2). The positions of the features and distance between 
the features of the best model are shown in Figure 3(a)–(c). 

Figure 2 Prediction by the best model (model 4) (see online version for colours) 

 

Figure 3(a) Features detected in the pharmacophore (see online version for colours) 

 
AR-Aromatic; ACC-Acceptor. 
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Figure 3(b) Spatial distance between the detected features (see online version for colours) 

 
The spatial distance between the features in the pharmacophore is shown in the picture. 
The values are givein in Angstrom units. AR-Aromatic; ACC-Acceptor 
Figure 3(c) Radius of detected features (see online version for colours) 

 

The radius of each feature is shown in the picture. The values are givein in Angstrom units. 

Table 6 Validation of QSAR models 

Miltefosine Paromomycin Pentamidine Eqn. 
no. R2 Actual Predicted Actual Predicted Actual Predicted 
1 0.3458 –1.72 –7.48 –2.62 
2 0.3296 –2.66 –1.46 –1.94 
3 0.216 –2.05 –1.71 –2.14 
4 0.4681 –3.75 –2.23 –2.49 
5 0.3953 –2.49 –1.99 –1.86 
6 0.2524 –2.03 –2 –2.16 
7 0.175 –2.4 –1.84 –2.18 
8 0.2584 –2.33 –1.34 –2 
9 0.2563 

–1.7404 

–2.11 

–1.8921 

–2.14 

–2.534 

–2.28 
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Table 7 Features present in the high scored pharmacophores 

Features Model 1 Model 3 Model 3 
Number of aligned molecules 13 12 8 
Score 24.875 27.042 28.46 
Features 3 3 3 
Spatial features 3 3 3 
Aromatic 2 2 3 
Hydrophobic 0 0 0 
Donors 0 0 0 
Acceptors 1 1 0 
Negatives 0 0 0 
Positives 0 0 0 

*Values in the shaded column (Model 3) were selected for further studies 

3.3 Searching for novel compounds with better activity 

The best scoring pharmacophore was selected for fishing the ZINC database for matches. 
The search was performed using the tool ZINCPharmer and the tool retrieved a total of 
50, 112, 847 hits matching the pharmacophore. Top compounds that match with the 
pharmacophore were selected with the RMSD cut off of ≤0.03. Thirteen compounds were 
found to be satisfying the criterion which are listed in Table 8. Theoretical activities of 
these compounds were also predicted using the QSAR model generated (Table 9). The 
ADME properties such as the number of H-bond donors and acceptors, LogP, number of 
rotatable bonds, BBB permeation, GI absorption and Bioavailability were predicted for 
these compounds. The druglikeness properties of these compounds were predicted based 
on the rules described by 6 different rules which are also presented in Table 9. 

Table 8 Structures of top compounds matching with the pharmacophore filtered from ZINC 
database search results with the RMSD cut off of ≤0.003 

S. no. Name RMSD Structure 
1 ZINC91574499 0.002 CH3

N

N
N

S

O

O

N
–

N

 
2 ZINC58290123 0.002 

CH3

N

N N

N
S

ON

CH3NH

N
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Table 8 Structures of top compounds matching with the pharmacophore filtered from ZINC 
database search results with the RMSD cut off of ≤0.003 (continued) 

S. no. Name RMSD Structure 
3 ZINC71822573 0.002 

CH3
N

NH
+

N

NN

N

H

 
4 ZINC66562798 0.002 

CH3
NN

N N

NH
+

NS

H

 
5 ZINC28189912 0.003 

CH3

O

N

N S
N N

NN

O

H

 
6 ZINC09638087 0.003 

NN

N N

NH
+

N

S H

 
7 ZINC29394394 0.003 

CH3

N
N

Cl

S

N
N

N

N
O

H

 
8 ZINC29394402 0.003 

CH3

N

N

Cl S
N

N

NN
O H
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Table 8 Structures of top compounds matching with the pharmacophore filtered from ZINC 
database search results with the RMSD cut off of ≤0.003 (continued) 

S. no. Name RMSD Structure 
9 ZINC02836915 0.003 

CH3

S

O

O

NH

S
N

N
N

N

H

H

 
10 ZINC29394405 0.003 

CH3

N
N

Cl

S

N
N

N

N
O

H

 
11 ZINC92869862 0.003 CH3

N

N
N

N

S
N
H

O

NHN  
12 ZINC92869832 0.003 

CH3

N
N

N N

S

NH

O

NH

N

O

CH3

 
13 ZINC91557386 0.003 CH3

CH3

N

N
N

N

S
N
H
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NHN  
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Table 9 Predicted IC50 values, ADME and druglikeness properties of novel compounds 
selected from pharmacophore-based database search 
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Table 9 Predicted IC50 values, ADME and druglikeness properties of novel compounds 
selected from pharmacophore-based database search (continued) 
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4 Discussion 

Leishmaniasis is a group of diseases caused by intracellular protozoa of the genus 
Leishmania. It has become a major focus of concern and a serious problem of the 
developing countries affecting the poorer sections of the society (WHO: Leishmaniasis 
Fact sheet). As of now, no vaccines are available for this disease and drugs are the only 
way of treating Leishmaniasis (Croft and Coombs, 2003; Hussain et al., 2014). Though 
many anti-leishmanial drugs are available in the market, they fail to serve the purpose 
because of the vast number of side effects that they produce. The search for new anti-
leishmanial drugs with a better biological activity and reduced side effects has started a 
long before; however, the search is not yet over as no novel compound with reduced side 
effect was found (Bhargava and Singh, 2012). 

The current work was aimed to computationally identify a novel compound that could 
be tested further to be developed into a potential anti-leishmanial drug with no side 
effects. This was achieved by a strategical pipeline starting with the collection of reported 
anti-leishmanial compounds and drugs. In this ligand-based drug design approach, QSAR 
models were generated with 14 already reported anti-leishmanial compounds and 3 
commercially available drugs. The model was validated using test sets and the best 
QSAR model was used for further studies. Pharmacophore model was also created which 
was used for a database similarity search. ZINC database was searched for similar 
compounds that are matching the pharmacophore. The 13 best matching compounds were 
filtered out, for which theoretical IC50, ADME properties and Druglikeness properties 
were predicted. 

The compound ‘ZINC02836915’ was found to have the lowest theoretical IC50 value 
(66.07 nM); But this compound failed to satisfy 3 out of 6 rules for druglikeness. 
Whereas the compound ZINC09638087 was found to have a less IC50 value and poses a 
good ADME and Druglikeness properties. The bioavailability score of this compound 
was also found to be optimum. Though this compound cannot be used to treat VL, as it 
does not possess the capability of crossing the blood brain barrier (BBB), it could 
efficiently be used for treating CL. 
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