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Abstract: Cervical tumours are a leading cause of death worldwide, although 
they can be prevented by removing afflicted tissues early on. Recognising 
population weaknesses is necessary for inclusive cervical screening programs. 
STDs and smoking cause cervical cancer. Creating a cancer classifier requires 
complex learning. FS decreases a prediction system’s inputs. Reducing model 
parameters and time improves performance. The goal is to create a new 
ensemble feature selection (EFS) and classifier for cervical cancer diagnosis. 
EFS, several FSs used. EFS mixes the results of single FS approaches, 
including entropy elephant herding optimisation (EEHO), entropy elephant 
herding optimisation (EBFO), and recursive feature elimination (RFE), to 
improve results. Bootstrap aggregates EFS results. Classifier approach is 
Random Forest with SMOT (SMOTE). UCI’s cancer database has 32 features 
and four classes. Classification performance is calculated using a confusion 
matrix and precision, recall, f-measure, and accuracy. The classification 
algorithms use MATLAB. The proposed algorithm gives an enhanced accuracy 
value of 94.7552%, 94.5221%, 94.8718%, and 94.2890% for the Hinselmann, 
Schiller, Citology, and Biopsy tests, respectively.

Keywords: cervical cancer; EFS; ensemble feature selection; entropy elephant 
herding optimisation; entropy elephant herding optimisation; EBFO; entropy 
butterfly optimisation algorithm; RFE; recursive feature elimination; RF; 
random forest; SMOTE; synthetic minority oversampling technique; 
classification.
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1 Introduction

One category of gynaecological tumour is cervical disease, and the problem of cervical 
cancer is frequently connected with human papilloma virus (HPV) infection. It is a 
typical crippling infection among women around the world. It is the third chiefly 
consistently analysed disease (approximately 485,000 occurrences) and the 4th largely 
powerful reason used for tumour-associated fatality (236,000) every year (Yang et al., 
2018; Arbyn et al., 2020). The primary reason for this cancer is persevering illness via 
oncogenic HPV (Seo et al., 2016). Further issues like sexually transmitted diseases, oral 
defensive exploitation, smoking conditions, equality, and diet could contribute to cervical 
cancer improvement (Suehiro et al., 2019). Commonly, patients recognised with cervical 
cancer growth at introductory stages offer no perceptible hints or signs that can prompt 
misdiagnosis (Khan et al., 2019). Cervical cancer features could be extended by 2 to 
multiple periods if an HPV-infected long-suffering smokes (Brisson et al., 2020). In the 
event of different pregnancies, woman HPV-tainted patients with no pregnancies have 
lesser events of this disease when compared to more than single grown-up pregnancies.

Cervical cancer incidence is plentiful in lower and medium-developed countries 
(Bray et al., 2018). Screening is a significant task in a cervical tumour. The best 
diagnostic test is the least incursive, easy to accomplish, satisfactory to focus on, modest, 
and compelling in identifying the illness cycle in its initial incursive phase, while the 
simple treatment for the disease. Common screening strategies for cervical cancer are 
biopsy, Schiller, Hinslemann, and Cytology (Bedell et al., 2020). Cytology strategy is a 
minute analysis of cells smashed from the cervix, and it is utilised to distinguish 
carcinogenic states of the cervix (Bouvard et al., 2021). The biopsy technique is a careful 
interaction that incorporates the discovery of a livelihood tissue test to perform the 
analysis (Rerucha et al., 2018). The iodine solution is used for ocular investigation of the 
cervix, identified as Hinslemann analysis. Lugol’s iodine is utilised for optical 
investigation of the cervix behind spreading Lugol’s iodine recognition pace of 
suspicious areas over the cervix named as Schiller test (Ramaraju et al., 2016).

To resolve the restrictions and further develop the screening tests’ quality, computer 
vision and computer-aided frameworks via data mining (DM) are utilised to check 
screening tests, building the cycle more precise and consistent. DM is assumed as one of 
the main demanding and significant exploration areas in clinical medicine because of the 
great significance of relevant medical problems. In the clinical region, DM methods are 
useful not just in discovering examples and connections amongst certain indications yet 
in addition in foreseeing different sicknesses (Pramanik et al., 2023). Carrying out 
various DM strategies is constantly examined, and clinical consideration could be 
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recommended quickly to protect the lives, particularly the person who experiences 
cervical cancer.

Previous investigations utilised different machine learning (ML) strategies for 
cervical cancer detection and prediction (Wu and Zhou, 2017; Lu et al., 2020; Abdoh et 
al., 2018). In any case, ML procedures handle a few difficulties, consisting of issues of 
the best selection of attributes from the dataset, appropriating class, and achieving 
outcomes along with increased accuracy of classification. In this way, the current work 
focuses on tackling these difficulties. Earlier analyses are not consolidated EFS and 
balanced data for cervical disease diagnosis. FS turns into the fundamental process for 
numerous DM purposes. Choosing suitable attributes in the information is significant 
because unessential attributes could reduce the numerous classifiers’ accuracy (Park et 
al., 2017). FS techniques are generally separated into filter, wrapper, and embedded 
strategies. Utilising a solitary attribute subset determination technique might create 
nearby optima. Other than these three notable FS drawing near, another gathering of 
techniques is built over the previous FS strategies: ensemble FS (Seijo-Pardo et al., 
2017). EFS builds a group of attribute subsets and afterwards joins these subsets to create 
accumulated outcomes. EFS techniques are applied to join different FS strategies as 
opposed to utilising a single FS method (Brahim and Limam, 2018). Traditional soft 
computing algorithms have not proficiently worked in the EFS of high-dimensional 
dataset issues (Arora et al., 2020; Bansal and Jain, 2021). Then, various meta-heuristic 
approaches are adjusted for FS issues.

In the proposed work, a cervical cancer diagnosis model (CCDM) is introduced by 
using EFS, and RF is applied to the cervical cancer dataset. Thus, the key novelty of the 
current investigation is to join the FS techniques like entropy elephant herding 
optimisation (EEHO), entropy elephant herding optimisation (EBFO), and recursive 
feature elimination (RFE) to improve prediction accuracy. Data oversampling is 
performed via synthetic minority oversampling technique (SMOTE) method for adjusting 
the dataset. RF classifier is presented for the classification of cervical cancer based on 
selected features to increase the classification results. RF algorithm works better than the 
conventional classification methods. RF algorithm is a significant ML strategy because of 
its benefits of managing unequal datasets, speedy computation, and gives better 
performance.

