

International Journal of Innovative Computing and
Applications

ISSN online: 1751-6498 - ISSN print: 1751-648X
https://www.inderscience.com/ijica

Fuzzy modelling techniques for improving multi-label
classification of software bugs

Rama Ranjan Panda, Naresh Kumar Nagwani

DOI: 10.1504/IJICA.2023.10056700

Article History:
Received: 24 September 2021
Last revised: 03 February 2022
Accepted: 30 May 2022
Published online: 07 June 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijica
https://dx.doi.org/10.1504/IJICA.2023.10056700
http://www.tcpdf.org

Int. J. Innovative Computing and Applications, Vol. 14, No. 3, 2023 141

Fuzzy modelling techniques for improving multi-label
classification of software bugs

Rama Ranjan Panda* and Naresh Kumar Nagwani
Department of Computer Science and Engineering,
National Institute of Technology-Raipur,
Chhattisgarh, India
Email: rrpanda.phd2018.cs@nitrr.ac.in
Email: nknagwani.cs@nitrr.ac.in
*Corresponding author

Abstract: Software bug repositories stores a wealth of information related to the problems that
occurred during the software development. Today’s software development is a modular approach,
with multiple developers working in different locations all around the world. A software bug
may belong to multiple categories and can be resolved by more than one developer. For
understanding the multiple causes of software bugs and proper bug information management
at large bug repositories, better classification of software bugs is needed. In the proposed
work, a multi-label fuzzy system-based classification (ML-FBC) is proposed. A fuzzy system
is used to compute the membership of software bugs into multiple categories. Then a fuzzy
c-means clustering algorithm is used to create various clusters. Once the clusters are created, the
cluster-category mapping is done for various software bugs. For a new bug, the fuzzy similarity
values are computed, and the created cluster-category mappings are utilised to categorise it.
Using a user-defined threshold value, a new bug is classified into multi-label categories.
Experiments are carried out on available benchmark datasets to compare the performance
measures F1 score, BEP score, Hloss, accuracy, training time, and testing time of various
multi-label classifiers. The proposed ML-FBC outperforms existing multi-label classifiers.

Keywords: mining bug repositories; bug information management; fuzzy modelling; multi-class
categorisation; multi-label classification.

Reference to this paper should be made as follows: Panda, R.R. and Nagwani, N.K.
(2023) ‘Fuzzy modelling techniques for improving multi-label classification of software bugs’,
Int. J. Innovative Computing and Applications, Vol. 14, No. 3, pp.141–154.

Biographical notes: Rama Ranjan Panda received his MCA from the National Institute of
Science and Technology, Berhampur, Odisha, India 2011 and MTech in Computer Science
and Engineering from the National Institute of Science and Technology, Berhampur, Odisha,
India 2013. He is currently working toward his PhD with Computer Science and Engineering
Department, National Institute of Technology, Raipur, India. His current research interests
include application of fuzzy logic techniques in mining of software repositories and knowledge
discovering in software repositories. He has published more than 13 papers in international
journals and conference proceedings.

Naresh Kumar Nagwani has completed his graduation in Computer Science and Engineering
in 2001 from the G.G. Central University, Bilaspur. He completed his Post-graduation Master
of Technology in Information Technology from the ABV-Indian Institute of Information
Technology, Gwalior in 2005 and completed his PhD in Computer Science and Engineering in
2013 from National Institute of Technology Raipur, India. His employment experience includes
software developer and team lead at Persistent Systems Limited. Presently, he is working as an
Associate Professor of Computer Science and Engineering at the NIT Raipur. He has published
more than 105 research papers in various journals and conferences in the field of data mining,
text analytics and software engineering.

that occurred during software development. In the testing
phase of the software development life cycle, the tester
and quality engineer test individual modules as well as
the whole software to identify any problems in different
modules of the software. The flaws or defects that are

1 Introduction

In a software development project, the software bug
repository is one of the most important repositories as
it stores a wealth of information related to the problems

Copyright © 2023 Inderscience Enterprises Ltd.

142 R.R. Panda and N.K. Nagwani

identified by the tester and quality engineer are treated
as software bugs (Xia et al., 2016; Yadav et al., 2019).
The information about the software bugs is presented in
the form of a software bug report and consists of the
basic information about the software bug such as bug
id, summary, product, component, type, priority, severity,
assignee, etc. A sample of a software bug report from the
Mozilla bug repository is illustrated in Figure 1.

Figure 1 Bug report 1513466 of Mozilla software project
(see online version for colours)

The bug has a bug id of 1513466 and the summary of the
bug is written in ital letters. The bug’s product is core, and
the component is Java script: Web assembly, the type of the
bug is defect, the priority is P5, and the severity is normal,
as shown in the category section of the software bug report.
Similarly, the tracking section shows the status of the bug,
and it is new. The people section reveals the names of the
assignee as Baku, the name of the reporter, and the triager
owner. The importance of different attributes of a software
bug report in various research areas related to software bugs
is presented by Soltani et al. (2020).

Modern-day software projects use various bug
tracking systems such as JIRA, Bugzilla, Eclipse, etc.
to automatically generate bug reports (Xi et al., 2019;
Herbold et al., 2020). In a large software project, multiple
developers are working from various locations, and there
is a continuous inflow of a large number of bug reports.
Analysing the multiple causes of software failures is very
time-consuming and tedious work. Furthermore, one of
the major problems in large software bug repositories
is bug information management. A proper software bug
classification algorithm is needed to address this issue.
Proper software bug classification leads to better bug
information management and improves the bug triaging
process by finding the right fixer for fixing the bugs in
a timely manner. Many of the contents of bug reports
are textual in nature, and researchers have started using
text mining to extract knowledge from these software bug
repositories.

Over the years, various machine learning algorithms
have been effectively used in the area of text mining
for the classification and clustering of text documents
based on the features present in the documents. Machine
learning algorithms have also been applied effectively in
a variety of research disciplines, including bio-medical
disease classification (Singh et al., 2020; Govindarajan
et al., 2020; Naseem et al., 2021), sentiment analysis (Onan,

2021), e-book classification (Thakur and Patel, 2021), and
tree and utility pole classification (Das et al., 2021). It is
also effectively used for the classification of software bugs
and has produced significant results (Ahmed et al., 2021;
Ni et al., 2020; Mohsin and Shi, 2021). A software bug has
either been classified as a bug or a non-bug category in a
binary software bug classification. However, the majority
of software failures occur for multiple reasons related
to various modules of software bugs, and these machine
learning algorithms are insufficient for understanding the
multiple causes of software bugs. For better classification
of software bugs, the multiple causes of software bugs need
to be addressed, and this can be achieved by designing a
multi-label classification algorithm for software bugs.

