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Abstract: In the scope of multi-objective particle swarm optimisation 
(MOPSO) research, avoiding premature convergence remains a challenge. To 
address this issue, the article develops an enhanced multi-objective particle 
swarm optimisation with Levy flight (LF-MOPSO). In LF-MOPSO, swarm is 
made to evolve based on the original MOPSO to accelerate convergence. Then, 
Levy flight is adaptively activated to maintain diversity, so as to deal with the 
premature convergence when Pareto frontier is stagnant. It realises the 
transformation between shrinkage and divergence of population diversity by 
self-adaptive conversion mechanism, which further improves the search ability 
of MOPSO. LF-MOPSO has been contrasted with some recently improved 
MOPSOs, the experimental outcomes indicate that LF-MOPSO ensures the 
better approximation to the Pareto optimal frontier, and gains the non-
dominated solutions with good diversity and distribution. 
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1 Introduction 

There are many multi-objective optimisation problems (MOPs) in the real world, multi-
objective particle swarm optimisation (MOPSO) algorithms for MOPs are increasingly 
concerned in these years (Wang et al., 2018; Liu et al., 2020; Hu and Gong, 2021; Garg et 
al., 2020; Li et al., 2020; Xue et al., 2020, 2021). A lot of researches on MOPSO have 
been accepted for publication in different ways (Coello et al., 2004; Wang et al., 2013;  
Xu et al., 2015; Niu et al., 2019; Xu et al., 2020a; Zhang et al., 2020a, 2020b).  
In MOPSO, contrasted with single objective optimisation, getting a solution set in which 
the non-dominated solutions are diverse and well-distributed is very important for the 
ultimate compromise of MOPs. 

However, the fast convergence of particle swarm optimisation (PSO) (Kennedy and 
Eberhart, 1995) often means that it will lose diversity rapidly during the iteration, which 
necessarily brings about premature convergence. Due to the above shortcomings of PSO, 
although MOPSO possesses fine global search capability, the original MOPSO (Coello 
and Lechuga, 2002) cannot guarantee that the global convergence probability is one  
(Xu et al., 2020b). In the vicinity of Pareto solution, the optimisation effect of MOPSO 
abates significantly now and then. In order to solve problem of premature convergence, a 
lot of effective tactics are introduced in MOPSO, the improved MOPSOs can guarantee 
good approximation to the Pareto optimal frontier, and obtain non-dominated solutions 
with fine variousness and distribution. 

Coello et al. (2004) introduced a secondary repository of particles into MOPSO, and 
also added a special mutation operator to enrich the exploration ability. Kazuhiro et al. 
(2008) proposed a new MOPSO to solve structural problems. In this algorithm, a 
optimisation method base on gradient is united with MOPSO for reducing the difficulty 
of constraint processing. Chen et al. (2010) proposed a clonal selection principle based 
mixed immunisation multi-objective optimisation. In the improved MOPSO, by keeping 
an ideal balance between extensive search and small scale search, it raises search 
capability and accelerates the convergence rate to the Pareto optimal frontier. Xu et al. 
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(2015) presented a business like multi-objective dichotomy line search based MOPSO to 
attain satisfied results in the matter of quality of solution. Zhu et al. (2018) developed an 
new external archive-piloted MOPSO. This proposed algorithm accelerates the 
convergence speed of MOPSO. Han et al. (2018) developed an adaptive gradient 
MOPSO algorithm to enhance computation capability. Zhang et al. (2020a) proposed a 
modified particle swarm optimisation (AMPSO) to solve the multimodal multi-objective 
problems. An efficient multi-objective optimisation algorithm based on level swarm 
optimiser is presented to address the problem that the diversity and convergence of non-
dominated solutions are difficult to balance (Zhang et al., 2020b). 

Although a lot of works have been done to raise search capability and convergence 
for MOPSO, there is still space for improvement in MOPSO’s performance. In this 
research, an enhanced multi-objective particle swarm optimisation with Levy flight  
(LF-MOPSO) is presented to show that LF-MOPSO can get closer to the Pareto optimal 
frontier and the ultimate non-dominated solutions have good diversity and distribution. 
The remainder of this paper is arranged as below: Section 2 presents the original MOPSO 
algorithm; Section 3 gives the proposed approach; Section 4 gives simulation results and 
discussions; finally, Section 5 summarises this paper. 