The following organisation of the paper is described as follows: Section 2 provides a 
complete review of cervical cancer in terms of pre-processing, feature selection, and 
classification methods. The proposed approach for ensemble feature selection (EFS) and 
RF using SMOTE is defined in Section 3. Results evaluation of classification methods 
before and after SMOTE are discussed in Section 4. Finally, the overall work is 
concluded, and the scope of the work is included in Section 5.

2 Literature review

Wu and Zhou (2017) introduced the analysis of cervical cancer correctly using the 
support vector machine (SVM) algorithm. SVM techniques, SVM-RFE, and SVM-
principal component analysis (SVM-PCA) are additionally introduced to analyse the 
harmful malignant tumour samples. Of all the classifiers, SVM-PCA outperforms than 
other two classifiers via the UCI dataset.
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Abdoh et al. (2018) suggested feature variables of cervical cancer to the prediction 
model utilising the RF classifier method along with the SMOTE and two FS strategies, 
such as RFE and PCA. Many of the medicinal databases are often not balanced since the 
number of patients is significantly limited compared to the number of non-patients, which 
is solved by the SMOTE. Once evaluating the results, determining the hybrid of the RF 
classifier with SMOTE is developed to evaluate the performance of the system.

Jain et al. (2019) introduced the system performance, which is checked with base 
classifiers like RF, Kernel SVM (KSVM), decision tree (DT), and k-Nearest Neighbour 
(kNN), and afterwards assessed the outcomes with and without binary cuckoo 
optimisation (BCO). Cuckoo search optimisation (CSO) is introduced for the selection of 
optimal features from the dataset. The outcomes created presently chosen features to play 
a major vital role in cancer classification. Also, it shows that this classifier gives greater 
efficiency.

Nithya and Ilango (2019) intended to achieve further arrangement by utilising ML 
procedures in R to examine the feature variables of the dataset. Different categories of FS 
methods are developed to choose the essential features for cervical disease classification. 
Important attributes are recognised over different emphases of the training model via 
various FS techniques, and optimised FS methods are constructed. Moreover, this work 
intended to assemble some prediction models utilising C5.0, RF, kNN, and SVM 
methods. Most extreme prospects are investigated for training and execution assessment 
of the comparative methods. The classification accuracy of these methods is given in this 
work, dependent on the results achieved by them. In general, C5.0 and RF classifiers are 
implemented logically well with increased accuracy for distinguishing women displaying 
an experimental indication of cervical disease.

Ahishakiye et al. (2020) suggested an ensemble training method for cervical tumour 
classification utilising features. This method is chosen since it consolidates numerous ML 
methods into one model to reduce variance, bias, and development in execution. The 
algorithms are such as kNN, Classification and Regression Trees (CART), Naïve Bayes 
(NBs) algorithm, and SVM. Prediction techniques are chosen since the attention of this 
investigation is to tackle the prediction issue. Therefore, these algorithms might work 
well in the problem domain. The last classification model is trained and verified utilising 
these classifier models.

Nithya and llango (2020) aimed to diagnose the cervical tumour, and the given 
database consists of missing variables, repetitive attributes, and unbalanced objective 
labels. Subsequently, this work focused on dealing with these problems via the 
coordinated FS method to obtain an ideal attribute subset. The subsets achieved via this 
combined method could be employed to enhance prediction results. The perfect FS 
method could be preferred depending on the results and effectiveness of the classification 
methods in estimating the outcomes. For bio clinical and bioinformatics datasets, 
achieving the highest accuracy for data classification is difficult from this system. Thus, 
the point of this examination is to enhance a complete structure with combined FS 
algorithms to achieve optimal attribute subsets with prediction accuracy. Also, it provides 
lower computational complexities for the cervical cancer dataset.

Priya and Karthikeyan (2021) presented a short-term long memory with an artificial 
bee colony (LSTM-ABC) method for cervical tumour identification. The examination 
handles cervical tumour detection and utilises SMOTE to tackle the unbalanced class 
problem. From the pre-processed dataset, the FS is done utilising the ABC optimisation 
algorithm. The LSTM method is utilised for predicting cervical cancer growth dependent 
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on the chosen attributes. The result demonstrated that the proposed LSTM-ABC classifier 
gives enhanced results than other classifiers for accuracy, specificity, and sensitivity.

Geeitha and Thangamani (2021) proposed a Feature Weighted SMOTE (FWSMOTE) 
for solving data imbalanced problems and risk variable tests in cervical tumour 
classification. The information imputation issue is solved using mode and median 
missing information attribution. For best FS, Hilbert–Schmidt independence criterion 
with bacteria forage optimisation (HSICBFO) method is introduced to increase 
classification results. Ensemble SVM with interpolation classification is utilised for 
cervical cancer. Different measures are conveyed to evaluate the classification 
performance and provide precision, recall, specificity, F-Measure, accuracy, and G-mean 
values by 94.77%, 93.38%, 93.86%, 94.07%, 93.60%, and 93.62%, respectively, aid in 
distinguishing the feature stage of cervical carcinoma improvement and direction for 
additional analysis.

Adem et al. (2019) presented an automatic analysis of the cervical tumour. For this 
reason, a dataset collection involving 668 examples, 30 features, and 4 classes from the 
UCI corpus is applied in the test and learning phases. Softmax classifier with stacked 
autoencoder, one of the deep learning (DL) algorithms, is utilised to predict the 
databases. Initially, a stacked autoencoder is introduced to the original dataset, a 
decreased-dimension dataset. This dataset is assigned to training via using the softmax 
layer. In this stage, 70% (468) of the samples are utilised for learning, and the residual 
30% (200) of the samples are utilised for testing. In the investigation, methods are used 
independently for 4 classes of the dataset, and their diagnosis results are analysed with 
existing classifiers. Softmax classifier with stacked autoencoder model is utilised over 
cervical cancer dataset, and it provides results more than other ML strategies with 
increased classification rate. Given the best ML strategies in cancer research, novel 
techniques are introduced for patient analytic support schemes.

