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Abstract: In this paper, we have presented an optimising approach based on 
equilibrium optimiser (EO) algorithm for solving the capacitated vehicle 
routing problem (CVRP). The CVRP is considered one of the NP-hard 
combinatorial optimisation problems and most of algorithms failed to reach 
optimality in these problems. The EO algorithm is a powerful technique in 
solving several combinatorial optimisation problems. The performance of the 
EO algorithm compared with the artificial bee colony algorithm, the particle 
swarm optimisation algorithm, and the whale optimisation algorithm. The 
computational results obtained for the CVRP model illustrate the power of the 
EO algorithm over the competitor algorithms. 
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1 Introduction 

In the coming decade, especially in such conditions as the spread of the Covid-19 virus, 
the experts expect that the logistics business will encounter a pivotal evolution worldwide 

(Huang et al., 2019). In China, the logistics business has shown speedy growth in the last 
years and has listed on top of 45 world markets (Deloitte Research, 2017). In the US, the 
logistics business increased to 12.7% resulting in more than 400,000 available job 
positions (Damicis, 2018), also, in India and Europe (Mukherjee, 2017; Savills 
Investment Management, 2016). Satisfying growing customers’ orders is the prominence 
in the civilised logistics dynamically and effectively in various areas like trading 
companies, retail store. Hence, the companies should find new technology methods to 
serve customers quickly and flexibly way and vie in the market to satisfy customer 
demands. 

To fast customers serving in smart cities, researchers try to solve the vehicle routing 
problem (VRP) by many different methods to minimise the cost and time to deliver all 
customer demand. In VRP, selecting the order of customers to visit by using a set of 
vehicles such that each vehicle should start the journey from the depot, then visit a set of 
customers (less than the total customers), and it must return to the same depot. The VRP 
is NP-hard combinatorial optimisation problems and very difficult to solve a large 
instance. So, many heuristic methods applied to solve the VRP to get better solutions 
(Heuristics et al., 2002; Vidal et al., 2013). Recently, metaheuristic methods also used to 
address the VRP and try to reach optimality. A great deal of research has accomplished 
on the VRP. The state of the art metaheuristic algorithms used to solve the VRP includes, 
for example, the Tabu Search (Gendreau et al., 2008; Brandão, 2004; Montané et al., 
2006), the simulated annealing (Afifi et al., 2013; Normasari et al., 2019), the artificial 
bee colony algorithm (Yao et al., 2017; Chen and Zhou, 2018), the particle swarm 
optimisation algorithm (Marinakis et al., 2018, 2010; Gong et al., 2012). An efficient 
review of using metaheuristic algorithms for solving the VRP and its variants presented 
in Elshaer and Awad (2020). 

Metaheuristic algorithms have developed to solve hard or difficult NP  real-world 
optimisation problems as stochastic techniques. These algorithms used to solve different 
problems in varied fields, for example, in engineering (Hadavandi et al., 2018), financial 
(Hafezi et al., 2015), bioinformatics (Das et al., 2008), and medicinal field (Lin et al., 
2012). Also, these algorithms do not need to have full accommodate for problems. The 
most popular category of metaheuristic algorithms is natured-inspired algorithms. The 
nature-inspired algorithms designed to imitate natural phenomena such as materialistic  
and living organisms’ phenomena or animal behaviour. In 1968, Dommel and Tinney 
introduced the first solution method for the optimal power flow problem (Dommel and 
Tinney, 1968). After this, several algorithms of other nature-inspired organised. For 
examples of these algorithms, the PSO algorithm designed to inspire the school 
behaviour of the fish or behaviour of the flowing birds (Kennedy and Eberhart, 1995). 
Artificial bee colony algorithm introduced by inspiring the rummaging and jumping 
behaviour of honey bees (Karaboga, 2005). The Whale optimisation algorithm which 
mimics the behaviour of humpback whales (Mirjalili and Lewis, 2016). And others 
(Rizk-Allah et al., 2018; Rizk-Allah and Hassanien, 2018; Rizk-Allah et al., 2018; Fares 
et al., 2020). 
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This paper proposed solving the CVRP by the new bio-inspired equilibrium optimiser 
(EO) algorithm which introduced recently in 2019 (Faramarzi et al., 2020). The 
computational results presented in the subsequent sections prove that the EO algorithm is 
more efficient than the ABC, PSO, and WOA algorithms. 