2 Original MOPSO algorithm 

MOPSO is a random optimisation algorithm based on population. The particle’s position 
can be defined as 1 2( , ,..., )i i i iDx x x x= , and 1 2( , ,..., )i i i iDv v v v=  is the velocity. 

( ) ( ) ( ) ( )
1 2( , ,..., )t t t t

i i i iDp p p p=  is the best place of the ith particle in history during the iteration, 
( ) ( ) ( ) ( )

1 2( , ,..., )t t t t
g g g gDp p p p=  is the best place for the whole population so far. 

A successive minimising MOP is considered. It includes D  decision variables and 
m  objectives. 

1 2min ( ) ( ( ), ( ),..., ( )),
. . ( ) 0, 1, , ,

m

j

f x g x g x g x
s t l x j q

=⎧⎪
⎨ ≤ = ⋅⋅⋅⎪⎩

 (1) 

where 1( ,..., ) D
D xx x x S= ∈ ⊂ \  is the decision vector with D dimensions, xS  is the 

decision scope. ( )if x  is the ith target for MOP, ( )jl x  is the jth constraint. 
( ) m

yf x S∈ ⊆ \  is the target vector and yS  is the target scope. For convenience, this 
paper does not consider the constraint problems. 

One decision vector xa S∈  is called dominating the other xb S∈ , it must satisfy 
( ) ( )i ig a g b≤  and any i belongs to set{1,..., }m , moreover, the existence of i belonging to 

set{1,..., }m  makes ( ) ( )i ig a g b<  hold. This dominant relationship is denoted by a b≺ . 
In addition, if one solution which is called Pareto solution is not dominated by all 

other solutions. These Pareto solutions are deposited into an external archive ( )A t . 
Before algorithm running, the external archive is initialised as an empty set, denoted by 

(0)A . the best place of the ith particle in history ( )t
ip  is given as follows: 

( ) ( ) ( 1)
( )

( 1)

, ,

, .

t t t
i i it

i t
i

x if x p
p

p otherwise

−

−

⎧⎪= ⎨
⎪⎩

≺
 (2) 
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During the search, the archive ( )A t  is renewed by using ( 1)A t −  and ( )t
ip  as follows. 

( )( ) ( 1) t
iA t A t p= − ∪ , if ( )( 1) t

i it pλ − ≺; , (3) 

where 1 2( ) { ( ), ( ),..., ( )}HA t t t tλ λ λ= , H is the maximal allowable capacity of the external 
archive ( )A t . ≺;  denotes that neither of ( 1)i tλ −  and ( )t

ip  is dominated by the other. 
Moreover, the speeds and locations of particles at next step are renewed as follows: 

( 1) ( ) ( ) ( ) ( ) ( )
1 1 2 2

( 1) ( ) ( 1)

( ) ( ),

,

t t t t t t
i i i i g i

t t t
i i i

v wv c r p x c r p x

x x v

+

+ +

= + ⊗ − + ⊗ −

= +
 (4) 

where i  belongs to set{1, 2,..., }n , w  is the inertance weight, 1c  and 2c  are both the 
acceleration modulus, 1r  is stochastic number vector in which each component has a 
uniform distributed in [0,1], so is 2r , ⊗  is component-wise multiplications. 

( ) [ , ]t
id M Mv v v∈ −  with 1,2,...,d D= , Mv  and is the upper bound of speed, Mv−  is the 

lower bound of speed. ( )
m[ , ]t

id Mx x x∈ , Mx  is the upper limit of search, and mx  is the 
lower bound of search. 

3 Proposed algorithm 

To avoid premature convergence and improve the diversity and distribution of non-
dominated solutions, respectively, an enhanced LF-MOPSO has been proposed. In LF-
MOPSO, Levy flight is employed to prevent premature convergence, moreover, a self-
adaptive conversion method is designed for obtaining better equilibrium between 
exploitation and exploration. The pseudocode of LF-MOPSO is given in Table 1. 