3 Proposed methodology

In this presented study, SMOTE method is applied to solve the class imbalance issue in 
the database by expanding the quantity of the minority class dependent on kNN to almost 
equivalent classes. Likewise, EEHO, EBFO, and RFE based FS methods to decrease the 
training period and discard the irrelevant attributes from the dataset in the classifier 
model. Then, the RF classifier strategy is utilised to classify the samples into positive and 
negative. The last phase is to evaluate the efficiency before and afterwards, employing 
the FS and SMOTE algorithms with improved results. At last, the performance of the 
model is estimated prior to and then afterwards SMOTE, then evaluated with other 
classifiers’ results (Figure 1).

3.1 Dataset

The samples utilised in this work are collected from a repository of UCI (Fernandes et al., 
2017). The database contained chronicled clinical archives, propensities, and 
demographic data for 858 patients, including 32 attributes for every patient.
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Figure 1 Proposed cervical cancer diagnosis model (CCDM) framework

3.2 Synthetic minority oversampling technique (SMOTE)

ML methods handle issues while one class influences the database, i.e., the amount of 
samples in that class goes beyond the number of previous classes. It’s also termed an 
‘Imbalanced Database’ that misleads the categorisation and changes the results as well. 
SMOTE is the technique that helps to solve the problem in terms of synthetically 
increasing the minority class based on kNN (Tarawneh et al., 2020) to dataset balance, 
and also it produces synthetic samples from the minority classes. The SMOTE tests 
strongly positively corresponded with the examples from the minority class used to 
produce them, and the SMOTE tests got utilising the same original samples. And it uses 
below equation (1) to increase the minority class,

(1)

Cervical cancer dataset
Solve class imbalance problem via SMOTE 

algorithm

Ensemble Feature Selection (EFS)

Entropy Elephant Herding 
Optimization (EEHO)

Entropy Butterfly 
Optimization Algorithm 

(EBFO)

Recursive Feature Elimination 
(RFE)

Aggregation function 

Classification 

Random Forest (RF) classifier

Performance Evaluation 

Sensitivity, Specificity, Precision, F-measure, and accuracy

 *syn i knn ix x x x t  
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The SMOTE procedure is described below:

1 Input attribute vector , kNN  is applied to balance the dataset

2 Find the difference between the attribute vector and kNN
3 Multiplies the variance using an arbitrary value amongst 0 and 1
4 Includes the resultant value to attribute vector to classify a fresh sample on the row 

distribution
5 Repeat the steps from 1-4 for discovering new attribute vectors

3.3 Ensemble feature selection (EFS)

EFS schemes are defined to produce the best subgroup of attribute features by merging 
many FS depending on the EEHO. The EBFO and RFE are the intuition behind ensemble 
learning. The common design of EFS is to aggregate the decisions of FS methods to 
develop the representation capability (Ng et al., 2020). EFS techniques contain two main 
phases: generation of diverse feature selectors and aggregation of the decisions.

3.3.1 Entropy elephant herding optimisation (EEHO)

The EEHO algorithm is a meta-heuristic intellectual method depending on the travelling 
behaviour of elephants. By the examination and analysis of the elephants, the elephant 
herd mostly contains the subsequent 2 features for attribute selection from cervical cancer 
analysis. The primary characteristic is that multiple clans are there in an elephant herd 
that contains its patriarch and associates who pursue the directions of the patriarch for the 
optimal set of attributes from cervical cancer disease diagnosis, and it has no adult male 
elephant. In the growing stage, young elephants live alone from the elephants. The main 
purpose of EEHO contains two functions Clan updating and Separating (Elhosseini et al., 
2019). The elephant herd’s initial attribute could be distracted by the clan upgrading 
function, which is described by equation (2),

(2)

Where the old and new attribute locations from the cervical dataset of elephant  in clan 
 are  and , correspondingly;  indicates a scaling variable;  Denotes 

the attribute location along with the optimal variable (accuracy) in clan  and  is an 
arbitrary number along by a typical dispersion with range [0, 1]. Equation (2) addresses 
the warn interaction of more entities (features), yet the matriarch in every faction has not 
been restructured (Li et al., 2020). To compute the weight worth of every attribute of the 
cervical disease dataset in the EEHO, expect that while specific attribute variables are 
noticed, it provides a specific measure of data to the target class. Then, this weight is 
refreshed to the EEHO scheme. Depending on the weight of Expected Cross-Entropy 
(ECE), the significance of attributes is chosen. ECE is performed based on Kullback-
Leiber (KL) distance, and it computes the distance between the likelihood of the target 
class and the likelihood of the target class in the position of a particular attribute. The 
processing equation (3) could be described as follows (Shang et al., 2016),

ix kNNx

 , , , , ,* * *n i j i j b i i j Wx x r a x x ECE  

j
i ,i jx , ,n i jx [0,1 ]  ,b ix

i r
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(3)

where  is the feature,  is the probability of the sample enclosed in the learning 
collection,  denotes the probability of class  in the training set,  refers to 
the chance of a sample that has featured in the class , and  denotes the overall 
amount of classes in the learning collection. The information entropy is given by 
equation (4),

(4)

In summary, combining equations (3) and (4); the ECE equation is as follows by 
equation (5),

(5)

If a feature exists only in a single class, the range of information entropy is zero; that is, 
. Hence must establish a small factor in the denominator as a regulator. 

So, the upgrading task of the matriarch for FS for cervical cancer detection is shown in 
equations (6) and (7).

(6)

(7)

where [0, 1] indicates the scaling variable. The centre location (feature position) in a 
clan i is  is able to be computed by equation (7). The elephant in a clan i is . 
In equation (6), the revision of the matriarch location (feature position) is associated with 
the data of every member (features) in the clan. The separating function can be formed 
from the second attribute of the elephant herd. The splitting procedure is discussed in 
equation (8),

(8)

where  is the location(feature position) through the lower fitness range (lesser 
categorisation efficiency) in clan i;  and  denote the top and bottom bound of the 
elephant’s location (attribute location); correspondingly, r [0, 1] denotes an arbitrary 
value generated via regular distribution. Algorithm 1 describes the functioning strategy of 
the EEHO method. It begins with initialising the populace through the number of 
attributes in the cervical disease dataset and afterwards assesses the fitness variable 
(prediction accuracy), depending on the discard of weak attributes (Cervical cancer 
attributes) in the clan; after that, at that point begin the technique with t emphasis to . 
For every attribute, two activities, for example, clan upgrading and another splitting, are 
done via stages 6 to stage 8. When such tasks are done after that eliminates the most 
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noticeable elephant from the clan through stage 11 to stage 13. Then, found the optimal 
attributes in stage 14. The workflow of the EEHO scheme is shown in Figure 2.

Figure 2 Workflow of entropy elephant herding optimisation (EEHO) algorithm (see online 
version for colours)

Begin

Initialization 

t=0

Fitness calculation based on categorization accuracy

Rank the attributes (population) from the most excellent to the least excellentbased on their 
fitness value (classification accuracy) 

Clan upgrading function by Equation (6)

Examineall elephant individuals (attributes) depending on its location 

t=t+1

Separating operator by Equation (8)

Is 𝑡 < 𝑇𝑚𝑎𝑥 is achieved?

Obtain the optimal result

End 

Y

N

Feature weight by Expected Cross Entropy (ECE) via Equation (5)
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Algorithm 1 Entropy elephant herding optimisation (EEHO) algorithm

3.3.2 Entropy butterfly optimisation algorithm (EBFO)

In this work, FS is performed by utilising the EBFO to choose the best attributes from the 
cervical disease database. EBFO is a novel approach that emulates food search (higher 
accuracy with chosen attributes) and mating butterfly activities for cervical cancer 
treatment. This EBFO scheme is primarily based on the searching technique of 
butterflies, which utilise their feeling of accuracy for ideal FS to decide the area of nectar 
accomplices (Arora and Singh, 2019; Tubishat et al., 2020). Depending on the technical 
perceptions, it is found that butterflies contain accurate intelligence of discovery on the 
basis of classification accuracy. A butterfly can create fragrance along with a little force 
that is associated with its fitness (accuracy); like a butterfly commencing with a specific 
region to another, its fitness can fluctuate consequently. In EBFO Algorithm, the entire 
idea of detecting and preparing the methodology depends on three significant terms, viz. 
tangible sense mode , stimulus strength  and energy exponent  for the best 
choice of attributes(Arora and Singh, 2019; Tubishat et al., 2020). In EBFO,  
corresponds with the fitness (accuracy) for the determination of attributes from the 
cervical cancer dataset. Utilising these ideas, in the EBFO algorithm, the accuracy is 
formed as a component of  as subsequently via equation (9),

(9)

where  denotes the actual fragrance strength,  represents the sense mode, which is 
computed based on categorisation accuracy,  indicates the stimulus strength, and  
denotes the energy exponent is generated via fitness function. Hence,  and  are in the 
range [0,1]. Then again, if , it implies that the fragrance produced through any 
butterfly cannot be detected via different butterflies. Hence, the boundary  organises 
the algorithm’s behaviour. Another significant parameter is  the additionally vital 
parameter to discover the speed of convergence and how the EBFO method performs for 

1. Initialize the number of populations by the number of attributes and variables
2. Fitness calculation using categorization accuracy and their attribute location
3. While 𝑡 < 𝑇𝑚𝑎𝑥
4. For 𝑖 = 1 𝑡𝑜𝑛𝑐
5. For j=1 to 𝑛𝑗 (the number of elephants (attributes) in a single clan) 
6. Modify 𝑥𝑖 ,𝑗 and produce 𝑥𝑛 ,𝑖 ,𝑗 using equation (2), create attribute weight using 

ECE (f)inEquation (5)
7. If 𝑥𝑖 ,𝑗 = 𝑥𝑏 ,𝑖 then
8. Modify 𝑥𝑖 ,𝑗 and produce 𝑥𝑛 ,𝑖 ,𝑗 using Equations (6&7)
9. End if
10. End for
11. For 𝑖 = 1 𝑡𝑜𝑛𝑐
12. Swap the least excellent elephant (features) in a clan I using equation (8)
13. End for
14. Examine individuals(attributes) based on their fresh location 
15. End while 

( )c ( ),I ( )a
I

I
af cI

f c
I a

a c
  0a 

a
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the FS process. To show the above discussions as far as a hunting strategy, the above 
qualities of butterflies are idealised as the following:

1 All butterflies should produce a few fragrances, which empowers the butterflies 
(features) to draw in all others (features).

2 All butterflies can travel arbitrarily or toward the better butterfly emanating extra 
fragrance.

3  of a butterfly is influenced through the scene of the objective function.

Three stages are there in EBFO, for example, 

1 initialisation stage

2 iteration stage

3 last stage. 

In all EBFO iterations, the initialisation stage is conducted initially; subsequently, the 
seeking of best attributes is done in an iterative way, and in the last stage, the approach is 
ended while the optimal solution selection is determined. Classification accuracy is 
calculated in the initialisation stage using EBFO and its solution space. The variables for 
the boundaries utilised in EBFO are likewise appointed. The places of butterflies 
(features) are arbitrarily produced in the FS search space by means of their fragrance and 
objective function (Arora and Singh, 2019; Tubishat et al., 2020). Subsequently, 
completing the initialisation stage begins the iteration stage. In every iteration, every 
butterfly in the FS decision region travels to fresh locations, and afterward, their 
prediction accuracy is assessed. The initial fitness values have been calculated for each 
butterfly in various situations in the solution space. Subsequently, those butterflies can 
produce aroma in their locations utilising equation (10). In the global hunting stage, the 
butterfly moves toward the fittest range (g*)(optimal features) that could be addressed 
utilising equation (10),

(10)

Here,  is the result vector . For ith butterfly in iteration number  Where,  
Addresses the current best-chosen feature solution established amongst every one of the 
resolutions in the present iteration. The odour of with butterfly is addressed through  
and  is a random number restricted local search stage is addressed via 
equation (11),

(11)

Here  and  denote jth and kth butterflies from the FS solution region. When  and 
 include a location having an identical swarm, and  denotes the arbitrary 

value after that equation (11) returns into an arbitrary neighbourhood walk. Seeking for 
best features and mating partners through butterflies could appear on the global and local 
scale for optimal selection of attributes from the database. Switching probability p is 
utilised in EBFO to control among normal global results to exhaustive local results. Once 
the termination condition is not coordinated, the iteration stage is preceded. While the 
iteration stage is closed, the approach yields a better result established along with its best 

I

 1 2 * *t t t
i i i i Wx x r g x f ECE     

t
ix ix .t *g
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fitness. In equations (11 and 12), attribute weight is likewise added to EBFO to choose 
the best amount of attributes in the cervical cancer dataset. The general phases 
incorporated with the proposed EBFO scheme are explained in Algorithm 2. In 
Algorithm 2, primary populations are produced utilising the number of attributes in the 
cervical cancer database (Step 1), and afterward  at  (Step 2) is registered dependent 
on  (Step 3). Such variables are created through categorisation accuracy. 
Afterward, it commences with the termination condition (Step 4); for all butterflies in the 
database, the fragrance range is determined (Step 6). Then determine the better attribute 
over the populace (Step 8) and produce an arbitrary value r (Step 10). When  the 
travel towards the most excellent butterfly using equation (11), else travel arbitrarily 
using equation (12). If , travel in the direction of the better butterfly through 
equation (11), besides travel arbitrarily via equation (12). After that, modify a range (Step 
17), and assess all the variables as per their fresh location (Step 18). At last, terminate the 
procedure (Step 19) (Figure 3).

Algorithm 2 Entropy butterfly optimisation algorithm (EBFO)

Input: Cervical cancer dataset

Objective function: Classifier accuracy, 
𝑓(𝑥), 𝑥 = (𝑥1 , 𝑥2 , … . , 𝑥𝑑𝑖𝑚 )𝑑𝑖𝑚 = 𝑛𝑜. 𝑜𝑓𝑑𝑖𝑚𝑒𝑠𝑛𝑖𝑜𝑛𝑠

Result: Best attributes

1. Create an early populace of 𝑛 butterflies 𝑥𝑖 = (𝑖 = 1,2, … , 𝑛)using the attributes in 
the database 

2. Intensity 𝐼𝑖 at 𝑥𝑖 is obtained by accuracy 𝑓(𝑥𝑖)
3. Characterize 𝑐, 𝑎 and 𝑝
4. While termination condition is not achieved
5. For all butterflies𝑓in the populace
6. Determine for 𝑓using equation (10) and generate weight via entropy by equation (5)
7. End for 
8. Obtain the most excellent butterfly 
9. For all butterflies𝑓 in the population
10. Produce arbitrary value r
11. If 𝑟 < 𝑝
12. Travel towards the most excellent butterfly (optimal features) by equation (10) and 

generate weight via entropy by equation (5)
13. Else 
14. Travel arbitrarily via Equation (11)
15. End if
16. End for
17. Modify the range of a 
18. Examine individuals(attributes) based on their fresh location
19. End while 
20. Obtain the most optimal attributes

iI ix
 and c a

,r p

r p
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Figure 3 Workflow of EBFO algorithm (see online version for colours)

Begin

Initialize the populace of butterflies (attributes)

Examine fragrance f and find the most excellent butterfly (attribute) with best 
fragrance

Create arbitrary value from 0 to 1

Examine fitness and modify location P and a

Update the feature weight viaECE via Equation (5)

If r<p 

Perform global search by Equation (10)
Perform local search by Equation (11)
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End 
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3.3.3 Recursive feature elimination (RFE)

The RFE is a wrapper scheme, and it is a recursive strategy that grades attribute as 
indicated by a specific level of significance. It is a greedy optimisation method that is 
focused on discovering the standout performing attributes. This recursive approach of 
eliminating the weakest attributes proceeds until the necessary amount of attributes is 
attained (Huang et al., 2018; Chen et al., 2020). Features are sorted by moreover feature 
significance or coefficient feature of the classifier. Thus, the RFE performance deeply 
relies on the classifier utilised for ranking the attributes. RFE needs a predefined amount 
of attributes to stay, but it is typically not recognised at earlier how many attributes are 
substantial (Algorithm 3). To determine the best amount of attributes, classification 
accuracy is utilised with RFE to achieve diverse attribute subsets and choose the optimal 
scoring feature collection. Figure 4 depicts the flow of the RFE scheme.

Algorithm 3 Recursive feature elimination (RFE)

During all iterations, feature significance is calculated, and the least significant attribute 
is neglected. The other opportunity is to omit a subset of attributes in all iterations to 
accelerate the procedure.

3.3.4 Aggregation function

The various ranked results are consolidated into a single ensemble list by utilising an 
appropriate aggregation function which allocates every feature a ‘general score’ 
depending on the attribute’s position (rank) in the first samples. Generally, allow  is 
denoted as the sorted catalogue results from the function of a specified FS method to the 
kth bootstrap test (k = 1, …, B). For every one of the actual attributes,  a 

INPUT: Training data, set of 𝑛 features, ranking method 𝑀(𝑇, 𝐹)

OUTPUT: The selected set of features 𝑆𝐹 , a final ranking 𝑅

1. Train the model
2. Compute the model performance
3. Compute the variable rankings
4. For each subset size 𝑆𝑖 , i=1,…,S do
5. Repeat for 𝑖 in {1: 𝑝}
6. Keep the 𝑆𝑖 most important variable
7. Eliminate the least important feature
8. Rank set 𝐹 using 𝑀(𝑇, 𝐹)
9. Train the model by 𝑆𝑖 features

𝑓∗ ←last ranked feature in F

10. 𝑅(𝑝 − 𝑖 + 1) ← 𝑓∗

11. 𝐹 ← 𝐹 − 𝑓∗

12. End for
13. Re-compute the rankings for each feature 
14. End 
15. Compute the performance over the 𝑆𝑖

kL

( 1, , )if i N 
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general rank is subsequently determined via . 
Here  is denoted as ith attribute rank in the kth sorted, and aggregation function is 
specified as . Depending on their general ranks, the attributes are arranged from 
the largely relevant to the most irrelevant features in the resultant ensemble result 
(Wald et al., 2012).

Figure 4 Flow diagram of RFE algorithm (see online version for colours)

3.4 RF classification

In the RF, the CART method is used to expand many DTs according to the bootstrap 
merging (bagging) method (Galletta, 2016). The CART method is to discover the proper 
categorisation of many related attributes (y) and many non-related attributes (x) 
(Lee et al., 2020; Alam et al., 2019). In RF, all trees arbitrarily elect a division of the 
database to create a self-determining DT. It depends on the majority of trees attained by 
voting. The building of RF can be discussed below:

Step 1: Creates N amount of bootstrap examples from the given database.

Step 2: Every node gets an arbitrary example of features with m size, such that  
(M is denoted as the overall amount of attributes).

Step 3: Builds an opening via the m features chosen in Step 2 and computes the k node 
through the optimal division point. (‘k’ is denoted as the next node).

Step 4: A replicate splitting tree awaiting simply a single leaf node is attained, and the 
tree is terminated.

Step 5: This procedure is executed on all bootstrapped examples independently.

Cancer dataset

Train the features using recursive features

Improve the significance of all attributes

Discard the low significant attributes

Compute the categorization accuracy of feature 

Attribute set is null 
or not

Select the optimal feature

No

Yes

  1 2( , , )i i i i iBscore score f aggr r r r  

ikr
aggr

m M
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Step 6: Trees used a categorisation voting to acquire the categorisation information from 
the (n) trained trees.

Step 7: Maximum voted attributes are used to construct the last RF system.

Figure 5 refers to the structure of the RF classifier algorithm for a given cervical cancer 
dataset. RF helps to define the tree with many decisions at the training base and mode of 
class’s output by tree. RF is basically a grouping of tree predictors that every tree relies 
on, and the random vector values are illustrated individually along with a similar level of 
distribution. Single DTs are suitable due to their high variance and bias (Alam et al., 
2019). Instead of splitting a tree node using all features, it selects nodes from each tree, 
and it’s only used as candidates to discover the optimal partition for the node. The 
inspiration following this two-phase randomisation is to de-connect trees, and thus, forest 
ensembles hold lower variance, a bagging scheme. Consequently, it is focused on 
reducing the variance. RF trees are demonstrated with the purpose of huge sample 
reliability needs terminal nodes along with huge sample sizes (Zhou et al., 2016); 
empirically, it is seen that the purpose of purity is frequently effectual, whereas the 
feature space is huge or the lesser number of samples. Deep trees are grown without 
pruning; in such cases, it promotes low bias when aggregation decreases variance and 
lower error (Zhou et al., 2016). Samples are chosen depending on the aggregation 
function, and their features are fed into the RF classifier. Lastly, the RF classifier is 
successfully classifying the cervical cancer output over the known dataset.

Figure 5 Structure of RF classifier algorithm (see online version for colours)

4 Results and discussion

This part discusses the outcomes of several classifiers experimented on the cervical 
tumour database from UCI (Fernandes et al., 2017), which contains past clinical samples, 
behaviour, and statistical data for 858 patients, along with 32 attributes for every patient. 
Missing values are replaced via the observation’s values for neighbouring data samples. 
It recognises the neighbouring samples via distance computation, and the missing values 
can be found through the finished values of neighbouring observations. In the kNN 
algorithm, the main purpose is to distinguish ‘k’ samples in the given dataset which are 

Summation of all results 

Cervical Cancer dataset Construct n-number of tress

Select the data randomly
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related or nearby values over the space. Subsequently, ‘k’ samples are used to calculate 
the missing values. Every sample’s missing points can be imputed through the ‘k’-
neighbour’s mean value established in the given dataset. In the existence of missing data 
points, the Euclidean distance is computed by avoiding the missing data points and 
scaling up the weight of the non-missing data points, and it is calculated via equation 
(12),

(12)

(13)

4.1 Evaluation metrics

The results of all the classifiers are measured via the metrics like precision, sensitivity, 
specificity, f-measure, and accuracy, as shown by equations (14)–(18). Precision refers to 
the ratio of positive samples that have been accurately identified as positive. Recall or 
sensitivity described that the positive examples are selected to the complete amount of 
positive examples. Specificity is important to identify the suitable and unsuitable results 
done through the particular classifier. F-measure is described as the harmonic average of 
recall and precision. Accuracy is evaluated, which is assumed to be one of the extensively 
regarded measures used to study the performance of classifiers.

(14)

(15)

(16)

(17)

(18)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False 
Negative.

4.2 Simulation experiment

The given dataset is imbalanced; the number of cancer files is smaller than the number of 
general files; thus SMOTE technique is applied to balance the amount of both classes. 
Classifications like SVM and RF algorithms are applied to examine the results of FS 
schemes and categorise the samples into either cancer patients or non-cancer patients. 
The experimentation is performed before and after SMOTE with the three FS algorithms.

*     xyd weight squared distance fromcurrent coordinates

Overall amount of coordinatesweight
Amount of current coordinates



    TPRecall R /  Sensitivity Sen
TP TN




  TNSpecificity Spe
TN FP




 Precision P TP
FP TP




2. PRF measure
P R

 


  TP TNAccuracy Acc
TP TN FP FN




  
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Table 1 Results performance comparison of cervical cancer datasets vs. metrics

Hinselmann test results (%)Imbalanced 
algorithm FS+ Classifiers Precision Recall F-measure Specificity Accuracy

SVM + RFE 61.0581 84.4107 70.9503 80.6707 86.8298
SVM + PCA 61.1065 87.6457 71.6946 81.4620 87.6457
SVM + EFS 61.1924 88.4615 72.4380 84.3458 88.4615
RF + RFE 62.4831 89.2774 72.9300 84.4107 89.2774
RF + PCA 63.7112 89.9767 74.8373 85.3066 89.9767B

ef
or

e 
SM

O
TE

RF + EFS 66.1292 91.9580 76.8447 89.0314 91.9580
SVM + RFE 61.6768 85.9000 71.8004 84.0907 88.6946
SVM + PCA 64.1042 87.1151 73.8589 85.9000 91.0256
SVM + EFS 65.3877 90.3975 76.3316 87.1151 91.1246
RF + RFE 66.0537 93.9542 77.1103 87.3992 92.0746
RF + PCA 70.2417 94.2267 80.4853 87.6527 93.4581A

fte
r S

M
O

TE

RF + EFS 71.8750 97.2661 82.6647 90.4801 94.7552
Schiller test results (%)Imbalanced

algorithm
FS+
Classifiers Precision Recall F-measure Specificity Accuracy
SVM + RFE 61.1281 84.4241 70.9651 80.4734 86.1198
SVM + PCA 61.1924 86.5089 72.4380 81.9325 87.1741
SVM + EFS 69.1510 88.0774 76.8621 82.0511 88.7892
RF + RFE 71.3677 88.2050 78.8470 84.4107 89.3939
RF + PCA 71.6783 89.0314 79.0875 86.5343 89.6270B

ef
or

e 
SM

O
TE

RF + EFS 75.2701 93.0243 83.2107 89.1224 91.7249
SVM + RFE 61.6768 85.9000 71.8004 85.2154 88.1147
SVM + PCA 64.1042 87.1151 73.8589 87.0329 91.0171
SVM + EFS 75.0350 93.5604 83.5011 87.1151 91.4917
RF + RFE 77.5046 93.7259 84.8469 87.1869 93.0070
RF + PCA 79.1498 94.1206 85.7539 87.5540 93.4182A

fte
r S

M
O

TE

RF + EFS 80.6343 95.7788 87.5565 89.0965 94.5221
Citology test results (%)Imbalanced

algorithm
FS+
Classifiers Precision Recall F-measure Specificity Accuracy
SVM + RFE 61.0581 84.4107 70.9503 79.7383 86.8298
SVM + PCA 61.1924 85.7187 72.4380 81.6810 87.1795
SVM + EFS 62.7268 87.8071 72.4422 82.7667 88.4615
RF + RFE 65.1347 88.9742 75.2105 83.9381 89.2774
RF + PCA 65.7271 89.0314 75.9971 84.4107 89.6841B

ef
or

e 
SM

O
TE

RF + EFS 66.9874 90.2334 76.0549 89.0314 91.1422
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Table 1 Results performance comparison of cervical cancer datasets vs. metrics (continued)

Citology test results (%)Imbalanced
algorithm

FS+
Classifiers Precision Recall F-measure Specificity Accuracy
SVM + RFE 61.6768 85.9000 71.8004 83.5667 88.6946
SVM + PCA 64.1042 87.1151 73.8589 84.5952 90.9091
SVM + EFS 67.0756 89.8342 76.8044 85.9000 91.0256
RF + RFE 70.4175 90.9398 79.3736 86.5093 93.1170
RF + PCA 73.1006 92.9975 82.1299 87.0148 93.7647A

fte
r S

M
O

TE

RF + EFS 74.7429 93.7039 82.8769 87.6564 94.8718
Biopsy test results (%)Imbalanced

algorithm
FS+
Classifiers Precision Recall F-measure Specificity Accuracy
SVM + RFE 61.4814 84.4107 72.9460 70.9503 86.1198
SVM + PCA 61.9712 89.0314 75.5013 72.4380 87.7622
SVM + EFS 66.6700 90.2491 78.4595 76.9298 88.2615
RF + RFE 68.2305 90.9215 79.5760 78.2545 89.1214
RF + PCA 69.0640 91.7310 80.3975 79.0713 89.8601B

ef
or

e 
SM

O
TE

RF + EFS 70.3573 92.8892 81.6232 79.2241 91.2587
SVM + RFE 61.6768 85.9232 73.8000 85.9000 88.1231
SVM + PCA 64.1042 87.1151 75.6096 86.1073 91.0256
SVM + EFS 71.2841 92.5654 81.9247 86.4896 91.6084
RF + RFE 72.4068 92.9721 82.6894 86.8372 92.3077
RF + PCA 72.4998 93.3452 82.9225 87.1151 92.4242A

fte
r S

M
O

TE

RF + EFS 76.3681 95.2553 85.8117 88.6096 94.2890

4.2.1 Hinselmann test

In this test, the RF previous to SMOTE attained an overall accuracy of 91.9580% for the 
EFS algorithm. RF with SMOTE algorithm attained overall accuracy of 94.7552% with 
the EFS algorithm. The SMOTE improved the accuracy by 2.7952%, sensitivity was 
improved from 91.9580% to 97.2661%, specificity was improved from 89.0314% to 
90.4801%, precision was improved from 66.1292% to 71.8750%, and F-measure was 
improved by 76.8447% to 82.6647% as shown in Table 1.

Figures 6 and 7 show the metrics results of the comparison of classifiers before and 
after SMOTE for the Hinselmann test. In Figure 6, the proposed algorithm gives an 
enhanced accuracy value of 91.9580%, the other classifiers like SVM + RFE, 
SVM + PCA, SVM + EFS, RF + RFE, and RF + PCA give the accuracy value of 
86.8298%, 87.6457%, 88.4615%, 89.2774%, and 89.9767% respectively(See Table 1). 
The proposed system has a 5.1282%, 4.3123%, 3.4965%, 2.6806%, and 1.9813% 
increased accuracy value when compared to SVM with RFE, PCA and EFS, RF with 
RFE, and RF with PCA methods respectively(See Table 1).
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Figure 6 Hinselmann test results before SMOTE vs. classifiers (see online version for colours)

Figure 7 Hinselmann test results after SMOTE vs. classifiers (see online version for colours)

Figures show the overall metrics results from a comparison among SMOTE and non-
SMOTE methods against classifiers. Figure 7 results show that the proposed algorithm 
gives an enhanced accuracy value of 94.7552%, and the other classifiers like 
SVM + RFE, SVM + PCA, SVM + EFS, RF + RFE, and RF + PCA give the accuracy 
value of 88.6946%, 91.0256%, 91.1246%, 92.0746%, and 93.4581% respectively
(See Table 1) (See Table 1). The proposed system has a 6.0606%, 3.7296%, 3.6306%, 
2.6806%, and 1.2971% increased accuracy value when compared to SVM with RFE, 
PCA and EFS, RF with RFE, and RF with PCA methods respectively(See Table 1).
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4.2.2 Schiller test

In this test, the RF before SMOTE attained overall accuracy of 91.7249% for the EFS 
algorithm. RF with SMOTE algorithm attained overall accuracy of 94.5221% with the 
EFS algorithm. The SMOTE improved the accuracy by 2.7972%, sensitivity was 
improved from 93.0243% to 95.7788%, specificity was improved from 89.1224% to 
89.0965%, precision was improved from 75.2701% to 80.6343%, and F-measure was 
improved by 83.2107% to 87.5565% as shown in Table 1.

Important metrics results from a comparison of classifiers before and after SMOTE 
for the Schiller test are illustrated in Figures 8 and 9. The proposed algorithm gives an 
enhanced accuracy value of 91.7249%, and the other classifiers like SVM + RFE, 
SVM + PCA, SVM + EFS, RF + RFE, and RF + PCA give the accuracy value of 
86.1198%, 87.1741%, 88.7892%, 89.3939%, and 89.6270% respectively(See Table 1). 
The proposed system has a 5.6051%, 4.5508%, 2.9357%, 2.3310%, and 2.0979% 
increased accuracy value when compared to SVM with RFE, PCA and EFS, RF with 
RFE, and RF with PCA methods respectively(See Table 1).

Figure 8 Schiller test results before SMOTE vs. Classifiers (see online version for colours)

Figure 9 shows that the proposed algorithm gives an enhanced accuracy value of 
94.5221%, the other classifiers like SVM + RFE, SVM + PCA, SVM + EFS, RF + RFE, 
and RF + PCA give the accuracy value of 88.1147%, 91.0171%, 91.4917%, 93.0070%, 
and 93.4182% respectively (See Table 1). The proposed system has a 6.4074%, 3.5050%, 
3.0304%, 1.5151%, and 1.1039% increased accuracy value when compared to 
SVM + RFE, SVM + PCA, SVM + EFS, RF + RFE, and RF + PCA methods respectively 
(See Table 1).
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Figure 9 Schiller test results after SMOTE vs. Classifiers (see online version for colours)

4.2.3 Citology test

In this test, the RF before SMOTE attained overall accuracy of 91.1422% for the EFS 
algorithm. RF with SMOTE algorithm attained overall accuracy of 94.8718% with the 
EFS algorithm. The SMOTE improved the accuracy by 3.7296%; sensitivity was 
improved from 90.2334% to 93.7039%, specificity was improved from 89.0314% to 
87.6564%, precision was improved from 66.9874% to 74.7429%, and F-measure was 
improved by 76.0549% to 82.8769% as shown in Table 1.

Overall metrics results from classifiers comparison before and after SMOTE for 
Cytology test are illustrated in Figures 10 and 11. The proposed algorithm gives an 
enhanced accuracy value of 91.1422%, and the other classifiers like SVM + RFE, 
SVM + PCA, SVM + EFS, RF + RFE, and RF + PCA give the accuracy value of 
86.8298%, 87.1795%, 88.4615%, 89.2774%, and 89.6841% respectively(See Table 1). 
The proposed system has a 4.3124%, 3.9627%, 2.6807%, 1.8648%, and 1.4581% 
increased accuracy value when compared to SVM with RFE, PCA and EFS, RF with 
RFE, and RF with PCA methods respectively(See Table 1).

Figure 11 shows that the proposed algorithm gives an enhanced accuracy value of 
94.8718%, the other classifiers like SVM + RFE, SVM + PCA, SVM + EFS, RF + RFE, 
and RF + PCA give the accuracy value of 88.6946%, 90.9091%, 91.0256%, 93.1170%, 
and 93.7647% respectively(See Table 1). The proposed system has a 6.1772%, 3.9627%, 
3.8462%, 1.7548%, and 1.1071% increased accuracy value when compared to 
SVM + RFE, SVM + PCA, SVM + EFS, RF + RFE, and RF + PCA methods respectively 
(See Table 1).

4.2.4 Biopsy test

In this test, the RF before SMOTE attained overall accuracy of 91.2587% for the EFS 
algorithm. Following SMOTE algorithm, the RF classifier attained overall accuracy of 
94.2890% with the EFS algorithm. The SMOTE improved the accuracy by 3.0303%; 
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sensitivity was improved from 92.8892% to 95.2553%, specificity was improved from 
79.2241% to 88.6096%, precision was improved from 70.3573% to 76.3681%, and 
F-measure was improved by 81.6232% to 85.8117% as shown in Table 1.

Figure 10 Citology test results before SMOTE vs. Classifiers (see online version for colours)

Figure 11 Citology test results after SMOTE vs. Classifiers (see online version for colours)

Overall metrics results from classifiers comparison before and after SMOTE for biopsy 
test are illustrated in Figures 12 and 13. The proposed algorithm gives an enhanced 
accuracy value of 91.2587%, and the other classifiers like SVM + RFE, SVM + PCA, 
SVM + EFS, RF + RFE, and RF + PCA give the accuracy value of 86.1198%, 87.7622%, 
88.2615%, 89.1214%, and 89.8601% respectively (See Table 1). The proposed system 
has a 5.1389%, 3.4965%, 2.9972%, 2.1373%, and 1.3986% increased accuracy value 
when compared to SVM with RFE, PCA and EFS, RF with RFE, and RF with PCA 
methods respectively(See Table 1).
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Figure 12 Biopsy test results before SMOTE vs. Classifiers (see online version for colours)

Figure 13 Biopsy test results after SMOTE vs. Classifiers (see online version for colours)

Figure 13 shows that the proposed algorithm gives an enhanced accuracy value of 
94.2890%, and the other classifiers such as SVM with RFE, PCA and EFS, RF with RFE, 
and RF with PCA give the accuracy value of 88.1231%, 91.0256%, 91.6084%, 
92.3077%, and 92.4242% respectively(See Table 1). The proposed system has a 
6.1659%, 3.2634%, 2.6806%, 1.9813%, and 1.8648% increased accuracy value when 
compared to SVM with RFE, PCA and EFS, RF with RFE, and RF with PCA methods 
respectively(See Table 1). From the results, all the tests after SMOTE with the proposed 
algorithm give higher results for all the metrics when compared to before SMOTE 
algorithm.
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5 Conclusion and future work

This study focuses on diagnosing cervical cancer, hence the missing values, irrelevant 
attributes, and imbalanced samples. SMOTE is proposed to fix unbalanced data. EFS 
recognise cervical cancer patients’ most important characteristics. EFS combine EEHO, 
EBFO, and RFE to get better results than a single FS approach. ECE determines to 
attribute weight in BFO and EHO. ECE uses KL distance to duplicate the distance 
between the target class possibility and the target class on a certain attribute condition. 
RFE used an FS method that used RF to order qualities and eliminate the weakest ones. 
The suggested classification method uses feature subsets produced using an aggregation 
function. The optimal attribute subset depends on classification performance and 
diagnosis efficiency. RF classifier is recommended for classification and RF methods; 
CART is applied to many DTs depending on the bagging method. SMOTE improves the 
proposed classification’s overall efficacy compared to other categories. The SMOTE-RF-
EFS approach improves cervical cancer test precision, recall, specificity, f-measure, and 
accuracy. Future work could use numerous approaches to solve the imbalanced issue and 
various classification methods, especially ensemble schemes, to boost model efficiency.
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