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Abstract: Plastic recycling has received a lot of attention around the world. In 
this regard, a multi-objective optimisation model for plastic closed loop supply 
chain (CLSC) configuration is developed. Specifically, this paper 
simultaneously investigates the impact of adding washing machines to plastic 
recovery centres and corporations’ role in consumer awareness on plastic 
recycling on plastic CLSC network configuration cost and carbon dioxide (i.e., 
CO2) emissions. Our numerical results indicate that the combination of adding 
washing machines to recovery centres, and increased return of plastic products 
due of increased corporate responsibility in consumer awareness have the 
potential to contribute to both economic and environmental pillars of 
sustainability by decreasing the design cost, i.e., by 3.93%, and CO2 emissions, 
i.e., by 14.24%. Furthermore, sensitivity analysis is conducted to consider the 
effects of unpredictable changes in demand and return. The implications of our 
study concerning social sustainability, policymakers, and municipalities are 
discussed. 

Keywords: multi-objective optimisation; machine learning technique; logistic 
regression; corporate responsibility; closed loop supply chain; CLSC; plastic. 
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1 Introduction 

Supply chain management is about managing the flow of products, services, funds, and 
information between different stages that are involved in a supply chain network 
including suppliers or vendors, manufacturing plants, warehouses, destruction centres, 
wholesalers, retailers, and customers (Chopra and Meindl, 2016; Shekarian et al., 2020). 
Supply chains are classified into forward supply chains and reverse supply chains. 
Forward supply chain management (Klose and Drexl, 2005; Melo et al., 2009) involves 
procuring and processing raw materials, manufacturing products based on demand, and 
fulfilment of orders (Abdallah et al., 2012; Cooper et al., 1997). Decisions in forward 
supply chain planning include determining the optimum number and location of facilities 
to open, optimal product flow between different stages in a distribution network in a such 
a way that the total fixed and variable costs are minimised while the network demand is 
satisfied (Geoffrion and Graves, 1974; Dearing, 1985; Owen and Daskin, 1998; Ashtab  
et al., 2015). On the other hand, reverse supply chains involve managing the logistics of 
collecting used products and recovering the value in materials via application of  
R-principles such as recycling (Jawahir and Bradley, 2016), and remarket the products. 
Closed loop supply chains (CLSCs) consist of forward and reverse supply chains. 

Several studies have investigated different aspects of plastic recycling and recovery 
(Al-Maaded et al., 2012; Eriksen et al., 2018; Gradus et al., 2016; Gu et al., 2017). 
Different types of Plastics are used in a variety of products; however, only a small 
fraction of the plastic waste is recycled. For example, the recycling rate in Europe for 
plastics in 2016 was approximately 14% (PlasticsEurope, 2017). Another example is the 
findings of the published report entitled ‘Economic study of the Canadian plastic 
industry, market and waste’ which indicates that approximately 4,667 kilotonnes of 
plastics enter the domestic market in Canada on an annual basis (Environment and 
Climate Change Canada, 2019). This amount consists of 3,068 kilotonnes of durable 
plastic products with average lifetime of more than a year, and 1,599 kilotonnes of non-
durable plastic products. Given the durability of some plastic products, they do not turn 
into waste the same year they were produced. This leaves Canada with approximately 
3,268 kilotonnes of plastic in discarded products from which 86% is landfilled 
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representing a lost opportunity of CA$7.8 billion for Canada in 2016, and only 9% being 
recycled. 

In a smaller scale, provinces are also concerned with plastic recycling. For example, 
there is a great amount of plastic circulating in the province of Nova Scotia, Canada. 
According to Waste Audit Report published by Divert NS for the Province of Nova scotia 
for year 2017 (Waste Audit Report, 2018), approximately 59.260 kilotonnes of the 
material that ended up in the landfills of the Province of Nova Scotia were different types 
of plastics, which comprised 21% of the total waste amount, including rigid plastics and 
plastic film. 

The ban enforced by foreign countries on importing different types of waste material, 
including plastics, impacted some countries including Canada, US and Britain who used 
to export a great amount of their recyclables (Freytas-tamura, 2018). For instance, while 
300 tons of plastic bags and wrapping were buried in a landfill in the province of Nova 
Scotia in Canada with a special permission (Valley Waste Resource Management, 2018), 
5 kilotonnes of plastics and mixed paper were stored in warehouses and shipping 
containers in the province of Calgary, Canada (Freytas-tamura, 2018). These statistics on 
the low rates of plastic recycling in different countries, high amounts of landfilled plastics 
in some areas, and the ban on importing recyclables materials including plastics signify 
the importance of establishing CLSCs for plastics in different regions. 

In an attempt to provide insights from the real world, we conducted some interviews 
in the Canadian province of Nova Scotia in a recycling facility as well as a waste 
management facility to find out about their operations, and learn whether there are any 
established and operating closed supply chain networks inside the province for different 
product categories. We also investigated what really happens to the recyclable materials 
after they are collected. A CBC report, broadcasted in 2019, on ‘Where does your 
recycling really end up?’ indicates that, in some cases, Canada’s plastic is ending up in 
countries overseas with health implications for the people living in those areas 
(https://www.cbc.ca/marketplace/episodes/2017-2018/tracking-your-trash-where-does-
your-recycling-really-end-up). This matter concerns the social pillar of sustainability, 
e.g., well-beings of communities. These circumstances add to the vitality of establishing 
CLSCs in different regions more than before. To this aim, the optimal configuration of 
plastic CLSC network provides benefits to the companies involved in reverse flow (e.g., 
optimising the resource utilisation), and contributes to both environmental sustainability 
(e.g., preserving natural resources) and social sustainability (e.g., well-beings of 
communities). Furthermore, there are different applications for used plastics; examples 
are fence posts, building panels, park benches, curb stops, and composite structures 
(Ashtab and Whyte, 2019). Another example is the initiative of turning plastic bottle caps 
into building materials (Connors, 2020). In this process, bottle caps are heated after they 
are shredded and then pushed through an extruder to make plastic lumber. There is 
interest from public to take their bottle caps voluntarily to this company. In this regard, 
mathematical models can be developed to design and optimise CLSCs. 

2 Literature review 

Several papers have studied CLSCs and reverse logistics in the literature (Chari et al., 
2016; Pishvaee et al., 2009; Francas and Minner, 2009; Amin and Zhang, 2013; 
Fleischmann et al., 1997; Govindan and Soleimani, 2017; Guide and Van Wassenhove, 
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2009) for different products such as tyre (Amin et al., 2017; Kannan et al., 2009; 
Sasikumar et al.; 2010; Subulan et al, 2015), battery (Tosarkani and Amin, 2018b; Gaur 
et al., 2017; Kannan et al., 2010), electronic (Tosarkani and Amin, 2018a; Tosarkani  
et al., 2020), plastic pallets (Amin et al., 2018), and citrus fruits’ crates (Liao et al., 
2020). Different methods such as multi-objective models are used for configuring CLSCs 
(Pishvaee et al., 2010; Pati et al., 2008). The models in the literature for CLSCs consider 
multiple products and multiple periods, as well as multiple facilities such as collection 
facilities, disposal centres, distribution centres. Our paper is no exception; however, this 
is a first study of its kind in which combination of a machine learning technique, i.e., 
logistic regression model, and qualitative approach, i.e., conducting interviews in a 
recycling facility as well as a waste management facility, is utilised to provide insights 
from the real world to inform the quantitative analysis of plastic CLSC optimisation 
model, and explore its impact on design cost and carbon dioxide (i.e., CO2) emissions 
which concern the economic and environmental pillars of sustainability with implications 
for social sustainability, e.g., well-being of communities. By deploying multi-objective 
approach, we simultaneously consider the total plastic CLSC design cost and CO2 
emissions. Furthermore, we conduct sensitivity analysis on the parameters associated 
with demand for plastics as well as quantity of retuned products at plastic recovery 
centres. Specifically, this paper simultaneously investigates the impact of adding washing 
machines to plastic recovery centres, which we found out about in our interviews, and 
corporations’ role in consumer awareness on plastic recycling on plastic CLSC network 
configuration cost and CO2 emissions. 

Consumer awareness contributes to plastic recycling (Khan et al., 2019). Ashtab and 
Whyte (2019) investigated whether companies inform consumers on the plastic type 
and/or provide recommendations on proper disposal of plastic. Having information on 
plastic type, i.e., resin code, is also important because used plastics are utilised in 
different applications based on their characteristics which depend on their type, i.e., resin 
code. These two research studies establish that educating consumers on proper plastic 
recycling and providing information on plastic type will contribute to more recovery of 
products with plastic in them. In this regard, we collected a real sample of products with 
plastic in them and applied a logistic regression model to investigate whether a 
correlation between corporations educating consumers and/or providing information on 
plastic type, and their status, e.g., being a known brand, exists. This exploration not only 
will inform the multi-objective optimisation model on the impact of increased amount of 
returned plastics, to which consumer awareness contributes, on the design cost and CO2 
emissions but also provide insights for policy makers on extending EPR. Our 
contributions to the literature are summarised below. 

1 By deploying a qualitative approach, we interview a recycling facility as well as a 
waste management facility in the Canadian province of Nova Scotia, to bring 
insights from the real world to inform the multi-objective optimisation model for 
configuration of plastic CLSC. In this regard, we investigate the impact of adding 
washing machines to plastic recovery centres on design cost and CO2 emissions. This 
scenario is studied in Subsection 7.1. 

2 This is a first study which utilises a machine learning technique to inform the multi- 
objective plastic CLSC optimisation model. In this regard, we apply a logistics 
regression model to a real sample of plastic products to investigate corporations’ role 
in consumer awareness on plastic recycling. The outcome of the logistic regression 



   

 

   

   
 

   

   

 

   

   110 S. Ashtab and B.M. Tosarkani    
 

    
 
 

   

   
 

   

   

 

   

       
 

model informs the plastic CLSC optimisation model. Our numerical results indicate 
that increased amount of returned plastic products, to which consumer awareness 
contributes, has a considerable positive impact on reducing design cost and CO2 
emissions, and therefore, contributes to both economic and environmental pillars of 
sustainability. The implications of this finding for policy makers is extending EPR 
for manufacturers to educate consumers regarding post-consumption phase and 
proper disposal of products with plastic in them. This scenario is studied in 
Subsection 7.2. 

3 Our numerical results indicate that the combination of adding washing machines to 
plastic recovery centres and increased return of plastic products have the potential to 
further reduce CLSC design cost and CO2 emissions simultaneously. The implication 
of this finding is contribution to the social sustainability, e.g., well-being of 
communities. 

3 Problem statement 

Figure 1 shows a multi-echelon, multi-period, multi-product plastic CLSC. In the reverse 
flow, plastics flow from residential areas to the regional collection depot(s), and to the 
recovery centre(s). Used plastics undergo the recovery process in plastic recovery 
centres. Washing machines are embedded in recovery centres to clean up the dirt of 
mixed plastics. The quality of plastics arriving at plastic recovery centres can be 
inconsistent and that impacts the disposal rate for recyclable items. By investing in 
installation of washing machines in plastic recovery centres, the disposal rate can be 
decreased resulting in more recyclable precious materials returning to the manufacturing 
cycle. The fixed costs and CO2 emissions associated with a washing machine are 
incorporated to the fixed cost of building and operating a plastic recovery centre, and 
generated CO2 emissions, respectively. 

The recoverable portion of returned plastic is shipped to the remanufacturing plants, 
and the unrecoverable portions are transferred to the disposal centre. In the forward flow, 
plastic manufacturers are responsible to supply retailers with required quantities of plastic 
to fulfill market demand. In this regard, the plastic manufacturers will have to send orders 
to supplier(s) if they encounter shortage of raw materials due to low recovery rates and 
output from plastic recovery centres. In this study, we intend to configure an optimal 
plastic recovery network for the purpose of minimising the total cost and CO2 emissions. 
The solution of the optimisation model will determine the location of supplier(s), 
remanufacturing/ plastic producers, regional collection depot(s), and plastic recovery 
centre(s) as well as the product flow between different echelons in the supply chain 
network and the amount of raw materials which must be purchased from the supplier(s) 
by plastic manufacturers (based on the recovery rate of the plastic recovery centre(s)) to 
fulfill the market demand. 

We also investigate the impact of corporations’ role in educating consumers on plastic 
CLSC design cost and CO2 emissions given that enhanced consumers’ awareness 
contributes to plastic recycling. 
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Figure 1 The plastic CLSC (see online version for colours) 

 

Table 1 All the sets of the proposed model 

I set of returned products (1 … i … I) 
N set of components (1 … n … N) 
P set of plastic recovery centres (1 … p … P) 
D set of regional collection depots (1 … d … D) 
M set of manufacturing/remanufacturing company (1 … m … M) 
S set of suppliers (1 … s … S) 
R set of retailers (1 … r … R) 
H set of residential areas (1 … h … H) 
T set of periods (1 … t … T) 

4 Optimisation model 

Nowadays, developing and enforcing new policies and practices for environmental 
sustainability in different businesses across different industry sectors is a common 
practice for countries. In this regard, we first consider minimising the total cost of 
establishing plastic CLSC network. 

Then the impact of minimising the CO2 emissions on designing the plastic CLSC 
network is considered. Therefore, the following sets, parameters, and decision variables 
are deployed in developing a mixed-integer linear programming model. 
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Table 2 The parameters of the proposed model 

Ap fixed cost of building and operating plastic recovery centre at location p 
Bm fixed cost of agreement with manufacturing/remanufacturing company m 
Es fixed cost of agreement with supplier s 
Fd fixed cost of agreement with regional depot d 
Gr fixed cost of agreement with retailer r 
Yn purchasing cost of component n from suppliers 
Ci unit cost of recovery associated with product i 
Vsm distance between locations s and m 
Vp distance between plastic recovery centre p and disposal centre 
Ui unit cost of transportation per Km associated with returned product i 
Ln unit cost of transportation per Km associated with component n 
Ki disposal cost of returned product i 
Whit demand of area h for returned product i in period t 
epi disposal rate of returned product i at plastic recovery centre p 

Xhit return of returned product i related to area h in period t 
Jin quantity of component n in product i 
fpi maximum capacity of plastic recovery centre p for returned product i 
kmi maximum capacity of manufacturing/remanufacturing company m for component n 
psn maximum capacity of supplier s for providing component n 
bri maximum capacity of retailer r for product i 
ldi maximum capacity of regional depot d for returned product i 
g truck capacity 
u truck CO2 emissions per km 
ud CO2 emissions due to operation of regional collection depot(s) 
up CO2 emissions due to operation of plastic recovery centre(s) 
um CO2 emissions due to operation of manufacturing/remanufacturing company(s) 
us CO2 emissions due to operation of supplier(s) 
ur CO2 emissions due to operation of retailer(s) 

Table 3 The decision variables of the proposed model 

QSsmnt quantity of component n shipped to manufacturing/remanufacturing company m by 
supplier s in period t 

QPpmit quantity of returned product i recovered by plastic recovery centre p for 
manufacturing/remanufacturing company m in period t 

QMmrit quantity of returned product i sent by manufacturing/remanufacturing company m to 
retailer r in period t 

QRrhit quantity of product i selling by retailer r to area h in period t 
QHhdit quantity of product i returned from area h to regional depot d in period t 
QDdpit quantity of returned product i shipped to plastic recovery centre p from regional 

depot d associated with period t 
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Table 3 The decision variables of the proposed model (continued) 

Qpit quantity of unrecoverable returned product i shipped to disposal centre from plastic 
recovery centre p in period t 

wm 1, if the manufacturing/remanufacturing company is located and set up at potential 
site m, 0, otherwise 

xp 1, if the plastic recovery centre is built and set up at potential site p, 0, otherwise 
yd = 1 if the regional collection depot at potential site d is selected, 0, otherwise 
qs = 1 if the supplier s is selected, 0, otherwise 
vr = 1 if the retailer r is selected, 0, otherwise 

( ) ( )

( ) ( )

( ) ( )

( )

1 i i pm pmit n n sm smnt
p m i t s m n t

i mr mrit i rh rhit
m r i t r h i t

i hd hdit i i dp dpit
h d i t d p i t

i i p pit s s m m r r d d
p i t s m r d

p p
p

Minz C U V QP Y L V QS
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U V QH O U V QD

K U V Q E q B w G v F y

A x
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+ + + + + +
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QDQH V V
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p z

v u y

u x

+

+

 



 

( ) ( ) , ,mrit in pmit in smnt
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QM J QP J QS m n t= + ∀    (1) 
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m h

QM QR r i t= ∀   (2) 

, ,rhit hit
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QR W h i t≥ ∀  (3) 

, ,hdit hit
d

QH X h i t= ∀  (4) 
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, ,hdit dpit
h p

QH QD d i t= ∀   (5) 

, ,dpit pmit pit
d p

QD QP Q p i t= + ∀   (6) 

, ,pi dpit pit
d

e QD Q p i t≤ ∀  (7) 

,smnt s sn
m n n

QS q p s t≤ ∀   (8) 

,mrit m mi
r i i

QM w k m t≤ ∀   (9) 

,rhit r ri
h i i

QR v b r t≤ ∀   (10) 

,dpit d di
p i i

QD y l d t≤ ∀   (11) 

,pmit pit p pi
m i i i

QP Q x f d t+ ≤ ∀    (12) 

, , , , , , , ,m p d s rw x y q v m p d s r∈ ∀  (13) 

, , , , , , ,
, , , , , , , ,

smnt pmit mrit rhit rit hdit dpit pitQS QP QM QR QI QH QD Q integer
s m n p r h s i t∀

 (14) 

The first objective function (z1) is to minimise the total design cost of the plastic CLSC 
network. In this regard, fixed costs of building and operating plastic recovery centre(s), 
and agreement with supplier(s), manufacturing/remanufacturing company(s) and regional 
collection depot(s), along with variable costs (i.e., transportation, costs of recovery, 
purchasing new products, and disposal) are considered. The second objective function is 
introduced to minimise the CO2 emissions of operations in different facilities as well as 
transportation in the CLSC network. First set of constraints is required to balance the 
outbound shipments from plastic manufacturers/remanufacturers to retailers with the 
inbound shipments to manufacturers/remanufacturers from suppliers of raw materials and 
plastic recovery centre(s). 

Second and third sets of constraints are to ensure that demand at different market 
zones (i.e., retailers), and residential areas are fulfilled, respectively. Fourth set of 
constraints indicates the number of returned products while the fifth set of constraint 
ensures that the inbound shipments to the regional collection depots are equal to the 
outbound shipments from regional collection depots to the plastic recovery centres. Sixth 
set of constraints is to ensure that the summation of recoverable products at plastic 
recovery centres flowing to manufacturers/remanufacturers and unrecoverable flowing to 
the disposal centre is equal to the number of products arriving at plastic recovery centres. 
The seventh set of constraints shows the disposal rate of returned products. 

Equations sets (8)–(12) are associated with the capacities of supplier(s), 
manufacturers/remanufacturers, retailer(s), regional collection depot(s), and plastic 
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recovery centre(s), respectively. Equations sets (13) and (14) represent the binary and 
non-negative integer decision variables, respectively. 

5 Distance method 

To obtain the non-dominated solutions neighbouring to ideal values, the distance method 
can be utilised for multi-objective problems (Branke et al., 2008). As illustrated by 
equation (15), *

1z  and wi denote the ideal values and distance metrics, respectively. Each 
objective function is solved to optimality individually with respect to the defined 
constraints to find *

1z  (Mirzapour Al-E-Hashem et al., 2011). In our study, there are two 
objective functions including the total cost of plastic CLSC (i.e., z1), and CO2 emissions 
(i.e., z2) associated with transportation in CLSC. The objective function for the proposed 
bi-objective CLSC network can be written as equation (16). 

1
*

*
1, 2 ,

τ τ
it

ii
ii

zi zz w
z

 −  = ∀ = ∞    
   (15) 

1
* *

1 1 2 2
1 2* *

1 2

τ τ τ
τ τz z z zMin z w w

z z

 − −    = +        
 (16) 

Equations (1)–(14) 

6 Parameters’ value and solutions 

The optimisation model is solved to optimality for the plastic CLSC network. In this 
study, it is assumed that there are seven locations for the remanufacturing plant, three 
suppliers, six locations for the recovery centres, 22 markets, five locations for regional 
collection centres, and one location for the disposal centre. The values of the other 
parameters applied in the optimisation model are presented in Table 4. In the real life, the 
demand associated with specific product varies in different seasons or months depending 
on the product type. Therefore, configuring a multi-period model is necessary for 
effective decision-making process in real life. In this application, two periods have been 
considered that represent two seasons. 

To solve the proposed model, IBM ILOG CPLEX 12.10.0 is applied on a LENOVO 
ThinkPad P71 laptop with 32.0 GB of RAM and two 3.10 GHz Intel(R) Xeon(R) CPU 
E3-1535M v6 on a 64-bit operating system. As illustrated in Table 5, each  
objective function was solved separately to optimality with respect to the defined 
equations (1)–(14) to determine *

1z  (where i = 1, 2). Then, distance technique is deployed 
to obtain the non-dominated solutions between the two defined objectives. The  
non-dominated solutions for the proposed plastic CLSC with equal weight factors  
(w1 = w2 = 0.5) as well as computational times are presented in Table 6. For example, the 
final optimisation problem (including 560 constraints, 3,111 decision variables, 31 binary 
variables, and 17,483 non-zero coefficients) with equal weight factors (w1 = w2 = 0.5) 
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was solved in 0.93 seconds. The non-dominated objective function values are illustrated 
in Figure 2. 
Table 4 Parameters’ values applied to solve the proposed model 

I = 3 Ap = 90,000 n = 5 Ln = 0.097 
D = 5 Bm = 100,000 epi = 0.1 Ki = 11.8 
P = 6 Es = 110,000 Ui = 0.097,  
M = 7 Fd = 140,000 fpi = 2,000  
H = 22 Gr = 150,000 kmi = 70,000  
R = 10 Yn = 10 psn = 70,000  
S = 3 Oi =8 bri = 70,000  
T = 2 Ci =12 ldi = 70,000  

Table 5 Ideal values of *
1z  and *

2z  

Objective functions Ideal values Computational times (Sec) 

Total cost (i.e., *
1z ) 19,434,719.09 0.84 

CO2 emissions (i.e., *
2z ) 8,960,673.96 0.98 

Table 6 Non-dominated solutions for the proposed plastic CLSC for different weight factors 

Objective value Network configuration Computational 
times wi 

Z1 20,361,000 (y1, y2, y3, y5), (x2, x3, x4, x5), (q1, q2, q3) 0.64 0.05 
Z2 8,961,900 (v1, v3, v4, v7), (w2, w3, w4, w5)  0.95 
Z1 20,222,000 (y1, y3, y5), (x2, x3, x4, x5), (q1, q2, q3) 1.08 0.2 
Z2 8,962,700 (v1, v3, v4, v10), (w2, w3, w4, w5)  0.8 
Z1 20,074,000 (y1, y3, y5), (x2, x3, x4, x5), (q1, q2, q3) 0.93 0.5 
Z2 8,984,600 (v1, v3, v4, v10), (w2, w3, w4, w5)  0.5 
Z1 19,585,000 (y3), (x2, x3, x4, x5), (q1, q2, q3) 1.09 0.8 
Z2 9,405,400 (v1, v10), (w2, w3, w4)  0.2 
Z1 19,492,000 (y5), (x2, x3, x5, x6), (q1, q2, q3) 1.16 0.95 
Z2 9,988,200 (v7), (w2, w3, w4)  0.05 

As indicated by Figure 2, different non-dominated solutions are obtained for different wi 
values. The trade-off surfaces of plastic CLSC network indicate that the CO2 emissions’ 
value cannot be decreased, unless the total CLSC network cost is increased. 

Sensitivity analysis is conducted to consider the effects of unpredictable changes in 
demand and return. The ideal and non-dominated values of total network cost and CO2 
emissions associated with eight scenarios of unpredictable changes in demand and return 
are presented in Table 7. The non-dominated values presented in Table 7 are compared 
with original solutions (with equal weights) provided in Table 6. It can be observed that 
solutions of plastic CLSC are very sensitive to such changes. 
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Figure 2 Non-dominated solutions for the bi-objective model (see online version for colours) 

 

Table 7 Sensitivity analysis for equal weight factors 

Scenarios Ideal values  Non-dominated 
values  Change (%) 

1 15% increase in 
demand and return 

Z1 22,393,411.89  Z1 22,819,000  Z1 13.67 
Z2 11,930,806.61  Z2 12,064,000  Z2 34.27 

2 15% increase in 
demand and 15% 
decrease in return 

Z1 22,615,496.97  Z1 22,943,000  Z1 14.29 
Z2 12,352,615.15  Z2 12,485,000  Z2 38.96 

3 15% decrease in 
demand and 15% 
increase in return 

Z1 16,089,180.00  Z1 16,706,000  Z1 –16.78 
Z2 5,868,002.97  Z2 5,903,600  Z2 –34.29 

4 15% decrease in 
demand and return 

Z1 16,387,796.85  Z1 17,014,000  Z1 –15.24 
Z2 6,039,577.60  Z2 6,060,900  Z2 –32.54 

5 15% increase in 
demand, while 

return is not 
changed 

Z1 22,550,717.39  Z1 23,106,000  Z1 15.10 
Z2 12,138,922.20  Z2 12,169,000  Z2 35.44 

6 15% decrease in 
demand, while 

return is not 
changed 

Z1 16,225,939.64  Z1 16,847,000  Z1 –16.07 
Z2 5,937,004.25  Z2 5,955,400  Z2 –33.72 

7 15% increase in 
return, while 

demand is not 
changed 

Z1 19,277,413.59  Z1 19,919,000  Z1 –0.77 
Z2 8,753,574.39  Z2 8,794,400  Z2 –2.12 

8 15% decrease in 
return, while 

demand is not 
changed 

Z1 19,503,795.15  Z1 20,006,000  Z1 –0.34 

Z2 9,173,282.98  Z2 9,244,400  Z2 2.89 

In scenarios, 1, 2 and 5, demand is increased by 15%. This has led to approximately 13 to 
15% increase in total design cost, and 34 to 39% increase in CO2 emissions, respectively. 
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The scenario that has led to the largest increase in CO2 emissions is where demand is 
increased by 15% while return is decreased by 15%. This is likely due to increased 
procurement and transportation of raw materials through the supply chain network 
starting from the suppliers. 

Increasing demand by 15% when return is not changed causes the largest increase in 
the total design cost, i.e., 15.10%. Increasing return by 15% when demand is increased 
reduced both design cost and CO2 emissions. That is, when demand is increased by 15%, 
while the total design cost and CO2 emissions are both increased regardless of changes in 
return, increased reverse logistics activities, i.e., return, contribute to less increase in both 
design cost and CO2 emissions compared to scenarios where return is not changed or is 
decreased. 

In scenarios 3, 4 and 6, demand is decreased by 15%. This has led to approximately 
15 to 17% decrease in total design cost, and 32 to 34% decrease in CO2 emissions, 
respectively. The least costly design and lowest CO2 emissions occur when demand is 
decreased by 15% and return is increased by 15%. Increase in reverse logistics activities 
contributes positively to design costs and CO2 emissions like the scenarios where demand 
is increased by 15%. 

7 Model extensions 

7.1 Addition of washing machines 

We analyse the impact of adding washing machines to potential plastic recovery centres 
on non- dominated solutions for total network cost and CO2 emissions. Washing process 
consumes both energy and water and has sustainability implications (Fletcher, 2014). 
Subsequently, adding washing machines will increase the fixed cost of operating plastic 
recovery centres, i.e., Ap, as well as CO2 emissions in these facilities, i.e., up, and decrease 
disposal rate of returned product, i.e., epi = 0.01. We assume 5% increase in fixed costs 
and CO2 emissions of plastic recovery centres, i.e., Ap = 94,500, up = 945. The ideal 
values as well as non-dominated solutions are presented in Tables 8 and 9, respectively. 

Table 8 Ideal values of *
1z  and *

2z  

Objective functions Ideal values Computational times (Sec) 

Total cost (i.e., *
1z ) 19,265,835.57 0.71 

CO2 emissions (i.e., *
2z ) 8,757,479.44 0.63 

According to the numerical results reported in Table 9, adding washing machines to 
plastic CLSC can decrease both total cost and CO2 emissions by 0.82% and 2.26%, 
respectively. 
Table 9 Non-dominated solutions for the proposed plastic CLSC for different weight factors 

Objective value Network configuration Computational times Change (%) 
Z1 19,909,000 (y1, y3, y5), (x2, x3, x4, x5), (q1, 

q2, q3), 
0.73 –0.82 

Z2 8,781,500 (v1, v3, v7), (w2, w3, w4, w5)  –2.26 
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7.2 Corporate responsibility in consumer awareness 

According to Khan et al. (2019), consumer awareness is one of the contributing factors to 
plastic recycling. Specifically, Ashtab and Whyte (2019) investigated whether companies 
inform consumers on the plastic type and/or provide recommendations on proper disposal 
of plastic. 

Furthermore, in the context of sustainable development, Stal and Jansson (2017) 
suggest that the current research which primarily focus on consumer behaviour and 
sustainable consumption can be extended to include firms’ role on aspects of use and 
disposal. It is important to identify the type of plastic, e.g., plastic film, in the recycling 
process because different plastic products are made up of different resin codes, e.g., low 
density polyethylene (LDPE) with resin code of #4, high density polyethylene (HDPE) 
with resin code of #2 and, consequently, provide different characteristics and, 
subsequently, are utilised in different applications. The information regarding the plastic 
type can be provided on the packaging. Ashtab and Whyte (2019) concluded that, at 5% 
significance level, there was not enough evidence to reject the hypothesis that less than 
50% of products with plastic in them provided information regarding the type of plastic 
or recommendation for disposal. To investigate if there is a correlation between a 
characteristic of a manufacturer, i.e., being a known brand, and information on plastic 
type and/or proper plastic recycling found on the product, we collect a sample of 69 
plastic products in the Canadian province of Nova Scotia (See Appendix A). The 
distribution of manufacturers based on their status, i.e., a known brand or not, is nearly 
even. In total 33 manufactures are in the brand category (47.82%), and 36 products are in 
the non-brand category (52.18%). In the brand category, 26 out of 33 manufacturers 
provided information on the type of plastic and/or educating consumers on the 
importance of plastic recycling. In the non-brand category, only 3 out of 36 
manufacturers provided information on the type of plastic and/or educating consumers on 
the importance of plastic recycling. 

A legitimate research hypothesis posed to data is the likelihood of a known-brand 
manufacturer providing information on the product or its packaging regarding the plastic 
type and/or importance of recycling. To test the research hypothesis, one-predictor 
logistic regression model is fitted to data. Logistics regression model is a suitable 
machine learning technique to model the relationship between a categorial dependent 
variable and a categorial independent variable (Peng et al., 2002). While our sample size 
is small, it does not take away from the insights this technique provides, and the sample 
can easily be expanded. We choose Brand (value of 1 is assigned when a product is a 
brand, and 0 otherwise) as independent variable. Whether the manufacturers provide 
information about the plastic type and/or educate consumers on the importance of plastic 
recycling is the dependent variable. Value of 1 is assigned to a manufacturer if the 
manufacturer provides information on the product about the plastic type and/or educate 
consumers on the importance of plastic recycling, and 0 otherwise. Table 10 provides 
information on coefficients of the independent variable, 95% confidence intervals (CI) 
for the estimated values, standard error (SE), and P-value. The low P-value, i.e., 
0.000185366, is statistically significant and model coefficients are reliable. The intercept 
for the logistic regression model is -3.044519503. 

The data is partitioned to 60% training and 40% validation sets. The accuracy of 
prediction is 87.80% and 82.14% in the training set and validation set, respectively. 
Success probability cut off or threshold probability is set at 50%. That is, a manufacturer 
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will be classified as 1 if the probability of providing information on plastic type and/or 
educating consumers on the importance of plastic recycling for that manufacturer is 
higher than 50%. The performance of training set and validation set with different cut-off 
values is presented in Figure 3. The accuracy of prediction in the training and validation 
sets is calculated based on the values of true positives (TPs), true negatives (TNs), false 
negatives (FNs), and false positives (FPs) in the confusion matrixes (See Appendix B). 
As the cut-off values increases, the number of TPs and FPs decrease while the number of 
FNs and TNs increase. In our example, after the cut-off value passes the 70% mark, 15 
TPs and 4 FPs become FNs and TNs, respectively, in the training set. In the validation 
set, 11 TPs and 3 FPs become FNs and TNs, respectively, when the cut-off value passes 
the 70% mark. These changes translate to decreased accuracy in prediction in the training 
set from 87.80% to 60.97%, and from 82.14% to 53.57% in the validation set. 
Table 10 Information on independent variables in model fitting 

Variable Estimate CI: Lower CI: Higher SE P-value 
Brand 4.366275343 2.076987975 6.65556271 1.168025222 0.000185366 

Figure 3 Accuracy of training set (blue) and validation set (orange) with different cut-off values 
(see online version for colours) 

 

The results from Table 10 indicate that known-brand manufacturers are more likely to 
fall in the category of manufacturers which provide information about the plastic  
type and/or educate consumers on the importance of plastic recycling. In fact, the 
probability of success, i.e., p(y = 1), is 78.94% when Brand variable is equal to one (see  
Appendix C). Indeed, as our regression model has one dependent and one independent 
variables, the desired parameter can be estimated by taking 26 divided by 33. In different 
cases and contexts, the number of variables in the regression model can easily be 
extended to inform the application of the multi-objective optimisation model. The 
probability of success translates to, for one unit of increase in the Brand variable, the 
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likelihood of having information on the product about the plastic type or importance of 
recycling increases by 78.94%. Given that consumer awareness contributes to plastic 
recycling Khan et al. (2019), we interpret this as 78.94% increase in return for plastic 
products and use it to inform the multi-objective model. According to the results provided 
in Table 7, the non-dominated solutions are very sensitive to change in demand and 
return. We solve the multi-objective optimisation problem with equal weights and 
increased return of 78.94% to obtain the non-dominated solution for this scenario. 

Table 11 Ideal values of *
1z  and *

2z  

Objective functions Ideal values Computational times (Sec) 

Total cost (i.e., *
1z ) 18,790,893.823 0.70 

CO2 emissions (i.e., *
2z ) 8,037,810.111 0.77 

Table 12 Non-dominated solutions for the proposed plastic CLSC for different weight factors 

Objective value Network configuration Computational 
times Change (%) 

Z1 19,586,000 (y1, y3, y4, y5), (x1, x2, x3, x4, x5, x6) 0.67 –2.43 
Z2 8,059,700 (q1, q2, q3), (v1, v3, v7), (w2, w3, w4, 

w5) 
 –10.29 

Results from Table 12 indicate that, increased return of 78.94% has a considerable impact 
on reducing the CO2 emissions, i.e., by 10.29%, and the design cost, i.e., by 2.43%. 
Compared to the results for the scenario with equal weights presented in Table 6, there 
are more regional depots and recovery centres built. Compared to results provided in 
Table 9, we see that increased return by 78.94% have more impact on reducing CO2 
emissions and design cost rather than adding a washing machine; however, both 
scenarios reduce the CO2 emissions and the design cost when considered separately. The 
implications of the findings presented in Table 12 for policy makers is to extend the 
extended producer responsibility (EPR) in terms of involving manufacturers in different 
aspects of use and disposal of products, and establish and promote specific policies, to be 
executed by the manufacturers, on educating consumers on the importance of recycling. 

Last, we apply both scenarios simultaneously. That is, we investigate the impact of 
increased return of 78.94% and adding washing machines to the recovery centres on both 
CO2 emissions and design cost. Results are provided in Tables 13 and 14. 

Table 13 Ideal values of *
1z  and *

2z  

Objective functions Ideal values Computational times (Sec) 

Total cost (i.e., *
1z ) 18,484,717.44 1.39 

CO2 emissions (i.e., *
2z ) 7,682,414.111 0.85 

Results from Table 14 indicate that the combination of adding washing machines to 
recovery centres and increased return due of increased corporate responsibility in 
providing information on plastic type and educate consumers on the importance of 
recycling have the potential to contribute to both economic and environmental pillars of 
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sustainability by decreasing both the design cost, i.e., by 3.93%, and CO2 emissions, i.e., 
by 14.24%. 
Table 14 Non-dominated solutions for the proposed plastic CLSC for different weight factors 

Objective value Network configuration Computational 
times Change (%) 

Z1 19,286,000 (y1, y3, y4, y5), (x1, x2, x3, x4, x5, x6), 0.66 –3.93 
Z2 7,704,700 (q1, q2, q3), (v1, v3, v10), (w2, w3, w4, w5)  –14.24 

8 Discussion and conclusions 

The statistics on the low rates of plastic recycling in different countries, high amounts of 
landfilled plastics in some areas, and the ban on importing recyclables materials 
including plastics signify the importance of establishing CLSCs for plastics in different 
regions. The ban enforced by foreign countries on importing different types of waste 
material including plastics impacted some countries including Canada, the US. and 
Britain who used to export a great amount of their recyclables. According to a study 
funded by environment and climate change Canada, there is a great amount of plastic 
circulating in Canada from which 86% is being landfilled. The plastic recycling rate in 
Europe and Canada were both less than 15% with Europe having a slightly better plastic 
recycling rate than Canada. 

Reportedly, some recyclable items including plastics are still being exported, and in 
some cases, getting burnt in some areas causing an unhealthy living environment for the 
residents in those neighbourhoods. In this regard, establishing plastic CLSCs in different 
regions can improve both environmental sustainability, e.g., decreased demand for raw 
material, and social sustainability, e.g., wellbeing of communities. 

Several papers have studied CLSC in the literature for different product types. It is a 
common practice to consider multiple objectives, multiple products and multiple periods, 
as well as multiple facilities such as collection facilities, disposal centres, and distribution 
centres in the optimisation model to configure a CLSC. Our paper is no exception; 
however, this is a first study of its kind in which combination of a machine learning 
technique, i.e., logistic regression model, and qualitative approach, i.e., conducting 
interviews in a recycling facility as well as a waste management facility in the Canadian 
province of Nova Scotia, is utilised to provide insights from the real world to inform the 
quantitative analysis of plastic CLSC optimisation model, and explore its impact on 
design cost and CO2 emissions with implications for social sustainability, e.g.,  
well-being of communities. 

Our numerical results indicate that adding washing machines to plastic CLSC can 
decrease both total design cost and CO2 emissions by 0.82% and 2.26%, respectively. On 
the other hand, increased return of 78.94%, to which consumer awareness contributes, 
has a considerable impact on reducing the CO2 emissions, i.e., by 10.29%, and the design 
cost, i.e., by 2.43%. That is, increased return by 78.94% have more impact on reducing 
CO2 emissions and design cost rather than adding a washing machine; however, both 
scenarios reduce the CO2 emissions and the design cost when considered separately. 
Furthermore, the combination of adding washing machines to recovery centres and 
increased return of plastic products due of increased corporate responsibility in providing 
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information on plastic type and educating consumers on the importance of plastic 
recycling have the potential to decrease both the design cost, i.e., by 3.93%, and CO2 
emissions, i.e., by 14.24%. The implication of this finding is contribution to the social 
sustainability, e.g., well-being of communities. 

These findings also provide insights to policy makers and guidelines for 
municipalities. Specifically, our findings from applying a logistic regression model to a 
real sample of products with plastic in them indicate that, for one unit of increase in the 
Brand variable, the likelihood of a manufacturer educating consumers on the importance 
of plastic recycling and/or plastic type increases. The implication of this finding for 
policy makers is to extend the EPR in terms of involving manufacturers, specifically non-
brand manufacturers according to our findings, in the post-consumption phase and proper 
disposal of products with plastic in them, and establish and promote specific policies on 
educating consumers on the importance of plastic recycling and providing information on 
plastic type. Furthermore, municipalities can consider the option of investing in adding 
washing machines to plastic recovery centres. 
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Appendix A 

This sample of products with plastic in them is based on the observations we have made, 
and by no means provides a basis for making a judgment about any brand or a 
manufacturer. 
Table A1 List of plastic products 

# Information on plastic type and/or importance 
of recycling is available (yes = 1) 

Known-brand manufacturer 
(yes = 1) 

1 1 1 
2 1 1 
3 1 1 
4 1 1 
5 1 1 
6 1 1 
7 1 1 
8 1 1 
9 1 1 
10 1 1 
11 1 1 
12 1 1 
13 1 1 
14 1 1 
15 1 1 
16 1 1 
17 1 1 
18 1 1 
19 1 1 
20 1 1 
21 1 1 
22 1 1 
23 1 1 
24 1 1 
25 1 1 
26 1 1 
27 0 1 
28 0 1 
29 0 1 
30 0 1 
31 0 1 
32 0 1 
33 0 1 
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Table A1 List of plastic products (continued) 

# Information on plastic type and/or importance 
of recycling is available (yes = 1) 

Known-brand manufacturer 
(yes = 1) 

34 1 0 
35 1 0 
36 1 0 
37 0 0 
38 0 0 
39 0 0 
40 0 0 
41 0 0 
42 0 0 
43 0 0 
44 0 0 
45 0 0 
46 0 0 
47 0 0 
48 0 0 
49 0 0 
50 0 0 
51 0 0 
52 0 0 
53 0 0 
54 0 0 
55 0 0 
56 0 0 
57 0 0 
58 0 0 
59 0 0 
60 0 0 
61 0 0 
62 0 0 
63 0 0 
64 0 0 
65 0 0 
66 0 0 
67 0 0 
68 0 0 
69 0 0 
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Appendix B 

Part 1 Below the confusion matrix is provided for cut off values of 70%, 60%, 
50%, 40%, 30%, 20%, 10% 

Table B1 Confusion matrix for the training set with 10% to 70% cut-off values 

Confusion matrix for the training set Accuracy 
Actual\Predicted 0 1 15 + 21 = 87.805

21 + 4 +1 +15
 

0 21 4 
1 1 15 

Table B2 Confusion matrix for the validation set with 10% to 70% cut-off values 

Confusion matrix for the validation set Accuracy 
Actual\Predicted 10 1 11 +12 = 82.14%

11 +12 + 2 + 3
 

0 12 3 
1 2 11 

Part 2 Below the confusion matrix is provided for cut off values of 90%  
and 80% 

Table B3 Confusion matrix for the training set with 80% and 90% cut-off values 

Confusion matrix for the training set Accuracy 
Actual\Predicted 0 1 25 = 60.97%

25 +16
 

0 25 0 
1 16 0 

Table B4 Confusion matrix for the validation set with 80% and 90% cut-off values 

Confusion matrix for the validation set Accuracy 
Actual\Predicted 0 1 15 = 53.57%

15 +13
 

0 15 0 
1 13 0 

Appendix C 

We can construct the log of odds according to the information from Table 10. For more 
information see (Peng et al., 2002). 

( 1) [ 3.044519503 4.366275343* ]
1 ( 1)

p yLog x Brand
p y

=  = + = − + − = 
α β  (C.1) 

The following formula can be extracted. We set brand to be equal to 1in the following 
formulation. 

( )
1 1( 1) 0.7894

1 1 1.32175584x
p y

e e− +
= = =

+ + −α β  (C.2) 