Table 1 Proposed LF-MOPSO algorithm 

1.   t=0, initializing Levy flight parameters, population size, positions and velocities of particles. 
2.   For t=1 to t= maximal number of iterations 
         (1) Calculating the fitness value. 
         (2) Obtaining the non-dominated solutions. 
            (3) Storing  non-dominated solutions found in archive      according to Eq. (3) and calling 
adaptive grid mechanism. 
         (4) If (counter exceeding maximum allowed value) 
                  Levy flight is self-adaptively activated. 
              End 
          (5) If (new non-dominated solutions entering empty grids) 
                 Levy flight stops. 
       End 
       (6) Selecting pg from the archive. 
          (7) Updating position and speed of particles according to Eq. (4). 
3.  Outputting  the solutions in A(t) and stop. 
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3.1 Levy flight 

Levy flight (Chechkin et al., 2008) is a kind of non- Gaussian stochastic motion in which 
the random walk comes from Levy stationary distribution. The distribution is a 
straightforward power-law expression 1( ) | |L s s β− −∼ , where 0 2β< <  is an exponent. In 
general, Levy distribution can be simply expressed as: 

3

1exp[ ] , 0 ,
2 2( )( , , ) ( )

0, 0,

s
sL s s

s

γ γ μ
π μγ μ μ

⎧
− < < < ∞⎪ −= −⎨

⎪ ≤⎩

 (5) 

where μ  is conversion parameter, 0γ >  is scale (control distribution scope) parameter. 
Generally speaking, Levy distribution ought to be expressed by Fourier transform as 

follow: 

( ) exp( | | ), 0 2F x x βα β= − < ≤  (6) 

where [ 1,1]α ∈ −  is a parameter. Stability index (0, 2]β ∈  is also called Levy index. 
Except for a few special cases, the analytical expression of integral cannot be known for 
general β . 

On stochastic walk, Step size s  can be computed by using Mantegner algorithm as 
follows: 

| |
qs
pβ

= , (7) 

where q  and p  are derived from normal distributions. Namely, 

2 2(0, ), (0, )q pq N p Nσ σ∼ ∼  (8) 

where
1/

( 1)/2

(1 )sin( / 2)
[1 / 2] 2q

β

β
β πβσ
β β −

⎧ ⎫Γ += ⎨ ⎬Γ +⎩ ⎭
. The step width is computed by 0.01 sstep size = . 

The coefficient 0.01 mentioned above is from the fact that L/100 should be a classic 
walking step width, in which L is a classic length scale; On the other hand, Levy flight 
can get too radical, so that it can cause new solutions to escape from local optima. 

3.2 Self-adaptive conversion mechanism 

The external archive plays a very important role, because gp  solution is selected from 
the external archive. In this paper, to generate well-distributed Pareto frontiers, the 
adaptive grid mechanism for the archive (Coello et al., 2004) is introduced into  
LF-MOPSO. If the obtained non-dominated solutions has exceeded maximal allowable 
capacity for ( )A t , then the adaptive grid procedure is called. After some iterations, if no 
one new non-dominated solution goes into empty grids near the current Pareto frontier, it 
means that the current Pareto frontier is stagnant, that is to say, the MOPSO algorithm 
become premature convergence or trapped in local optima. In order to detect such a 
situation, a counter is equipped to track how many times the current Pareto frontier has 
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not changed. If the counter exceeds a maximal allowed value (say, NA), this means that 
MOPSO may be premature convergence or trapped in local optima, then Levy flight is 
self-adaptively activated to guide the algorithm to escape from the premature 
convergence or the local optima. If a new non-dominated solution gets into the empty 
grids near the current Pareto frontier, Levy flight stops automatically and the current 
algorithm rerun the original MOPSO algorithm, meanwhile, the counter is set to 0. 

3.3 Enhanced MOPSO with levy flight 

Besides the original MOPSO, LF-MOPSO mainly includes Levy flight and the self-
adaptive conversion mechanism. In LF-MOPSO, first, the particle’s position and velocity 
are updated by equation (4), the archive ( )A t  followed according to equation (3). If the 
current non-dominated solutions are larger than the maximal allowable capacity of ( )A t , 
the adaptive grid mechanism (Coello et al., 2004) is applied. Then, if the counter exceeds 
a maximal value which is set to NA=20 in this paper, Levy flight is self-adaptively 
activated. By employing Levy flight method to renew the particle’s location, the new 
particle’s location (Haklı and Uguz, 2014) is calculated as follows: 

( 1) ( ) ( ( ) ( )t t
i ix x rand size D Levy β+ = + ⊕ , (9) 

where ( ( )rand size D  is random digit for dimension of space. According to equation (9), 
particles can flee from local optima by broad jump, which enhance the swarm diversity, 
so that LF-MOPSO can improve the global search ability. In Levy flight, parameter β  
plays a significant role to change random distribution. According to characteristics of 
Levy flight, if β  is set different values, the distribution will change accordingly. In this 
paper, the constant value for β  is set to 1.5. 

Finally, once a new non-dominated solution enters the empty grids near the current 
Pareto frontier, this means that the current Pareto frontier is closer to the Pareto optimal 
frontier, Levy flight stops automatically, the original MOPSO rerun. The pseudocode of 
LF-MOPSO is presented in Table 1. 

4 Simulation results and discussions 

In this section, two two-objective functions (ZDT1 and ZDT2) and one three-objective 
function (DLTZ1) (Deb et al., 2002) are used for evaluating the search capability of  
LF-MOPSO. To testify the advantages of the proposed method, LF-MOPSO is contrasted 
with three recently developed MOPSOs, that is, MOPSO (Coello et al., 2004),  
MOLS-MOPSO (Xu et al., 2015) and AgMOPSO (Zhu et al., 2018). On the same test 
problem, each algorithm is simulated for twenty times to study its statistical performance. 

4.1 Performance metrics 

To assess the search capability of LF-MOPSO, three different quantitative performance 
metrics (Deb et al., 2006) are hired in the simulation study. 
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1 Generational distance (GD): It is a good index of interval between resultant Pareto 
frontier (PF) and Pareto optimal frontier (PFtrue). GD is expressed as 

2

1

1 N

i
i

GD r
N =

= ∑ , (10) 

where N is the amount of non-dominated solutions in PF, ri is Euclidian distance between 
ith non-dominated solution in PF and the non-dominated solution in PFtrue, which is 
closest to ith non-dominated solution in PF. The smaller GD value means that the Pareto 
frontier is better convergence. 

2 Spacing (SP): It gives the degree of uniformity for the distribution of non-dominated 
solutions in the resultant Pareto frontier, SP is expressed as 

1
2

2

1 1

1 1( ) / ,
N N

i i
i i

S d d d d d
N N

− − −

= =

⎡ ⎤= − =⎢ ⎥
⎣ ⎦
∑ ∑  (11) 

The smaller SP value means that the distribution of solution in PF is more uniform. 

3 Maximal spread (MS): It evaluates how much PFtrue is overlapped by PF by using 
hyper-boxes which is constructed by the maximum and minimum function values 
obtained in PFtrue and PF. MS is expressed as 

2

1

min( , ) max( , )1 m
iM iM im im

i iM im

g G g G
MS

m G G=

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

∑ , (12) 

where m is objective amount in a multi-objective function. For the ith objective in PF, 
iMg  is the maximal value and img  is the minimal value. Moreover, For the ith objective 

in PFtrue, iMG  is the maximal value and imG  is the minimal value. The higher the value 
for MS, the wider the scope of the solutions. 

4.2 Parameter settings 

In addition to using the personality parameters shown in their original papers, MOPSO, 
MOLS-MOPSO, AgMOPSO and LF-MOPSO have three common parameters. 
Population size is 100; maximal allowable capacity for ( )A t  is 100 on two-objective 
functions and 200 on three-objective functions, respectively; the maximal iteration 
number is 3000. 

4.3 Experimental results 

Tables 2–4 present average and standard deviation of GD, SP and MS metrics for 
MOPSO, MOLS-MOPSO, AgMOPSO and LF-MOPSO on three multi-objective 
functions, respectively. For presenting the convergence, distribution and diversity of the 
non-dominated solutions in the last Pareto frontier, Figures 1–3 show the resultant Pareto 
frontier generated by MOPSO, MOLS-MOPSO, AgMOPSO and LF-MOPSO on three 
benchmark functions in an arbitrary run. 
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Table 2 Average (A) and standard deviation (SD) for GD on test problems 

Approach ZDT1 ZDT2 DLTZ2 
MOPSO (A) 0.00281 0.00521 0.11824 
(SD) 0.00865 0.00872 0.00042 
MOLS-MOPSO (A) 0.00253 0.00339 0.04217 
(SD) 0.00764 0.00328 0.00037 
AgMOPSO (A) 0.00305 0.00436 0.03928 
(SD) 0.00453 0.01456 0.00055 
LF-MOPSO (A) 0.00225 0.00129 0.01723 
(SD) 0.00231 0.00087 0.00018 