Today’s software development is a modular approach,
with multiple developers working in different locations all
over the world. A software bug may belong to multiple
categories and be resolved by more than one developer.
Clustering is one of the popular approaches widely used
in data mining to determine similar items and group them
into the same clusters. The clustering algorithms are broadly
classified as distance-based and model-based approaches
(Bei et al., 2021; Wang et al., 2022). Similarly, the
clustering algorithm can be divided into two categories:
non-fuzzy clustering and fuzzy clustering techniques.
Non-fuzzy clustering refers to hard clustering in which
a term belongs to exactly one category, whereas fuzzy
clustering refers to soft clustering in which a term belongs
to many categories. Fuzzy clustering techniques can be used
to understand the multiple relationships between software
bugs and various categories. Furthermore, most of the
features of software bugs are textual in nature, a fuzzy
system-based clustering algorithm can be effectively applied
to these software bugs to generate a membership matrix
that indicates the grade at which technical terms of software
bugs belong to various categories (Panda and Nagwani,
2019, 2021). A series of recent studies has indicated
that fuzzy clustering algorithms are widely adopted in the
fields of image processing (Dong et al., 2022; Farahani
et al., 2018; Gao et al., 2022; Ghosh et al., 2021; Kavitha
and Saraswathi, 2021; Rubio et al., 2017), multi-label
classification (Panda and Nagwani, 2021; Peng and Liu,
2018; Qian et al., 2021), categorical data analysis (Saha
et al., 2019), and multivariate data analysis (Sanchez
et al., 2017). Similarly, a combination of a fuzzy c-means
clustering algorithm and a fuzzy inference system is used
for the evaluation of unmanned aerial vehicles. The fuzzy
clustering algorithm is utilised to create various clusters,
and the fuzzy inference system is used to analyse the expert
knowledge about unmanned aerial vehicles (Çolaket al.,
2022). In all of the above studies, it was found that the
fuzzy clustering algorithms provided statistically significant
results and improved the overall performance of the system.

In the last several years, a large number of metaheuristic
algorithms have been developed by using the idea of natural
phenomena, and these algorithms are being used in various
fields to solve complex problems (Fausto et al., 2020;
Tzanetos and Dounias, 2021). An intensive investigation
is being carried out by Meng et al. (2021) on ten

Fuzzy modelling techniques for improving multi-label classification of software bugs 143

popular metaheuristic algorithms, and they have presented
a comparative analysis of these algorithms based on their
convergence properties, the importance of technology, and
the major challenges in different engineering fields. In order
to solve optimisation problems more efficiently, machine
learning techniques are also combined with metaheuristics.
This integration is done to improve the quality of the
solution, the rate of convergence, and the robustness
of the system (Karimi-Mamaghan et al., 2021; Talbi,
2021). Similarly, metaheuristic algorithms along with deep
learning techniques are used on medical data (Si et al.,
2022; Bahaddad et al., 2022), image data (Ahmed and
Darwish, 2021), brain-computer interface (Mart́ınez-Cagigal
et al., 2022), and biological data (Santander-Jiménez et al.,
2022) to solve many complex problems. Metaheuristics can
be utilised along with machine learning and deep learning
techniques to create more efficient models for improving
the performance of various classifiers.

Multi-label learning has been extensively studied and is
being investigated in the literature. A multi-label evaluation
matrix can be broadly classified as example-based or
label-based. It is used for classification as well as ranking
purposes (Zhang and Zhou, 2013; Qian et al., 2021). In
recent years, several multi-label classification algorithms
have been developed for text classification (Al-Salemi
et al., 2019; Wu et al., 2020; Xia et al., 2021), pattern
recognition and image processing (Zhang et al., 2020;
Wang et al., 2021; Tarekegn et al., 2021), recommendation
system (Zhang et al., 2020) and data computing (Mei
et al., 2020). The widely used multi-label classification
algorithms are multi-label K-nearest neighbour (ML-KNN)
(Zhang and Zhou, 2007), ranking support vector machine
(R-SVM) (Elisseeff and Weston, 2001), and multi-label
radial basic function (ML-RBF) (Zhang, 2009). Similarly,
various fuzzy similarity measure-based text classification
(Jiang et al., 2012; Lee and Jiang, 2013; Gangavarapu et al.,
2020), software bug categorisation techniques (Panda and
Nagwani, 2019, 2021) are also found in the literature, and
these techniques are well suited for software bug analysis.

Numerous classifying algorithms are developed based
on the presence of frequent terms, named entities, and
categorical terms in software bugs. The discriminative
terms present in the software bugs provide much-needed
information and knowledge about the software bugs (Zhou
et al., 2018; Nagwani and Verma, 2014). The software
bugs are categorised into various categories, such as
logical, backend, graphical user interface (GUI), data types,
memory, operating system (OS), security, build, analysis
and enhancement, etc. by matching the categorical terms
present in the software bugs (Panda and Nagwani, 2021;
Nagwani and Verma, 2014). To determine whether a
particular software bug belongs to multiple categories,
fuzzy logic can be applied to software bug repositories,
as it calculates the membership grade of each software
bug towards various categories (Panda and Nagwani, 2019,
2021).

1.1 Motivation

In order to illustrate the motivation behind the proposed
ML-FBC approach, let us consider the following bug
reports from the Mozilla software repositories (Mozilla,
2021).

Bug Report-1577416: HTML <video> outputs error
message when playing WebM file created with patched
ffmpeg to encode variable resolution.

According to Nagwani and Verma (2014), the above bug
report belongs to multiple categories. The terms such as
error, and file belong to the logical category, the terms
such as HTML, message, and resolution belong to the GUI
category, variable term belongs to the data type category,
and the term patch belongs to the build category. In this
scenario, the above bug report belongs to four different
categories: logical, GUI, data types, and build. Hence, a
binary classification algorithm is insufficient to handle the
multiple causes related to various categories. Furthermore,
the belonging of software bugs towards various categories
can be computed using fuzzy logic.

Bug Report-1472380: Assertion failure: false
(MOZ ASSERT UNREACHABLE:unexpected CSS
unit for border image area division), at src/layout/
painting/ns CSSRenderingBorders.cpp:3919

Similarly, in the above bug report the terms such as
assertion and fail belong to the logical category, whereas
the terms like border, CSS, image, layout, and render
belong to the GUI category and the term unit belongs to
the analysis category. Thus, the above bug report belongs
to three different categories (logical, GUI, and analysis) at
a time.

The above observation highlights that a software bug
may belong to more than one category simultaneously. It
is very difficult to understand the multiple causes of the
software bug by classifying it using binary classification.
Furthermore, most of the existing multi-label classification
algorithms use hard clustering, but in practice, a software
bug may affect multiple modules. Hence, these hard
clustering algorithms are also not sufficient to handle these
kinds of software bugs. To handle these kinds of software
bugs, the fuzzy c-means clustering algorithm can be applied
efficiently to the software bugs that belong to more than
one category simultaneously.

In this paper, to address the aforementioned problem,
a fuzzy system-based multi-label classification model for
software bugs is designed. Initially, the ML-FBC classifier
is designed for training data. The ML-FBC classifier is
used to compute the fuzzy membership values of each
software bug towards multiple categories for training
data. The fuzzy relevance of software bugs to different
categories is computed using the term-category relationship
and the term-bug relationship. Fuzzy c-means clustering

144 R.R. Panda and N.K. Nagwani

is adopted to group the fuzzy relevance of training data
into a collection of sub regions to from clusters. Then,
the cluster-category mapping is generated to compute the
membership of each cluster towards multiple categories of
software bugs. When a new bug is reported, its membership
with the existing categories of training data is computed by
using the different terms present in the new bug. Finally, the
new bug is mapped into multiple categories with the help
of cluster-category mapping of training data. A category
threshold value is used to classify the new bug into multiple
categories.

The main contributions to this article are summarised as
follows:

1 A fuzzy system-based multi-label classification model
is designed to compute the fuzzy membership of
software bugs into multiple categories.

2 A fuzzy clustering algorithm is adopted to group the
fuzzy relevance of software bugs into various clusters.

3 A user-defined threshold value is used to classify a
newly reported bug into various categories based on
its fuzzy similarity values to multiple categories.

The rest of the paper is structured as follows: in
Section 2, the proposed model ML-FBC is discussed.
In Section 3, an illustrative example of ML-FBC is
presented with real-world software bugs from the MySql
bug repository. The experimental outcome of different
multi-label classifiers is presented in Section 4. Some
threats to the validity of ML-FBC are discussed in Section 5
and finally, the conclusion and future direction of research
are presented in Section 6.

2 Proposed methodology

In this section, the proposed fuzzy modelling for multi-label
classification of software bugs is presented. At first, the
summary field of software bug repositories is extracted.
Then preprocessing is performed to obtain the processed
software bug data for further operation. The processed data
is divided into training and testing data. In the training
phase, the training data is used to create a multi-label
classification model. Finally, the classification model is
then used to classify newly reported software bugs in the
testing phase. The overall working principle of the proposed
fuzzy model for multi-label classification is shown in
Figure 2.

2.1 Mulit-label classification of software bugs

In a multi-label classification or categorisation of software
bugs, a bug can belong to more than one category at a time.
A multi-label bug classification is consisting of a triplet
(B, T,C). B represents the set of n software bugs,

B = {(b(1), l(1)), (b(2), l(2)), ..., (b(n), l(n))} (1)

T = {t1, t2, ..., tm} represents the set of m software bug
features or terms, and C = {c1, c2, ..., ck} represents the set
of k software bug categories. A software bug b(i), 1 ≤ i ≤
n is denoted as a vector ⟨π1

(i), π2
(i), ..., πm

(i)⟩, where πj
(i)

denote the positive value such as TF-IDF of term tj that
occurs in software bug b(i).

lj
(i) =

{
1, if b(i) belongs to category cj

0, if b(i) does not belongs to category cj
(2)

In multi-label classification, a software bug b(i) belongs
to more than one category cj . For example, lj(i) = {1, 0, 1}
indicates b(i) belongs categories c1 and c3 simultaneously.
For classifying a new software bug based on the triplet
(B, T,C), a dataset of B1, B2, ..., Bk will be created such
that{

(b(i), 1) ∈ Bj , if lj(i) = 1

(b(i), 0) ∈ Bj , if lj(i) = 0
(3)

The summary of key symbols used in this article are
illustrated in Table 1.

Figure 2 Block biagram of proposed fuzzy model
(see online version for colours)

Fuzzy modelling techniques for improving multi-label classification of software bugs 145

Table 1 List of symbols

Symbol Description

B Set of software bugs, B = {(b(1), l(1)), (b(2), l(2)),
..., (b(n), l(n))}

b(i) The ith software bug
l(i) Label of the ith software bug b(i) ∈ B to category

cj ∈ C

T Set of software bug features or terms, T = {t1, t2,
..., tm}

C Set of software bug categories, C = {c1, c2, ..., ck}
πj

(i) The positive TF-IDF value of term tj that occurs
in software bug b(i)

µZ1(ti, cj) The fuzzy membership value of term ti ∈ T

belongs to category cj ∈ C

µZ2(ti, b) The fuzzy membership value of term ti ∈ T

belongs to software bug b ∈ B

cµZ3(b, cj) The fuzzy membership value of software bug
b ∈ B belongs to category cj ∈ C

⊗ Fuzzy t-norm, i.e., a⊗ b = a× b

⊕ Fuzzy t-conorm, i.e., a⊕ b = (a+ b)− (a× b)

F (i) Set of fuzzy relevance vector
Y Number of clusters for fuzzy relevance vector F
F (µ) Mean of each cluster
F (σ) Standard deviation of each cluster
Ysim Cluster similarity
W Weight matrix
Csim Category similarity
α User defined threshold value

2.2 Fuzzy modelling for multi-label classification of
software bugs

The proposed fuzzy model is designed to compute the fuzzy
relevance of software bugs in B to different categories in
C. When a new bug is reported, it is classified into multiple
categories based on the computed fuzzy relevance between
B and C. The details of the proposed work are described
below.

Initially, the fuzzy relation between T and C is
calculated, and it is represented as Z1. The fuzzy
membership of Z1 is represented by µZ1(ti, cj) is the
degree of belonging of term ti to category cj . The
fuzzy membership value of µZ1(ti, cj) is determined as
following:

µZ1(ti, cj) =

n∑
v=1

π
(v)
i l

(v)
j

n∑
v=1

π
(v)
i

n∑
v=1

S(π
(v)
i)l

(v)
j

n∑
v=1

l
(v)
j

(4)

for 1 ≤ i ≤ m and 1 ≤ j ≤ k, where

S(u) =

{
1, if u > 0

0, if u = 0
(5)

Let Z2 be the fuzzy relation between term tj to software
bug b. The degree of fuzzy membership is denoted as

µZ2(ti, b) is the degree of belonging of term tj in software
bug b. The fuzzy membership value of µZ2(ti, b) is
determined as following:

µZ2(ti, b) =
πi

max1≤v≤m πv
(6)

for 1 ≤ i ≤ m. The larger the value of πi, the more the
term ti is relevant to software bug b.

The relevance between software bug b to the category
cj is denoted Z3 and the degree fuzzy membership value
µZ3(b, cj)is defined as follows:

µZ3(b, cj) =

m∑
i=1

µZ1(ti, cj)⊗ µZ2(ti, b)

m∑
i=1

µZ1(ti, cj)⊕ µZ2(ti, b)
(7)

for 1 ≤ j ≤ k. Where ⊗ is the fuzzy t-norm and ⊕ is
the fuzzy t-conorm. The equation (7) provides the fuzzy
mapping of each software bugs b ∈ B to various categories
cj ∈ C in the form of fuzzy relevance vector F (i) =
{F (1), F (2), ..., F (n)}.

On the computed fuzzy relevance vector F (i), The
fuzzy c-means clustering technique is applied to generate
Y number of clusters and the mean F (µ) and standard
deviation F (σ) of each cluster are computed. The cluster
similarity Ysim is determined as following:

Ysim = −

(k∑
h=1

F
(i)
h − F

(µ)
h,y

F
(σ)
h,y

)2
 (8)

for 1 ≤ y ≤ Y . In the next step, the category similarity is
computed by mapping each cluster to an individual category
cj . In order to that, a linear model is created using the
known value of Ysim and C along with the unknown weight
matrix W and it is defined as:

YsimW = C (9)

Now, using the least square method on equation (9) the
value of W is computed. The category similarity Csim

is computed by multiplying W with Ysim. Once the
Csim is obtained for a software bug b(i), a user-defined
threshold value α will be applied on b(i) to determine the
corresponding multiple categories cj .

cj =

{
1, if Csimj ≥ α

0, Otherwise
(10)

The overall approach is divided into two phases: the
training phase and the testing phase. In the training
phase, the training data is used to design the multi-label
classification model. Initially, the training data is
represented as triplets (B, T , C). Then the fuzzy
relationship between term and category is calculated using
equation (4) and the fuzzy relationship between term
and software bug is calculated using equation (6). The
fuzzy relationship between a software bug and category is
computed using equation (7) and it will provide a fuzzy
relevance vector F (i). This computed fuzzy relevance

146 R.R. Panda and N.K. Nagwani

vector F (i) will provide the much needed information about
the membership of each software bug towards different
categories. Then clusters are generated by using the value
of F (i), and the cluster mean and standard deviations are
calculated. The cluster similarity values are computed using
equation (8). Finally, the weight matrix W is computed for
cluster-category mapping using the least square method.

Algorithm 1 Multi-label classification model for training phase
input : B, T and C for training data
output: Weight matrix W
begin1

Load B, T and C of training data2
//term-category mapping3
for i← 1 to n do4

for j ← 1 to k do5
Compute µZ1(ti, cj) using equation (4)6

end7

end8
//term-bug mapping9
for i← 1 to n do10

Compute µZ2(ti, b) using equation (6)11
end12
//bug-category mapping13
for i← 1 to n do14

for j ← 1 to k do15
Compute µZ3(b, cj) or F (i) using16
equation (7)
Create clusters using fuzzy c-means clustering17

on F (i)

Compute F (µ) and F (σ) for each cluster18

end19

end20
Compute Ysim using equation (8)21
Compute W using least square method22

end23

Algorithm 2 Multi-label classification for newly reported
bug in testing phase

input : Newly reported bug nb, F (µ), F (σ) and W from
training phase

output: Multi-label classification for nb
begin1

Load nb, and W2
//term-new bug mapping3
for i← 1 to n do4

Compute µZ2(ti, nb) using equation (6)5
end6
//new bug-category mapping7
for i← 1 to n do8

for j ← 1 to k do9
Compute µZ3(nb, cj) using equation (7)10

end11

end12
//classification of new bug13

Compute Ysim for nb using F (µ), F (σ) in equation (8)14
Compute Csim by multiplying W with Ysim15
Apply equation (10) on Csim to classify nb16

end17

In the testing phase, a new bug is considered for further
operations. For the new bug, the fuzzy relationship between

the term and the new bug is computed using equation (6).
In order to calculate the fuzzy relevance vector for a new
bug, the computed values from equation (6) are used in
equation (7). Once the fuzzy relevance vector for a new
bug is computed, the mean and standard deviation of the
training phase are used to map the new bug to different
clusters. After calculating the cluster similarity for the new
bug, the computed weight matrix W in the training phase
will be used to map the new bug to different categories.
Finally, a threshold value α will be used to classify the
new bug into multi-label categories using equation (10).
The mechanism of the training phase is shown in Algorithm
1, and the mechanism of the testing phase is shown in
Algorithm 2.

3 Illustrative example

In order to demonstrate the fuzzy approach-based
multi-label classification of software bugs, an illustrative
example is presented using nine real world software bugs
from the MySql bug repository (Singh et al., 2020). The
id and summary of the selected MySql bugs are shown in
Table 2.

Table 2 Nine real software bugs available in MySql bug
repository

Software Id Summary
bug (B)

b(1) 10039 Memory engine is reported as HEAP
b(2) 10194 Scheduled backup causes memory access

violation
b(3) 10704 Memory information scheme table inaccessible

if resident of memory is full
b(4) 12184 Access violation
b(5) 12578 Linked 5.0.11-views fail with Access 97 SR2
b(6) 12906 Scheduled backup gails with exception

EAccessViolation message
b(7) 13307 Access violation Error 1.1.14
b(8) 13412 Access violation in module libmysqlx.dll.

Read of address 0000000
b(9) 1358 Access control

Eleven terms [access, columns, data, DB, heap, memory,
privileges, query, stored, table, user] related to three
categories, namely, backend (l1), memory (l2) and security
(l3) are considered for the illustrative example. Based on
the bag-of-words representation of software bugs using the
11 terms and three categories, is presented in Table 3. In
Table 3, selected nine records with 11 features of software
bugs π: {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11},
three categories l: {l1, l2, l3} training data is taken as an
example.

At first, the fuzzy relation between T and C is
calculated using equation (4) and the value of µZ1(ti, cj)
is

Fuzzy modelling techniques for improving multi-label classification of software bugs 147

µZ1(ti, cj) =

0.57 0.05 1.00
0.14 0.00 0.14
0.14 0.50 0.00
0.14 0.00 0.14
0.14 0.00 0.00
0.20 0.71 0.04
0.07 0.00 0.29
0.29 0.00 0.29
0.14 0.00 0.14
0.29 0.33 0.05
0.14 0.00 0.14

The µZ1(ti, cj) is the term category mapping and the
individual values provide the membership of each bug
term towards different categories, i.e., for term t1, its
membership to category c1 is 0.57, c2 is 0.05, and c3 is
1.00.

In the next step, the fuzzy relationship between T and
B is calculated using equation (6) and the computed values
are represented by µZ2(ti, b).

µZ2(ti, b) =

0.00 0.00 0.00 0.00 0.50 1.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.25 0.00 0.00 0.75 0.00 0.00 0.00 1.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00
1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00
1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.67

The µZ2(ti, b) provides the membership values of
individual bug terms towards different software bugs.

The fuzzy relevance between B and C is computed
using equation (7) and the final fuzzy relevance vector F (i)

is

F (i) =

0.08 0.30 0.01
0.22 0.19 0.36
0.12 0.38 0.02
0.23 0.02 0.44
0.22 0.05 0.39
0.20 0.02 0.44
0.23 0.02 0.44
0.19 0.02 0.41
0.20 0.01 0.37

The F (i) provides the bug category mapping values, i.e.,
the membership values for bug b1 to category c1 is 0.08, to
category c2 is 0.30, and to category c3 is 0.01.

Using the value of F (i) two clusters are formed for
the illustrative example, and the cluster mean and standard
deviation are computed. The cluster similarity, Ysim is
computed using equation (8), and the calculated value of
Ysim is

Ysim =

−1.63 −222.02
−4, 725.13 −6.91
−1.63 −176.38

−7, 407.19 −2.10
−5, 543.62 −1.02
−7, 401.31 −2.25
−7, 407.19 −2.10
−6, 439.34 −1.90
−5, 081.79 −2.10

Finally, for the training data, the value of W is computed
using equation (9) with the help of the least square method.
The computed value of W is

W =

[
−0.00011−0.01059−0.01040
−0.00491−0.11233−0.01209

]
Now let us consider three unseen software bugs (testing
data)

b(1)new =< 3, 0, 0, 1, 0, 0, 0, 0, 1, 0, 3 >,

b(2)new =< 3, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0 >,

b(3)new =< 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 > .

The fuzzy relationship between the term and the new bug
mapping is calculated using equation (6) and the computed
values are represented by µZ2(ti, nb).

µZ2(ti, nb) =1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 1.001.00 0.00 0.00 0.00 0.33 0.67 0.00 0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

In the next step, the new bugs are mapped into different
categories and the computed value of µZ3(nb, cj) is

µZ3(nb, cj) =

0.20 0.01 0.340.21 0.17 0.32
0.21 0.15 0.20

Now the new bugs are mapped to the existing clusters
of the training dataset and the cluster similarity value for
the new bugs is calculated by using equation (8) with the
cluster mean and standard deviation of the training data.
The computed value of Ysim is

Ysim =

−4, 213.45 −5.44
−3, 765.55 −9.19
−1, 435.30−33.39

Finally, the category similarity values Csim are calculated
by multiplying W of training data with Ysim of testing data.
The computed value of Csim is

Csim =

0.490 0.078 0.6500.079 0.459 0.581
0.322 0.097 0.222

148 R.R. Panda and N.K. Nagwani

Table 3 The bag-of-words representation of MySql bugs with 11 terms and three categories

Software bug (B) Positive TF-IDF values for term (T) Category (C)
π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 l1 l2 l3

b(1) 0 0 0 0 1 2 0 0 0 0 0 1 0 0
b(2) 3 0 0 0 0 2 0 0 0 0 0 0 1 1
b(3) 0 0 1 0 0 3 0 0 0 4 0 1 1 0
b(4) 6 0 0 0 0 0 0 2 0 0 0 1 0 1
b(5) 6 1 0 0 0 0 0 0 0 2 0 1 0 1
b(6) 3 0 0 0 0 0 1 0 0 0 0 0 0 1
b(7) 3 0 0 0 0 0 0 1 0 0 0 1 0 1
b(8) 3 0 0 0 0 0 1 0 1 0 0 1 0 1
b(9) 6 0 0 2 0 0 0 0 0 0 4 1 0 1

Now let us consider the value of α = 0.2, the different
categories for new bugs using equation (10) are

Cj =

1 0 10 1 1
1 0 1

Generally the similar software bugs are belonging to the
similar categories, in order to show this let us consider two
similar bugs from the illustrative examples b(2) = <3, 0, 0,
0, 0, 2, 0, 0, 0, 0, 0> and b

(2)
new = <3, 0, 0, 0, 1, 2, 0, 0,

0, 0, 0> for this two bugs cosine similarity is calculated as
shown in equation (11)

cos(b(2), b(2)new) =
3× 3 + 0× 1 + 2× 2√

(32 + 22)×
√
(32 + 12 + 22)

=
13√

13×
√
14

= 0.963 (11)

Both of the bugs are 96.3% similar to each other. In the
example training dataset, the category of b(2) is <0, 1, 1>
and the category identified by the fuzzy-based approach for
the bug b

(2)
new is <0.079, 0.459, 0.581>, i.e., <0, 1, 1> which

also indicates that the category of new bug is dominating
the second and third category. Hence, it also shows that
similar bugs belong to the same categories.

4 Experimental results

According to Hooimeijer and Weimer (2007) and Antoniol
et al. (2008) the important surface features for bug
classification and mining (knowledge acquisition) are title
(summary) and description only, whereas the comment part
can be ignored. This is because there is more relevance
between the title and summary of a bug, whereas comments
consist of more random information for software bugs.

In order to compare the significance of the proposed
fuzzy-based classification technique with the other
techniques, different performance measures are used, such
as micro averaged precision (MicroP), micro averaged
recall (MicroR), micro averaged F1 (F1), micro averaged
break-even point (BEP), hamming loss (Hloss) and
accuracy. The number of categories is denoted by k and

the number of software bugs is denoted by n. The different
performance measures are defined as follows:

MicroP =

k∑
l=1

TPl

k∑
l=1

TPl + FPl

(12)

MicroR =

k∑
l=1

TPl

k∑
l=1

TPl + FNl

(13)

F1 =
2×MicroP ×MicroR

MicroP +MicroR
(14)

BEP =
MicroP +MicroR

2
(15)

Hloss =

k∑
l=1

FPl + FNl

k × n
(16)

Accuracy =

k∑
l=1

TPl+TNl

TPl+FPl+TNl+FNl

k
(17)

where TPl represents the true positive rate with respect
to category k, is the number of software bugs that have
a positive value and are correctly classified as positive
by the system. Similarly, TNl represents the true negative
rate with respect to category k, is the number of software
bugs that have negative values, and the system is also
classified as negative. FPl is the false positive rate with
respect to category k is the number of software bugs
that have a negative value and the system is classified
as positive. Similarly, FNl is the false negative rate with
respect to category k is the number of software bugs that
have positive value and the system classified as negative.
In the classification results, the performance of a system is
considered better when the values of F1, BEP are larger
and the values of Hloss are smaller.

Fuzzy modelling techniques for improving multi-label classification of software bugs 149

Figure 3 Comparison of various classifier on Eclipse dataset with different parameters, (a) F1 (b) BEP (c) Hloss (d) accuracy
(see online version for colours)

ML−RBF ML−KNN R−SVM ML−FBC

F
1

0

20

40

60

80

100

(a)
ML−RBF ML−KNN R−SVM ML−FBC

B
E

P

0

20

40

60

80

100

(b)
ML−RBF ML−KNN R−SVM ML−FBC

H
lo

ss

0

2

4

6

8

10

12

(c)
ML−RBF ML−KNN R−SVM ML−FBC

A
cc

ur
ac

y

0

20

40

60

80

100

(d)

Figure 4 Comparison of various classifier on Mozilla dataset with different parameters, (a) F1 (b) BEP (c) Hloss (d) accuracy
(see online version for colours)

ML−RBF ML−KNN R−SVM ML−FBC

F
1

0

20

40

60

80

(a)
ML−RBF ML−KNN R−SVM ML−FBC

B
E

P

0

20

40

60

80

(b)
ML−RBF ML−KNN R−SVM ML−FBC

H
lo

ss

0

2

4

6

8

10

(c)
ML−RBF ML−KNN R−SVM ML−FBC

A
cc

ur
ac

y

0

20

40

60

80

100

(d)

Figure 5 Comparison of various classifier on MySql dataset with different parameters, (a) F1 (b) BEP (c) Hloss (d) accuracy
(see online version for colours)

ML−RBF ML−KNN R−SVM ML−FBC

F
1

0

20

40

60

80

(a)
ML−RBF ML−KNN R−SVM ML−FBC

B
E

P

0

20

40

60

80

(b)
ML−RBF ML−KNN R−SVM ML−FBC

H
lo

ss

0

2

4

6

8

10

(c)
ML−RBF ML−KNN R−SVM ML−FBC

A
cc

ur
ac

y

0

20

40

60

80

(d)

Figure 6 Comparison of various classifier on Android dataset with different parameters, (a) F1 (b) BEP (c) Hloss (d) accuracy
(see online version for colours)

ML−RBF ML−KNN R−SVM ML−FBC

F
1

0

10

20

30

40

50

60

70

(a)
ML−RBF ML−KNN R−SVM ML−FBC

B
E

P

0

20

40

60

80

(b)
ML−RBF ML−KNN R−SVM ML−FBC

H
lo

ss

0

2

4

6

8

10

12

(c)
ML−RBF ML−KNN R−SVM ML−FBC

A
cc

ur
ac

y

0

20

40

60

80

(d)

150 R.R. Panda and N.K. Nagwani

Figure 7 Comparison of various classifier on JBoss-Seam dataset with different parameters, (a) F1 (b) BEP (c) Hloss (d) accuracy
(see online version for colours)

ML−RBF ML−KNN R−SVM ML−FBC

F
1

0

10

20

30

40

50

60

70

(a)
ML−RBF ML−KNN R−SVM ML−FBC

B
E

P

0

10

20

30

40

50

60

70

(b)
ML−RBF ML−KNN R−SVM ML−FBC

H
lo

ss

0

2

4

6

8

10

12

(c)
ML−RBF ML−KNN R−SVM ML−FBC

A
cc

ur
ac

y

0

20

40

60

80

(d)

In order to compare the various classifiers, two statistical
significance tests [the Friedman (1937, 1940) statistical test
and the post-hoc Nemenyi (1963) test recommended by
Demšar et al. (2006) are carried out on different datasets].
The Friedman statistical test is used to determine whether
the classifiers are the same or different based on the null
hypothesis (H0: all classifiers are the same) and alternative
hypothesis (H1: all classifiers are different).

According to Friedman (1937, 1940) the Friedman
statistic χ2

F is computed as follows:

χ2
F =

12×N

K(K + 1)

 k∑
j=1

R2
j −

K(K + 1)2

4

 (18)

where N is the number of rows in the dataset, K is the
number of classifiers, and Rj is average rank value of the
classifier.

The post-hoc Nemenyi test is done to find the
significance difference between individual classifiers. The
critical difference cd of post-hoc (Nemenyi, 1963) is
computed as follows:

cd = qα

√
K(K + 1)

6N
(19)

where qα is the studentised ranged statistic.
Five different datasets, namely the Eclipse (2021)

dataset, the Mozilla (2021) dataset, the MySql (2021)
dataset, the Android (2021) dataset and the JBoss-Seam
(2021) dataset were experimented with R-programming
(R-Software, 2021). To perform all these techniques, a
PC with a 2.00 GHz Intel Core i3-6006 CPU and 4
GB of RAM is used. For the classification of software
bugs, the different categories are considered, and they are
broadly classified as ‘bug’ and ‘non-bug’ categories. The
bug category is further subdivided into two subcategories:
logical and backend. The logical category is again divided
into two: the GUI category and the non-GUI category. The
non-GUI category consists of software bugs that are related
to memory, data types, operating systems, and security, etc.
Similarly, the non-bug category is further sub divided into
enhancement and build and analysis category (Nagwani and
Verma, 2014).

Table 4 Performance of various classifier on different datasets

Datasets Parameter Different classifier
ML-RBF ML-KNN R-SVM ML-FBC

Eclipse F1 (%) 74.68 75.32 76.56 82.13
BEP (%) 72.90 73.41 74.47 80.91
Hloss (%) 9.84 9.91 10.10 9.87

Accuracy (%) 74.04 73.81 80.46 82.82
Training time 272.88 283.19 134.32 102.14

(sec)
Testing time 12.50 71.12 24.35 3.33

(sec)
Mozilla F1 (%) 73.33 72.85 76.40 78.63

BEP (%) 72.91 71.17 73.75 77.18
Hloss (%) 6.78 7.22 9.44 6.08

Accuracy (%) 82.88 75.39 83.53 84.44
Training time 282.42 332.41 168.97 142.43

(sec)
Testing time 5.50 63.52 4.87 2.20

(sec)
MySql F1 (%) 70.34 67.38 71.20 73.65

BEP (%) 71.26 68.28 70.12 72.57
Hloss (%) 7.93 7.84 9.94 7.66

Accuracy (%) 77.38 73.68 78.49 79.94
Training time 235.68 342.67 132.48 97.61

(sec)
Testing time 4.50 52.51 24.42 2.10

(sec)
Android F1 (%) 67.22 62.77 66.59 68.28

BEP (%) 71.06 60.67 62.35 67.32
Hloss (%) 8.99 8.13 11.33 8.09

Accuracy (%) 73.67 71.34 75.90 76.64
Training time 209.99 254.87 110.05 95.08

(sec)
Testing time 2.72 54.42 20.46 1.52

(sec)
JBoss-Seam F1 (%) 68.78 65.74 67.35 69.39

BEP (%) 69.96 60.91 65.79 67.30
Hloss (%) 9.18 7.32 10.84 8.97

Accuracy (%) 74.22 70.54 74.58 75.45
Training time 198.71 273.64 132.47 110.36

(sec)
Testing time 3.10 63.58 12.51 1.82

(sec)

Fuzzy modelling techniques for improving multi-label classification of software bugs 151

The hyperparameters for the various classifiers are selected
based on the best results obtained for each classifier. For
ML-RBF, the scaling factor value is set to 1.0, and the
fraction parameter value is set to 0.01. In the case of
ML-KNN, a model with k values of 3, 6, 9, 12, 15, 18, and
21 is used for conducting the experiments. For ML-KNN,
the best result is obtained for k = 12 and the hyperparameter
k is set to 12. In rank-SVM, the linear kernel provides a
better result as compared to polynomial kernels with degree
8 for all the datasets. Finally, two-parameter values for the
proposed technique ML-FBC are fixed based on the best
findings. The user-defined threshold value α is set to 0.5,
and the number of clusters in fuzzy c-means clustering is
set to 10. A ten-fold cross-validation is performed for each
classifier. The average results of each fold are calculated
and taken as the final result.

Table 5 Friedman test statistic and average rank of different
classifier on various datasets

Datasets ML-RBF ML-KNN R-SVM ML-FBC Friedman test
statistic χ2

F

Eclipse 2.83 3.50 2.50 1.17 10.36
Mozilla 2.83 3.83 2.33 1.00 14.78
Mysql 2.67 3.67 2.67 1.00 13.42
Android 2.33 3.67 2.83 1.17 11.79
JBoss-Seam 2.33 3.50 2.83 1.33 8.84

The results of the proposed work (ML-FBC) are compared
with the results of ML-RBF, ML-KNN, and R-SVM. The
performance of different classifiers with various parameters
on different datasets is shown in Table 4. The best results
for each dataset are highlighted in ital letters. For the
Eclipse dataset, the proposed ML-FBC obtained 82.13%
F1 score, 80.91% BEP score, and 82.82% accuracy with
a training time of 102.14 seconds and a testing time of
3.33 seconds. Whereas the ML-RBF has the lowest Hloss
value of 9.84% as compared to other classifiers. In terms of
testing and training time, the proposed ML-FBC classifier
runs much faster than the other classifiers. A comparison
graph of various classifiers on the Eclipse dataset with
different parameters is plotted and is shown in Figure 3.
For the Mozilla bug dataset, the best results are obtained
by using the ML-FBC classifier and the values are 78.63%
as F1 score, 77.18% as BEP score, 6.08% as Hloss and
accuracy of 84.44%. The training and testing times for the
Mozilla dataset using the ML-FBC classifier were 142.43
seconds and 2.20 seconds, which is significantly faster than
the other classifiers. A comparison graph between various
classifiers with different parameters is plotted and shown in
Figure 4.

When the classifiers are tested on MySql datasets, the
best F1 score, BEP score, Hloss, and Accuracy scores are
73.65%, 72.57%, 7.66% and 79.94% respectively, and it is
obtained for the ML-FBC classifier. Whereas the lowest F1
score, BEP score, and accuracy are 67.38%, 68.28% and
73.68% respectively for the ML-KNN classifier. Similarly,
the lowest Hloss is 9.94% and it is obtained for the
R-SVM classifier. The ML-FBC classifier took less training
and testing time as compared to other classifiers, and the

measured training time is 97.61 seconds and the testing time
is 2.10 seconds, respectively. A comparison graph among
various classifiers is plotted and shown in Figure 5. For the
android dataset, the ML-FBC outperforms other classifiers.
The best F1 score, Hloss, and accuracy scores are 68.28%,
8.09% and 76.64% respectively, and they are achieved
using the ML-FBC classifier. Whereas the best BEP score
71.08% is obtained by the ML-RBF classifier. The training
and testing time for the ML-FBC classifier is 95.08 seconds
and 1.52 seconds respectively, and the ML-FBC classifier
runs faster than that of other classifiers. The comparison
of various classifiers for the Android dataset is plotted
and shown in Figure 6. Finally, the classifiers are tested
using JBoss-Seam datasets. The highest F1 score is 69.39%
and it is achieved using the ML-FBC classifier, whereas
the ML-RBF classifier provides the highest BEP score of
69.96%. The best Hloss score is 7.32% and it is obtained
by using the ML-KNN classifier. The highest accuracy is
75.45% and it is achieved by using the ML-FBC classifier.
The training and testing time for ML-FBC is faster than
that of other classifiers. The training time is 110.36 seconds
and the testing time is 1.82 seconds when the ML-FBC
classifier is used. A comparison graph among various
classifiers is plotted and shown in Figure 7.

In a multi-label classification algorithm, the accuracy of
any model is low as it deals with multiple categories, and
the accuracy is calculated based on the number of categories
present in the model. If the number of categories increases,
the accuracy of the model decreases. As a result, accuracy is
not considered the most appropriate measure for evaluating
the performance of a multi-label classification model. The
performance of a multi-label classification algorithm is
better if the value of F1, BEP score is larger, and Hloss
score is smaller (Lee and Jiang, 2013; Pereira et al., 2018;
Zhang and Zhou, 2013). The same thing can be observed
from the experimental results of the proposed ML-FBC, that
the highest accuracy of 84.44% is obtained for the ML-FBC
classifier, and it is obtained for the Mozilla dataset. For
all the datasets, the accuracy of the ML-FBC classifier
is significantly higher than the other existing multi-label
classifiers. Furthermore, the performance of the ML-FBC
classifier in terms F1, BEP , and Hloss scores is far
better than the other existing multi-label classifiers for the
majority of datasets. Hence, the proposed ML-FBC model
outperforms all other existing multi-label classification
models in terms of performance, training, and testing time.

In order to calculate the average rank of the classifiers,
the data of ten-fold cross-validation presented in Table 4
is considered. For each dataset, the value of N is 6, and
the value of K is 4. For the parameters F1, BEP, and
accuracy, the classifier with the highest value is allocated
rank 1, and the classifier with the lowest value is assigned
rank 4. Similarly, for Hloss, training time, and testing
time, the classifier having the lowest value is assigned
rank 1, and the classifier having the highest value is
assigned rank 4. The average rank for each classifier is
computed, and the Friedman statistic value is computed
using equation (18). The result of the Friedman statistical
test and the average rank of different classifiers on different

152 R.R. Panda and N.K. Nagwani

datasets is shown in Table 5. Among all the classifiers, the
proposed ML-FBC classifier has the best average ranking,
whereas the ML-KNN classifier has the lowest average
ranking.

The critical chi-square value for the Friedman test for
α = 0.05 and degree of freedom = 3 (K – 1 = 3) is
7.815. For all the datasets, the value of the Friedman
statistic is greater than the critical chi-square value. Hence,
the null hypothesis (H0: all classifiers are the same) is
rejected. The post-hoc Nemenyi test is conducted to find
the significance difference between individual classifiers.
Furthermore, the cd value for the Nemenyi test is computed
using equation (19) with the value of qα = 2.569, K =
4, and N = 6. The computed cd value is 1.9148. Now,
based on the Nemenyi, if the difference between two
classifiers is greater than that of cd then they are different.
Here, for all the datasets, ML-KNN and ML-FBC have a
higher difference than cd. Hence, these two classifiers are
significantly different from each other, and the ML-FBC is
far better than the ML-KNN.

5 Threats to validity

This section discusses the threats to the validity of the
proposed work ML-FBC. There can be several factors
that can have a profound impact on the results of the
proposed work. The proposed work is entirely automated
and randomly generated. The selection of random samples
for different datasets may vary from person to person
and can result in some experimental bias. The categories
that are generated are based on the developers’ bug
handling conventions and previous bug fixing processes.
The selection of categorical discriminative terms is entirely
up to the triager and the developers involved in the bug
triaging process. It varies from developer to developer,
as each developer utilises their own set of vocabulary to
present the software bug information in a bug report. These
are a few of the exceptional cases that might have an impact
on the outcomes of the proposed work.

6 Conclusions and future work

In this paper, a fuzzy system-based approach is presented
for improving the multi-label classification of software
bugs. A multi-label classification approach for software
bugs are developed using the discriminative terms appears
in the software bugs. The efficiency of the proposed
ML-FBC classifier is investigated using five different
datasets: the Eclipse dataset, Mozilla dataset, MySql
dataset, Android dataset and JBoss-Seam dataset. The
different performance measures, F1 score, BEP score,
Hloss, accuracy, training time, and testing time of different
classifiers are compared. The experiments show that
the ML-FBC classifier outperformed other classifiers on
various performance measures. As a result, the fuzzy model
is extremely useful for multi-label classification of software
bugs and provides a better bug information management

in large bug repositories. Furthermore, as fuzzy system is
used, the training and testing time of ML-FBC is much
faster as compared to other classifiers.

In the future, the relationship between developers
and various categories can be investigated using the
membership, non-membership, and hesitancy relations
between software bugs and multiple categories. These
relations will illuminate the uncharted area towards the
use of advanced fuzzy systems such as intuitionistic fuzzy
sets, interval fuzzy sets, pythagorean fuzzy sets, spherical
fuzzy sets, etc. for modelling and developing better
classification models for software bugs. These advanced
fuzzy techniques will provide a better understanding of
the developer category relationship and improve bug
information management in large bug repositories.

References

Ahmed, A.A. and Darwish, S.M. (2021) ‘A meta-heuristic automatic
CNN architecture design approach based on ensemble learning’,
IEEE Access, Vol. 9, pp.16975–16987.

Ahmed, H.A., Bawany, N.Z. and Shamsi, J.A. (2021) ‘CaPBug – a
framework for automatic bug categorization and prioritization
using NLP and machine learning algorithms’, IEEE Access,
Vol. 9, pp.50496–50512.

Al-Salemi, B., Ayob, M., Kendall, G. and Noah, S.A.M.
(2019) ‘Multi-label arabic text categorization: a benchmark
and baseline comparison of multi-label learning algorithms’,
Information Processing & Management, Vol. 56, No. 1,
pp.212–227.

Android (2021) Android Bug Dataset [online] https://code.google.
com/p/android/issues (accessed 15 May 2021).

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F. and
Guéhéneuc, Y-G. (2008) ‘Is it a bug or an enhancement? A
text-based approach to classify change requests’, in Proceedings
of the 2008 Conference of the Center for Advanced Studies on
Collaborative Research: Meeting of Minds, pp.304–318.

Bahaddad, A.A., Ragab, M., Ashary, E.B. and Khalil, E.M. (2022)
‘Metaheuristics with deep learning-enabled Parkinson’s disease
diagnosis and classification model’, Journal of Healthcare
Engineering.

Bei, H., Mao, Y., Wang, W. and Zhang, X. (2021) ‘Fuzzy clustering
method based on improved weighted distance’, Mathematical
Problems in Engineering.

Çolak, M., Kaya, İ., Karaşan, A. and Erdoğan, M. (2022) ‘Two-phase
multi-expert knowledge approach by using fuzzy clustering and
rule-based system for technology evaluation of unmanned aerial
vehicles’, Neural Computing and Applications, pp.1–17.

Das, S., Datta, S., Zubaidi, H.A. and Obaid, I.A. (2021) ‘Applying
interpretable machine learning to classify tree and utility pole
related crash injury types’, IATSS Research.

Demšar, J. (2006) ‘Statistical comparisons of classifiers over multiple
data sets’, The Journal of Machine Learning Research, Vol. 7,
pp.1–30.

Dong, X., Huang, B. and Zhou, Y. (2022) ‘Research on fast face
retrieval optimization algorithm based on fuzzy clustering’,
Scientific Programming.

Fuzzy modelling techniques for improving multi-label classification of software bugs 153

Eclipse (2021) Eclipse Bug Dataset [online] https://bugs.eclipse.
org/bugs/ (accessed 15 June 2021)

Elisseeff, A. and Weston, J. (2001) ‘A kernel method for
multi-labelled classification’, Advances in Neural Information
Processing Systems, Vol. 14, pp.681–687.

Farahani, F.V., Ahmadi, A. and Zarandi, M.H.F. (2018) ‘Hybrid
intelligent approach for diagnosis of the lung nodule from CT
images using spatial kernelized fuzzy c-means and ensemble
learning’, Mathematics and Computers in Simulation, Vol. 149,
pp.48–68.

Fausto, F., Reyna-Orta, A., Cuevas, E., Andrade, Á.G. and
Perez-Cisneros, M. (2020) ‘From ants to whales: metaheuristics
for all tastes’, Artificial Intelligence Review, Vol. 53, No. 1,
pp.753–810.

Friedman, M. (1937) ‘The use of ranks to avoid the assumption of
normality implicit in the analysis of variance’, Journal of the
American Statistical Association, Vol. 32, No. 200, pp.675–701.

Friedman, M. (1940) ‘A comparison of alternative tests of
significance for the problem of M rankings’, The Annals of
Mathematical Statistics, Vol. 11, No. 1, pp.86–92.

Gangavarapu, T., Jayasimha, A., Krishnan, G.S. and Kamath, S.
(2020) ‘Predicting ICD-9 code groups with fuzzy similarity
based supervised multi-label classification of unstructured
clinical nursing notes’, Knowledge-Based Systems, Vol. 190,
p.105321.

Gao, