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Abstract: Accurate tool condition monitoring (TCM) is an important part for 
ensuring milling quality. However, due to the cost of TCM experiment, there 
are few labelled and a lot of unlabelled samples in the training set that 
significantly affect the accuracy of many machine learning models. A novel 
method based on comparative learning (CL) and Gramian angular field (GAF) 
is proposed for improving the performance of TCM. The cutting force signals 
of each channel of all samples (including labelled and unlabelled) collected in 
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TCM experiment are expanded to grey images by GAF, and combined with 
other channels to a colour image. Then, these colour images are input to the CL 
pre-training model to learn features. Finally, the extracted features and the few 
labelled samples are applied to train the ResNet18 model to obtain excellent 
classification results. The milling TCM experiments show that the classification 
precision of the proposed GAF-CL model is above 95% with small labelled 
samples, which is more than 19% higher than the ImageNet pre-training model. 

Keywords: tool condition monitoring; TCM; comparative learning; CL; 
Gramian angular field; residual network. 

Reference to this paper should be made as follows: Wang, H., Sun, W.,  
Sun, W., Ren, Y., Zhou, Y., Qian, Q. and Kumar, A. (2023) ‘A novel tool 
condition monitoring based on Gramian angular field and comparative 
learning’, Int. J. Hydromechatronics, Vol. 6, No. 2, pp.93–107. 

Biographical notes: Hongche Wang received his BS in Mechanical Design 
and Manufacturing from Hangzhou Dianzi University, Hangzhou, China, in 
2020. He is currently working toward his MS in Mechanical Engineering from 
Wenzhou University. His research interests include deep learning and fault 
diagnosis. 

Wei Sun received his BS in Mechanical Design and Manufacturing from Linqi 
University, Linqi, China, in 2020. He is currently working toward his MS in 
Mechanical Engineering from Wenzhou University. His research interests 
include tool condition monitoring and machine learning. 

Weifang Sun is currently an Associate Professor with the College of 
Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China. 
His research interests include digital information analysis, and artificial 
intelligence methods. 

Yan Ren is currently an Associate Professor with the College of Mechanical 
and Electrical Engineering, Wenzhou University, Wenzhou, China. Her 
research interests include mechanical design and optimisation methods. 

Yuqing Zhou is currently vice president with the College of Mechanical and 
Electrical Engineering, Jiaxing Nanhu University, Jiaxing, China, and special-
term professor in Wenzhou University, Wenzhou, China. His research interests 
include tool condition monitoring, mechanical fault diagnosis, and machine 
learning. 

Qijia Qian is currently the Director of the Technology Department, Wenzhou 
Ruiming Industrial Co., Ltd., Wenzhou, China. His research interests include 
tool condition monitoring and intelligent manufacturing. 

Anil Kumar is currently an Associate Professor with the College of Mechanical 
and Electrical Engineering, Wenzhou University, Wenzhou, China. His 
research interests include fault diagnosis and deep learning. 

 



   

 

   

   
 

   

   

 

   

    A novel tool condition monitoring based on Gramian angular field 95    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

In the process of material cutting, the tool is in direct contact with the work piece, and the 
gradual wear of the tool has become an important factor affecting the dimensional 
accuracy, surface roughness and processing cost of the work piece (Zhou et al., 2020a). 
Tool wear is a complex process that depends on the experience and subjective judgment 
of the operator for tool replacement. Replacing the tool too early will reduce the quality 
of the part and increase the production cost (Hahn and Mechefske, 2021). It is essential to 
study a reliable and real-time monitoring method to reflect the wear condition of the tool 
(Vicente et al., 2010). According to the research surface, the establishment of TCM 
system can reduce 75% of failure downtime (Zhou et al., 2020b), improve 10% ~ 50% of 
production efficiency (Siddhpura and Paurobally, 2013), and the utilisation rate on 
machine tool will reach more than 50% (Rehorn et al., 2005). 

Today, there are two main methods to monitor tool wear: the direct method and the 
indirect method. The most typical method of the direct method is a mechanical visual 
method (Klancnik et al., 2015). Using machine vision tools to directly measure the wear 
value of the blade has the advantages of intuition and high accuracy, but it needs to stop 
the machine for measurement, which has low efficiency. Indirect method is the most 
widely used method. Through the signals collected by sensors in the cutting process of 
cutting tools under different wear conditions, such as cutting force (Zhu et al., 2021), 
acoustic emission (Ravindra et al., 1997), vibration (Zhang et al., 2021), use machine 
learning model to train the input characteristics of the collected signals, and then predict 
the current collected data (Lei et al., 2021). Li et al. (2019) separated the noise signal by 
blind source separation method, developed and verified a prediction model. Wu et al. 
(2017) studied the use of random forest to realise on-line tool wear prediction. Vashishtha 
et al. (2022) use the improved Shannon entropy maximisation principal component 
analysis to effectively eliminate the correlation and redundancy of data. Vashishtha et al. 
(2022) use the improved African vulture optimisation algorithm to extract sensitive 
features representing different conditions on bearing to improve performance. However, 
it is also very difficult for these methods to select appropriate features for feature 
extraction. Therefore, these models need a lot of experiments to verify. 

In recent years, the method of deep learning Wang et al. (2019) has been extremely 
successful in the fields of natural language processing (Li et al., 2020), speech 
recognition (Hinton et al., 2012) and image recognition (Chan et al., 2014). Deep learning 
involves reaching the state of end-to-end learning by hierarchical representation of data 
features and abstract representation of low-level features of high-level features (Zhou  
et al., 2022), this method Gu et al. (2021) and He et al. (2021) can effectively reduce the 
dependence on traditional experience in the traditional machine learning model. Deep 
learning is divided into supervised learning and unsupervised learning, and although 
supervised learning has a high accuracy rate, it requires a large amount of labelled data 
for learning (He et al., 2020), and there are also problems such as generalisation errors, 
false associations, and adversarial attacks (Hahn and Mechefske, 2021). Therefore, in 
recent years, self-supervised representation, learning on unlabelled data has received 
more and more attention from scholars. However, the labelled data from the tool milling 
process are few and expensive, how to use a large amount of unlabelled data to monitor 
the wear and tear of unsupervised learning milling tools has become a new topic, in the 
research on unsupervised image classification, Hardsel et al. (2006) first proposed the 
concept of contrast loss, mapping high-dimensional data to low-dimensional space, and 
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making similar points in the input closer in space by comparing positive and negative 
pairs. Chen et al. (2020) proposed SimCLR CL model, adding multi-layer full connection 
layer and activation layer after the feature extraction network, which solved the problems 
of slow calculation speed of the model when the dimension of feature vector is high, and 
achieved good results. 

In many practical industrial scenarios, a small number of labelled and a large number 
of unlabelled samples can be collected for learning, which seriously affects the 
performance of supervised learning methods. However, when the proportion of labelled 
data in a large number of datasets is small, the unlabelled data can be fully utilised for 
self-supervised pre-training through contrastive learning, and contrastive learning has a 
better classification effect under this structure of datasets. This paper proposes a 
dimensional image classification algorithm based on CL model in TCM. In the first step, 
the original time series signals collected by the sensor are imaged into grey images of 
appropriate size, these images obtained from the three signals are combined through the 
channel dimension to obtain a 3D colour image as the CL model input. The second step is 
to input the obtained image without labels into the CL Pre-training model to learn 
features, the biggest feature of this model is that it can adopt the self-supervised  
pre-training model under the unlabelled dataset to absorb the prior knowledge 
distribution of the image itself. In the third step, the extracted features and the few 
labelled samples are applied to train the ResNet18 model to obtain excellent classification 
results and compared with other deep learning methods. The paper is divided into the 
following parts. The second part show GASF, SimCLR CL pre-training model and the 
overall structure of the model. The third part gives the experimental setup, data analysis 
and experimental results. Finally, the fourth part summarises this paper. 

2 Related work 

2.1 GASF 

Nowadays, deep learning is widely used as a computer vision. Image data processed by 
computer vision are two-dimensional data, while data from various sensors are typical 
data from one-dimensional time series data. However, it is difficult to build a model 
when processing, time series data, there is no ready-made research and training network 
to provide one-dimensional time series for training, which has a good effect. Therefore, if 
the time series or one-dimensional array can be transformed into a two-dimensional 
image format, and then the deep learning model can be applied for analysis, and has good 
results, it is a relatively novel application in the field of tool wear condition monitoring. 
At present, there are many methods to upgrade the dimension of time series. Through 
genetic algorithm (GA) (Yu and Zhao, 2019), particle swarm optimisation algorithm 
(PSO) (Higashi and Iba, 2003) and arithmetic optimisation algorithm (AOA) (Chauhan 
and Vashishtha, 2021), Chauhan et al. (2022) proposed the combination of AOA and 
slime mould algorithm (SMA) (Jafariasl et al., 2021) to optimise AOA. These methods 
can obtain the optimal parameters and upgrade the dimension of the signal through phase 
space reconstruction. In recent years, Wang et al. (2015) proposed three new time series 
image coding methods: Gramian angular sum/difference field (GASF/GADF), and these 
methods have been practiced in some papers (Jiang et al., 2021; Zheng  et al., 2021). 
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For GASF, the time series is represented by polar coordinates, select a given time 
series with length N, and let X = {x1, x2, x3⋯xn} be normalised by [–1, 1]. Then, the value 
of the time series and its corresponding timestamp are respectively expressed as angle Φi 
and radius r. 

( )Φ  , 1 1,i i i iarcos x x x X= − ≤ ≤ ∈    (1) 

( )i
i

tr t N
N

= ∈  (2) 

In equation (1), the angle corresponding to each timestamp is the arccosine value 
corresponding to the normalised amplitude of that time point. In equation (2), ti is the 
time stamp, and N represents the length of the input time series. As the time increases, 
the value of each time series will be displayed at different angles and radii on the 
generated circle, however, when calculating the inner product, different initial points will 
lead to different inner products between the same sequence points (because their r is 
different), so a formula is needed, which only depends on the angle. By defining the inner 
product: 

( ) ( ) ( )2 2, Φ Φ
T

T
i jx x x x I x I x cos= ⋅ − − ⋅ − = +       (3) 

In equation (3), x  is the normalised value of a line of time series, I is the unit row vector 
[1, 1, 1⋯1]. Becaues of ( ) ( ) ( )1 2Φ , Φ , Φnx cos cos cos    , their inner product can be 
transformed into the cosine of the sum of angles. Therefore, in the GASF matrix, each 
default element is the cosine of the angular sum of the time stamp, the definition formula 
of GASF is as follows the equation (4). 

Figure 1 shows the GASF coding process of time series signals:  

a the raw signal extracted by the sensor 

b the result of normalising the raw signal 

c the normalised signal is expressed in polar coordinates through equations (1) and (2) 

d the image is generated by time series signal through equation (3) and (4). 
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

   


 (4) 

Figure 1 Process of Gramian angular field (a) raw signal (b) normalised signal (c) signal on polar 
coordinates (d) signal dimension upgrade to picture (see online version for colours) 
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2.2 SimCLR CL pre-training model 

The framework of the CL model is shown in Figure 2, including four modules: data 
augmentation, feature extraction, multi-layer perceptron (MLP) and contrast loss 
function. 

Figure 2 SimCLR framework (see online version for colours) 
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2.2.1 Data augmentation 
There are two ways to enhance an image: one involves spatial geometric transformation, 
such as crop and Horizontal-Flip, and the other involves appearance transformation, such 
as Colourjitter and grey scale. As shown in Figure 2. In this paper, Gasf method is used to 
obtain images. Each pixel in the image represents the relationship between each signal, so 
the data enhancement method of appearance transformation cannot be used, and the form 
of spatial transformation needs to be used. We ues the T-change is 
{RandomHorizontalFlip (p = 0.5), RandomResizeCrop (64)}. By default, xi and xj 
generated by a picture through T-change are positive samples, while paired samples 
generated in other images are negative samples. 

2.2.2 Feature extraction 
The model needs to input the feature vector, delete the dense layer and leave four residual 
blocks. The picture is input to the resnet18 network that deletes the dense layer. After 
each residual block, the feature is extracted adaptively by neural network to obtain the 
feature vectors of 512×1×1. 

2.2.3 Multi-layer perceptron 
As shown in Figure 2, the MLP used for projection in this paper adopts two linear layers, 
and normalisation is used after each linear layer. After the normalisation of the first linear 
layer, using the ReLU function can better mine relevant features and speed up the fitting 
of training data. Through the MLP, the high-dimensional features can be reduced to 
lower features, which can speed up the calculation in the subsequent loss function 
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calculation. In this paper, the feature output of 512×1×1 is reduced to 128×1×1 through 
MLP. 

2.2.4 Contrast loss function 
Specify the size N of a batch size, for the N images of this batch, the images obtained 
through T-change are recorded as N1 and N2, and the features obtained by feature 
extraction and MLP are Z1 and Z2, order Z = [Z1; Z2 ]∈R(2N×128) (where [Z1;Z2] indicates 
that Z1 and Z2 are spliced through columns). Finally, cosine similarity is calculated using 
the equation (6). 