Table 3 Average (A) and standard deviation (SD) for SP on test problems 

Approach ZDT1 ZDT2 DLTZ2 
MOPSO (A) 0.73291 0.42753 0.78243 
(SD) 0.00049 0.00326 0.00835 
MOLS-MOPSO (A) 0.61974 0.22535 0.35382 
(SD) 0.00062 0.00439 0.00544 
AgMOPSO (A) 0.93283 0.32862 0.32845 
(SD) 0.00275 0.00382 0.00738 
LF-MOPSO (A) 0.49267 0.24298 0.30324 
(SD) 0.00023 0.00224 0.00239 

Table 4 Average (A) and standard deviation (SD) for MS on test problems 

Approach ZDT1 ZDT2 DLTZ2 
MOPSO (A) 0.96749 0.98435 0.99548 
(SD) 0.02387 0.00374 0.00725 
MOLS-MOPSO (A) 0.98492 0.99342 0.99783 
(SD) 0.00982 0.00297 0.00628 
AgMOPSO (A) 0.99021 0.99452 0.99921 
(SD) 0.00993 0.00245 0.00426 
LF-MOPSO (A) 0.99873 0.99967 0.99978 
(SD) 0.00382 0.00093 0.00167 

4.3.1  GD index comparison 
From Table 2, first, LF-MOPSO can obtain better average and standard deviation of GD 
than other three MOPSOs on ZDT1 and ZDT2, respectively. Especially for ZDT2, the 
average of GD gained by LF-MOPSO is much better than those of other three algorithms.  
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Second, LF-MOPSO surpasses other three algorithms in the matter of the average and 
standard deviation of GD on DLTZ2 too. It can be found out that LF-MOPSO is better 
than other three MOPSOs in the matter of the value of GD. The results show that Levy 
flight has played an important role in LF-MOPSO. According to the comparison results, 
it is easy to see that LF-MOPSO is the closest to the optimal Pareto frontier. Moreover, 
from Figures 1–3, LF-MOPSO encloses the entire frontier nearly, it means that  
LF-MOPSO can achieve the best convergence. Therefore, it is obvious from Table 2 that 
LF-MOPSO is very competitive in comparison with MOPSO, MOLS-MOPSO and 
AgMOPSO in terms of convergence. 

Figure 1 Pareto frontiers produced by: (a) MOPSO; (b) MOLS-MOPSO; (c) AgMOPSO  
and (d) LF-MOPSO on ZDT1 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(a)

+MOPSO

f2

f1  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(b)

+MOLS-MOPSO

f2

f1  
 
 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

   88 H-y. Lan et al.    
 

    
 

   

   
 

   

   

 

   

       
 