The remainder of this paper is structured as follows. Section 2 presents an overview 
of the mathematical definition of CVRP and the EO algorithm. The computational results 
presented in Section 3. Finally, the conclusion and the future work in Section 4. 

2 Preliminary 

2.1 Capacitated vehicle routing problem (CVRP) formulation 
The CVRP is a variant of VRPs. The main goal of CVRP is to obtain the shortest travel 
distance of vehicles ( )m  that visit or serve a group of customers ( )n . The CVRP 
controlled by a set of constraints, such that: 

• each vehicle starts from the depot, serve a group of customers, and must return to 
that depot 

• each customer must be served by one vehicle 

• all demands of all customers assigned to one vehicle cannot exceed the capacity  
of that vehicle. 

In mathematics as (Yao et al., 2017), the objective function of the CVRP described as 
follows: 
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where 0  is the depot position index, 1 k
ijX =  if the edge from customer i  to customer j  

visited by vehicle k ; else,  0k
ijX =  such that   i j≠ , and all other notations listed in 

Nomenclature and Abbreviations. 
The primary objective function presented in equation (1). While equations (2) and (3) 

guarantee that each customer can be visited by one vehicle. Equation (1) keeps a 
connection in each node for each vehicle. Equation (5) guarantees that the total demands 
of all customers assigned to one vehicle cannot overtake its full capacity. Likewise, 
equation (6) assurances that the total travelled distance of a vehicle’s path cannot pass the 
length limit of the path. Equation (7) guarantees that each vehicle could be hired only 
once and each vehicle requires to begin its tour from the depot and return to that depot. 
Equation (8) apply constraints to delete any uncomplete path. Moreover, the border 
entireness constraint presented in equation (9). 

2.2 The equilibrium optimiser (EO) 

Recently in (2019), Seyedali Mirjalili et al. developed the EO algorithm (Faramarzi et al., 
2020). The EO algorithm inspired by the control volume mass balance models used to 
estimate both dynamic and equilibrium states. For the inspiration details see (Faramarzi 
et al., 2020). The mathematical description of the EO algorithm as the following steps: 

Step 1: The EO algorithm initialisation a collection of particles, where each particle 
expresses the concentration that includes the solution to the problem. The primary 
concentrations are randomly formed in the search space by the next equation: 

( )*         0,1,2, ,i min max minV C r C C i n= + − = …  (10) 

such that iV  is the concentration for the particle i , minC  is the upper bound, and maxC  is 
the lower bound of the dimension of the problem. r  is a random number in [0,1] . n  is 
the max number of particles. 

Step 2: The EO algorithm considers the equilibrium state as the global optima of the 
optimisation problem or near of it. Therefore, the main goal of the EO algorithm is to 
search for the equilibrium state in the search space. When the EO algorithm starts, the 
level of the concentration is anonymous for it such reach the equilibrium state. Therefore, 
it allocates five particles: first four of particles are the best-so-far found in the population 
at equilibrium candidates and their average. The first four particles assist in the 
diversification process of the EO algorithm and the average assists in the intensification 
process. 

( ) ( ) ( ) ( ) ( ),  1 2 3 4{ , , , , }eq pol eq eq eq eq eq aveP P P P P P=  (11) 
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For more details for the equilibrium candidates can found in (Faramarzi et al., 2020). 

Step 3: the next term serves EO to a believable equilibrium between intensification and 
diversification. Because rotation average can change through time in a real control 
volume, λ  is supposed to be a random vector between 0 and 1. 

0( ) t tF e λ− −=  (12) 

where t  is reduced with increasing the iteration ( )it  by the next equation: 

* 2

1  
max

it a
t

max

itt
t

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (13) 

such that it  is the current iteration, maxt  is the max number of iterations, and 2a  is a 
constant used to manage intensification capability. Latter constant, 1a , is used to develop 
the diversification and intensification of EO and is designed as the next formula: 

( )0
1 ln 1* ( 0.5)[1  ]  tt t a sign r e λ

λ
−= + − − −  (14) 

Generation rate ( )R  is a latter factor used to increase the intensification capability and is 
formed in the next equation: 

0( )
0 * k t tR R e− −=  (15) 

where k  is random vector in [0,1] , and 0R  is the initial generation rate value and is 
formed as the following equation: 

0 *( * )eqR GCP C Cλ= −  (16) 

And 

1 20.5                     , 
 

0                      otherwise
r r RP

GCP
>⎧

=⎨
⎩

 (17) 

where 1 2,  r r  are random numbers in range [0,1] . GCP  is a control parameter of the 
generation rate that decides whether the R  will be used to the updating process 
according to the value of the RP  probability parameter. The EO updating equation as the 
next equation: 

( ) ( )  * * 1 ,
*eq eq
RC C C C F F

Vλ
= + − + −  (18) 

where V  is set to be 1 . For more details for the equilibrium candidates can found in 
(Faramarzi et al., 2020). Figure 1 presents the flowchart of the EO algorithm. 
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Figure 1 The EO mode (see online version for colours) 

 

3 Experimental results 

3.1 Instance generation and categories 
According to Uchoa et al. (2017), the CVRP instances can be modified with the 
following features:  

1 placement and the number of customers 

2 placement of deposit 

3 distribution of demand 

4 average route size or several routes, defined by vehicle capacity.  

All instances generated by trying to sample a representative set of instances, randomising 
the choice of features for a particular instance within reasonable limits. By defining these 
limits, the definition of different instance classes could arrive automatically. All instances 
categorised into three categories. Small instance set (  )Category A  with 8–25 customers, 
medium instance set (  )Category B  with 30–70 customers, and a larger instance set 
(  ) CategoryC  with 100 250−  customers. Note that all customers randomly and evenly 
located on a square grid—also, Customer clustering not considered in these experiments. 

All instances used in this paper generated and solved on HP laptop ProBook 6360b 
with    5 2410Intel Processor Corei M−  &  2.30 CPU GHz  and 6  GB RAM . The  
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experiments and algorithms coded in MATLAB 2013a. Table 1 contains all parameter 
settings used for each algorithm, while Table 1 includes the details for the used instances. 
Where (   Depot Position ) is the position of the depot in which all vehicles start and back 
to it. For example, Figure 2 shows the instances 1, 6,S S  and 11S , respectively, where the 
Blue circles represent the customers’ positions, and the Green square is the depot 
position. 

Table 1 Instances details 

Instance n M Depot position (XQ,YQ) 
S1 8 3 [93,47] 
S2 10 3 [88,49] 
S3 14 4 [93,47] 
S4 20 4 [111,40] 
S5 25 5 [117,42] 
S6 30 5 [86,55] 
S7 40 6 [114,42] 
S8 50 7 [109,51] 
S9 60 7 [82,45] 
S10 70 8 [98,50] 
S11 100 10 [101,45] 
S12 250 15 [83,45] 

Figure 2 Sample of instances: (a) S1 instance; (b): S6 instance and (c): S11 instance (see online 
version for colours) 
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3.2 Graphical results 

Table 2 contains graphical results for instances ( S1,S6,S9,  and S11) for EO, ABC, PSO, 
and WOA algorithms, respectively. Each figure demonstrates constructed paths for each 
vehicle in each instance. Each colour represents one path for one vehicle, the small 
circles represent the customers, and the Yellow square represents the depot. The EO 
algorithm in each iteration construct solution. This solution contains paths for each 
vehicle that starts from the depot, serve its assigned customers, and return to the depot at 
the end. At each iteration, each path updated based on minimising the cost and 
constructing the smallest path. The EO algorithm guaranteed that all customer’s demands  
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must be served; in other words, there are no customers who may not be served. As in 
Table 2, instance 1   ,S as an example  all algorithms constructed excellent paths. For all 
other instances (from 2S  to 12S ), the EO algorithm gives shorts, clear, simple, and 
smallest cost paths for each vehicle while competitors could not. 

Table 2 Graphical results for the EO algorithm and its competitors for all instances 
( 1, 6, 9, and 11S S S S ) (see online version for colours) 

Instance EO ABC PSO WOA 
S1  

  

S6  

 

 

  
S9 

    
S11 

    

3.3 Convergence curves 

Figure 3 contains some convergence curves for instances (S1,S6,S9,  and S11). The 
-axisy  is the BestCost , while the -axisx  is the maximum number of function 

evaluations ( )FunctionEvals , which depending on the number of customers and the 
number of vehicles. The FunctionEvals  calculated as follows: 

3 *FunctionEvals m n= , 

the  FunctionEvals  differ from instance to another, and it increased while the number of 
customers increased, or the number of vehicles increased. All algorithms controlled to 
run for a fixed number of FunctionEvals  to get a fair comparison between each of them. 
As clear in Figure 3, all curves prove the superiority of the EO algorithm over its 
competitors. 
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Figure 3 Convergence curves for instances ( 1, 6, 9, and 11S S S S ) (see online version for colours) 
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3.4 Analysis of statistical results 

All algorithms run for ten times for all instances, and the best analytical results presented 
in Tables 3–6. Table 4 contains the Best Cost obtained (  )Best Cost  and the CPU time in 
Seconds took by each algorithm to form a feasible solution ( )CPU  for WOA, PSO, 
ABC, and EO algorithms for each instance. For instance, 1,  S  ABC, and EO algorithms 
obtained the same costs (  220.163)Best Cost =  (first row in Table 3). As indicated in 
Table 3, the EO algorithm obtained  Best Cost  values over its competitors for all 
instances used in this comparison and also for the CPU  time. Table 4 contains the mean 
values of best cost vectors ( )Mean  and the stander deviation ( STD ). For instances 
 1  and  2S S , the ABC algorithm got the smallest Mean  values. But for all other 
instances, the EO algorithm got the smallest Mean  values. 

Table 3 Best cost and CPU time results for the EO algorithm and its competitors 

WOA PSO ABC EO 
Instance Best Cost CPU(s) Best Cost CPU(s) Best Cost CPU(s) Best Cost CPU(s) 

S1 252.071 26.4688 227.652 5.7031 220.163 10.0469 220.163 0.125 
S2 313.036 142.25 291.298 7.5313 291.109 12.8125 284.979 0.10938 
S3 383.465 153.375 281.571 25.2656 310.709 44.0781 275.402 0.375 
S4 443.920 397.8438 401.516 40.5313 401.761 72.6406 340.125 0.59375 
S5 540.078 198.5781 468.027 97.375 498.399 174.4219 327.709 1.3438 
S6 678.602 359.7656 659.668 133.1563 628.305 236.7969 347.785 1.8281 
S7 674.214 829.2344 733.091 330.3594 746.895 599.3594 364.251 4.6719 
S8 789.530 11967.25 903.404 727.5469 885.133 1345.437 370.333 9.875 
S9 838.258 13580.91 1066.56 907.0781 996.625 1649.891 379.702 11.6875 
S10 630.249 14284.094 1278.14 1461.5 885.525 2469.031 376.823 22.75 
S11 799.702 96384.625 1771.58 4768.031 1019.60 7741.718 413.065 78.25 
S12 1549.003 747392.35 4417.31 55292.45 3316.71 79884.82 500.825 913.078 

The main objective of optimising the CVRP problem is to find the shortest path 
(distance) to visit the assigned customers and go back to the depot for all vehicles.  
Table 4 contains all distances travelled by all vehicles for each algorithm for all 
instances. Where maxD  is the longest distance covered by one vehicle and remainder 
vehicles less than or equal to maxD . The totalD  is the total distance for all vehicles will 
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be cover from the depot to all customers and return to the depot. All best results 
highlighted in Bold format in Table 5. As an example, for instance 1S , all algorithms got 
equals  ( 186.59)maxD maxD =  and (   522.36)totalD totalD = . In instance 3S , the PSO 
algorithm obtained the smallest ( 217.6),maxD maxD =  but the smallest 

 (  786.31)totalD totalD =  obtained by the EO algorithm. For all instances, The EO 
algorithm got the smallest totalD  except instance 12S  obtained by the WOA algorithm 
( 6512.6)totalD =  and got the smallest maxD  except instance 3S  obtained by the PSO 
algorithm ( 217.6)maxD = . These results in Table 5 confirm that the EO algorithm can 
always get the shortest paths over its competitors in all conditions. 

Table 4 Mean, STD, and function evaluations for the EO algorithm and its competitors 

WOA PSO ABC EO 
Instance Mean STD Mean STD Mean STD Mean STD 

Function-
Evals 

S1 253.018 9.026 231.152 10.893 221.771 5.464 256.196 159.740 216 
S2 315.551 15.996 317.312 35.478 305.593 20.466 361.536 185.086 270 
S3 383.465 3.179 307.496 43.157 328.433 25.782 296.966 87.837 896 
S4 452.373 32.731 416.790 46.575 419.901 29.613 367.087 50.733 1280 
S5 583.234 60.631 504.602 45.914 520.021 33.143 383.295 160.641 3125 
S6 691.688 38.032 679.316 47.103 645.484 37.827 420.196 199.807 3750 
S7 698.804 75.3307 789.978 59.858 784.938 47.756 426.008 144.139 8640 
S8 802.228 34.233 909.880 41.726 945.731 63.643 440.990 157.062 17150 
S9 850.132 47.729 1073.29 49.536 1032.887 46.944 477.780 198.198 20580 
S10 675.173 86.010 1330.50 62.004 1071.156 166.244 470.407 189.573 35840 
S11 844.856 116.109 1902.08 54.388 1211.289 285.284 498.353 167.252 100000 
S12 1697.634 270.809 4482.83 80.539 3517.628 189.946 631.447 211.115 843750 

Table 5 All distances travelled by all vehicles for the EO algorithm and its competitors 

WOA PSO ABC EO 
Instance maxD totalD maxD totalD maxD totalD maxD totalD 
S1 186.59 522.36 186.59 522.36 186.59 522.36 186.59 522.36 
S2 244.14 715.70 244.14 715.70 244.24 712.95 239.52 694.14 
S3 286.94 905.19 217.60 857.33 223.48 868.04 218.63 786.31 
S4 305.46 1162.1 324.34 1096.1 320.74 1130.9 275.41 922.57 
S5 386.35 1598.4 343.32 1590.4 334.07 1511.6 246.65 1057.3 
S6 483.48 1970.7 462.03 2113.9 472.97 2026.3 254.43 1188 
S7 481.53 2408.3 528.8 2571.8 511.74 2863.3 254.53 1351.8 
S8 509.64 2987.9 612.55 3521.1 585.54 3581.5 247.72 1473.8 
S9 563.57 3201.7 700.75 4078.9 653.63 4083.6 259.18 1464.4 
S10 394.2 2692.8 733.16 5259.3 509.52 3797.8 242.84 1582.7 
S11 447.72 3901.1 1006.6 7758.2 564.72 4888.2 228.07 2078 
S12 518.4 6512.6 1821.6 20850 1535.9 17945 274.41 3138.6 
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Table 6 WSR test for the EO algorithm and its competitors 

p-value 
Instance EO VS. WOA EO VS. PSO EO VS. ABC 
S1 0.0234 1 1 
S2 0.0020 0.1934 0.1602 
S3 0.0039 0.0840 0.0098 
S4 0.0020 0.0020 0.0020 
S5 0.0020 0.0020 0.0020 
S6 0.0020 0.0020 0.0020 
S7 0.0020 0.0020 0.0020 
S8 0.0020 0.0020 0.0020 
S9 0.0840 0.0020 0.0020 
S10 0.0297 0.014 0.0625 
S11 0.0020 0.0020 0.0020 
S12 0.0172 0.0194 0.0156 

To test the performance of the EO algorithm, the Wilcoxon Signed-Rank (WSR) test used 
to estimate the statistically significant variation between any two algorithms. The 
statistical results for WSR presented in Table 6. The results show the superiority of the 
EO algorithm over its competitors at a 95%  significance level ( 0.05)a = . 

4 Conclusion and future work 

This paper proposed the EO algorithm for solving the CVRP model. The computational 
results proved that the EO algorithm has superior over the state-of-art algorithms. The EO 
algorithm perform better than the ABC, PSO, and WOA algorithms. The advantages of 
this study are it always finds the smallest best costs, shorts paths, best graphical results, 
best solutions, best convergence curves, and best mean values over its competitors. The 
future work for this paper can be using the EO algorithm to solve other versions of the 
VRP problem. For example, the dynamic vehicle routing problem, the multi depot 
vehicle routing problem, and the Feeder vehicle routing problem. 
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Nomenclature and Abbreviations 

Nomenclature 
n  Total number of customers id  Customer i  demand, 0   0d =  

m  Total number of vehicles k
ijX  A variable [0,1]∈  

ijC  Travelling cost from the customer i  to 
the customer j  

R  Set of customers visited by a vehicle 

iS  The time required to serve the 
customer i , 0  0S =  

R  Count of elements in R  

Q  Total capacity for each vehicle iT  Current temperature 

T  The greatest travelling distance of a 
vehicle 

rand  A random number in [ ]01  
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Abbreviations 
EO Equilibrium optimiser VRP Vehicle routing problem 
ABC Artificial bee colony  CVRP Capacitated vehicle routing problem 
PSO Particle swarm optimisation WSR Wilcoxon Signed-Rank 
WOA Whale optimisation algorithm   

 