( , )
T

ji

i j

Z ZSim i j
Z Z

⋅
=  (6) 

(where Zi and Zj represent columns i and j of matrix Z) 

( )
( )

, 2
[ ]1

exp ( , ) /
( [0,1])

exp ( , ) /
i j N

k ik

Sim i j τ
l log τ

Sim i j τ≠=

= − ∈


 (7) 

The cross-entropy loss is calculated by equation (7). τ is the temperature parameter which 
adjusts the attention to difficult samples, the τ is smaller, the more attention is paid to 
separating this sample from other most similar samples. According to the multiple 
experiments at τ = 0.07, 0.1, 0.2, 0.5, 1, it can be concluded that the classification 
accuracy of the model obtained from the experimental dataset is the highest when  
a = 0.1, therefore, in this study, τ = 0.1. 

Finally, calculate all losses in n batches through equation (8) and take the average 
value to obtain the final loss L. 

[ ]2

1

1 (2 1, 2 ) (2 , 2 1)
2

N

k
L l k k l k k

N =
= − + −  (8) 

Figure 3 The overall structure of the model (see online version for colours) 
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2.3 Proposed method 

As shown in Figure 3, through the collected cutting force signal, the signal dimension is 
upgraded into grey image through GASF, the grey images obtained from the three signals 
are combined through the channel dimension to obtain a 3D colour image as the model 
input. This method uses a large number of unlabelled images to train a pre-training model 
based on CL, and the weight value of feature extraction in the pre-training model is used 
as the initial value of feature extraction in the classification model. Finally, a small batch 
of labelled datasets are used to fine tune the weight of feature extraction and dense layer, 
and the classification results are obtained. 

3 Experimental investigations 

3.1 Experimental setup 

The TCM experimental setup is shown in Figure 4. The material of the work piece is 
AISI 1045 and the size is 300 mm 100 mm 80 mm, whose chemical properties are shown 
in Table 1. Each tool milled the work piece surface ten times, and the milling length of 
each time was 1.5m, including three climb milling and two conventional milling, and the 
sampling frequency is 12,000hz. Figure 5 shows the wear of the three edges of the first 
tool after the second, sixth and tenth milling stages. 

According to the ISO3685-1977 standard, the wear amount of the tool is defined as 
the wear width VB of the flank of the tool. However, the one-dimensional measurement 
method cannot fully reflect the tool wear, so this study uses the flank wear area of the 
tool to measure the tool wear, and defines the maximum flank wear area of the three 
edges of the tool as the wear value of the milling cutter. According to the change trend of 
tool wear value in Figure 6, tool wear is divided into the following five categories in this 
paper: initial wear (<0.1mm2), slight wear (0.1mm2 < x ≤0.3mm2), stable wear (0.3mm2< x 
≤0.5mm2), severe wear (0.5mm2 < x ≤ 0.8mm2), failure (> 0.8mm2). The classification 
results are shown in Table 3, assign the tool wear degree of these five categories to the 
data labels 1, 2, 3, 4 and 5. 
Table 1 Chemical properties of work piece material 

Carbon (%) Silicon (%) Manganese (%) Nickel (%) Chromium (%) Copper (%) 
0.42~0.50 0.17~0.37 0.50~0.80 ＜0.30 ＜0.25 ＜0.25 

In this paper, a total of 7 end mills were used for milling experiments, the cutting 
parameters for the milling method are shown in Table 4, the varied range of spindle speed 
is from 2300 rpm to 2500 rpm, the variation range of feed speed is from 400mm/min to 
500mm/min and the variation range of cutting depth is from 0.4mm to 0.6mm, each 
milling cutter is tested from a new tool until the measured tool wear area is at least 
0.8mm2, in this paper, 10 milling stages were carried out for each tool, and three cutting 
edges wear area values were recorded for each tool after each milling process. 

 



   

 

   

   
 

   

   

 

   

    A novel tool condition monitoring based on Gramian angular field 101    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 The experimental setup (a) experimental platform (b) signal acquisition system (c) tool 
microscope (see online version for colours) 

   
(a)      (b) 

 
(c) 

Table 2 Training parameters of CL pre-training model 

Parameter Image size Learning rate Temperature 
parameter Optimiser Loss function 

Value 64×64×3 0.0005 0.1 Adam Contrastive 
loss function 

Table 3 Classification of tool wear status and range of wearable values 

Tool category Tool wear value/mm2 Tool wear state 
1 [0, 0.1) Initial wear 
2 [0.1, 0.3) Slight wear 
3 [0.3, 0.5) Stable wear 
4 [0.5, 0.8) Sharp wear 
5 [0.8, +∞) Failure 
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Figure 5 Tool wear images of different milling stages: (a) second milling stage (b) sixth milling 
stage (c) tenth milling stage 

  
(a)     (b) 

 
(c) 

Table 4 Machining parameters used in milling experiments 

No. Speed (rpm) Feed rate (mm/min) Depth of cut (mm) 
1 2,300 400 0.4 
2 2,300 450 0.5 
3 2,300 500 0.6 
4 2,400 450 0.4 
5 2,400 500 0.5 
6 2,400 400 0.6 
7 2,500 400 0.6 
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Figure 6 Flank wear area of three cutting edges during milling (see online version for colours) 

 

3.2 Results and analysis 

In this experiment, each tool has a processing stroke of 10 units, therefore, the 
experimental results include 70 sets of cutting force signal data and the corresponding 
amount of wear at the milling stage, each sample contains the X, Y and Z axis cutting 
force signal, with 300 seconds in each direction and a total of 3,600,000 data points, and 
1,000 signal points are defined by GASF to upgrade the dimension into an image as the 
image input of this study. Figure 7 shows the relationship between the five tool wear 
categories and the corresponding GASF dimension upgrade image. 

Figure 7 Tool wear image and its corresponding GASF dimension upgrading image (see online 
version for colours) 

  

We will get a dataset of 7,000 samples per category, remove the labels of most samples 
from the dataset, and then obtain a dataset of 2,000 labelled samples (400 per class) and 
33,000 unlabelled samples (6,600 per class), the labelled data is randomly divided into 
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half of the training set and half of the testing set (200 per class), the training set and the 
unlabelled dataset (1,000+33,000 samples) are applied to train the SimCLR pre-training 
model. Then, 50 samples of each class in the training set are selected as the validation set, 
and the remaining 150 samples of each class are used as the training set with sample sizes 
of 20, 30, 50, 100, and 150. The training set and the validation set are used to train the 
model, and the testing set is used to test the accuracy, and the average is repeated five 
times. These datasets are tested and compared in seven methods: GASF-CL, GASF-IM, 
GASF-ResNet 18 (no pre- training model), CL pre-trained model and ImageNet Pre-
training model under short-time Fourier transform (Aafaq et al., 2019) (STFT-CL, STFT-
IM), CL and ImageNet under the wavelet transform (Shao et al., 2018) (WT-CL ,WT-
IM). The training parameters of CL pre-training model are shown in  
Table 2. Table 5 shows the classification results of the seven methods at different simple 
sizes. 
Table 5 classification results of three methods under different sample sizes 

No. T-20 T-30 T-50 T-100 T-150 
Labelled/class 20 30 50 100 150 
STFT-IM 61.5% 63.2% 75.6% 84.1% 87.9% 
STFT-CL 64.4% 66.8% 79.8% 87.2% 92.2% 
WT-IM 62.3% 67.3% 74.5% 85.6% 89.6% 
WT-CL 57.6% 62.2% 71.8% 80.5% 85.9% 
GASF-ResNet18 44.9% 49.3% 59.4% 77.3% 85.2% 
GASF-IM 63.5% 65.4% 73.8% 87.9% 91.8% 
GASF-CL 81.5% 86.1% 92.3% 97.0% 98.0% 

By taking the average of the results of the five repeated experiments of the seven 
methods in Table 5, it can be seen that when there are 150 pictures in each category in the 
training set, the test accuracy rate reaches 98%. Compared with the other six methods, 
this method has a 6% improvement in accuracy. When there are only 20 images in the 
training set, the classification results of the dataset obtained by the GASF-CL model 
method also have 81.5% test accuracy categories, which is much higher than other 
methods. It can be seen that the advantages of this method are more obvious when the 
sample size is smaller. Through the comparison of STFT-CL, WT-CL and GASF-CL, it 
can be seen that the GASF signal dimension enhancement method is more able to extract 
the deep features of the signal, coupled with CL pre-training method makes the trained 
model have better classification performance. 

4 Conclusions 

In this paper, the three directions of cutting force signals X, Y and Z are combined into a 
new dataset through the channel dimension, which solves the problem that the 
information obtained by a single channel is limited and there may be large errors, and 
improves the stability and robustness of the system. The CL pre-training model method is 
applied in the case of large sample size with a small proportion of label data, the self-
supervised pre-training mode can also be used to make full use of the properties of 
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unlabelled data to learn the internal features of the image, and has a great effect compared 
with the traditional methods. 

However, the CL method needs to utilise the positive and negative sample pairs of a 
large number of datasets to calculate the comparative loss function. It needs to be 
improved on the network model in the future, so that a slightly smaller number of 
datasets can achieve the same effect as the model obtained by the pre-training of large 
samples. In short, CL can better explore and improve, and make rational use of a large 
number of unlabelled datasets, which is still a problem worthy of research in the future. 
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