Figure 1 Pareto frontiers produced by: (a) MOPSO; (b) MOLS-MOPSO; (c) AgMOPSO  
and (d) LF-MOPSO on ZDT1 (continued) 
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4.3.2 SP index comparison 
The SP comparison between LF-MOPSO and other three compared algorithms is shown 
in Table 3. On the one hand, it is obvious that LF-MOPSO can own better average and 
standard deviation for SP than other three algorithms on ZDT1, moreover, LF-MOPSO 
far surpasses AgMOPSO. LF-MOPSO slightly performs worse than MOLS-MOPSO on 
ZDT2. Although LF-MOPSO does not perform the best for SP metric, it is very close to 
the best and ranks second; on the other hand, LF-MOPSO has the best the values of SP 
on DTLZ2 than other three algorithms, specially, the average of SP obtained by  
LF-MOPSO is much better than that of MOPSO. Therefore, on the basis of the above 
analysis, the SP performance of LF-MOPSO is better than other three algorithms on the 
most ZDTs and DTLZs. 
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Figure 2 Pareto frontiers produced by: (a) MOPSO; (b) MOLS-MOPSO; (c) AgMOPSO  
and (d) LF-MOPSO on ZDT2 
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Figure 2 Pareto frontiers produced by: (a) MOPSO; (b) MOLS-MOPSO; (c) AgMOPSO  
and (d) LF-MOPSO on ZDT2 (continued) 
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Figure 3 Pareto frontiers produced by: (a) MOPSO; (b) MOLS-MOPSO; (c) AgMOPSO  
and (d) LF-MOPSO on DLTZ2 
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Figure 3 Pareto frontiers produced by: (a) MOPSO; (b) MOLS-MOPSO; (c) AgMOPSO  
and (d) LF-MOPSO on DLTZ2 (continued) 
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4.3.3  MS index comparison 
The average and standard deviation of MS metric on three test problems are presented in 
Table 4. According to Table 4, first, for the average of MS metric, the order of four 
algorithms is LF-MOPSO, MOLS-MOPSO, AgMOPSO, MOPSO on ZDT1; the order of 
four algorithms is LF-MOPSO, AgMOPSO, MOLS-MOPSO, MOPSO on ZDT2. 
Obviously, LF-MOPSO can obtain better average and standard deviation of MS metric 
than other three MOPSOs on ZDT1 and ZDT2. Second, LF-MOPSO gains the best 
results among the four compared algorithms in the matter of average and standard 
deviation of MS metric on DTLZ2. For the average of MS metric, the order of four 
algorithms is LF-MOPSO, AgMOPSO, MOLS-MOPSO, MOPSO. The experimental 
results make known that LF-MOPSO has best spread of non-dominated solutions on 
ZDT1, ZDT2 and DTLZ2, respectively. By the results of MS in Table 4, LF-MOPSO can 
get a non-dominated solution set with better spread of solutions than other three 
algorithms. 
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4.4 Discussions 

The aim of LF-MOPSO is to make the last Pareto frontier approach the Pareto optimal 
frontier better, moreover, a solution set in which the non-dominated solutions are diverse 
and well-distributed is obtained. According to the above analysis, it obvious that  
LF-MOPSO can obtain the best results among the four MOPSOs considered, Figures 1–3 
also proves the conclusion. The good performance of LF-MOPSO may be attributed to 
Levy flight and the self-adaptive conversion mechanism. 

In LF-MOPSO, The population diversity reduces when the original MOPSO runs. 
Levy flight is used to prevent premature convergence and improve the population 
diversity. Once the diversity reaches the lower bound conditions by the original MOPSO, 
a self-adaptive conversion mechanism activates Levy flight. When the diversity reaches 
the upper bound conditions, the self-adaptive conversion mechanism activates the 
original MOPSO and Levy flight stops. The self-adaptive conversion mechanism is 
designed to activate the original MOPSO and Levy flight periodically. Therefore, LF-
MOPSO can keep the swarm diversity periodically and retain the balance between Levy 
flight and the original MOPSO during the iteration. 

Experimental results present that Levy flight is more suitable for MOPSO to maintain 
the swarm diversity because Levy flight can get better exploration effect in search space. 
However, the original MOPSO is more inclined to exploit the search space, which may 
lead to the premature convergence. By employing the self-adaptive conversion 
mechanism, Levy flight and the original MOPSO can switch automatically. Therefore, 
LF-MOPSO realises the periodic transformation from the exploration to the exploitation, 
which make better balance between the shrinkage and divergence during the iteration, so 
that LF-MOPSO avoids premature convergence and a solution set in which the non-
dominated solutions are diverse and well-distributed is acquired. Therefore, the 
combination of Levy flight and the original MOPSO improves the performance of  
LF-MOPSO. Generally speaking, the proposed algorithm improves the performs on the 
test problems used. 

5 Conclusions 

In this paper, a new method, called LF-MOPSO, is proposed. The present method which 
integrates Levy flight and the self-adaptive conversion mechanism into the original 
MOPSO is used for dealing multi-objective problems. In LF-MOPSO, the self-adaptive 
conversion mechanism can realise the periodical conversion between the original 
MOPSO and Levy flight. The original MOPSO has exploitation to improve the small 
scale search abilities, and Levy flight has wide-ranged exploration to maintain the 
population diversity. The balance is kept between the shrinkage and divergence during 
the iteration. LF-MOPSO is compared with three recently improved MOPSOs on three 
multi-objective benchmark functions, including two two-objective functions and one 
three-objective function. Based on three performance indicators, the experimental results 
show that LF-MOPSO is not only closer to the Pareto optimal frontier, also a solution set 
in which the non-dominated solutions are diverse and well-distributed is obtained. 
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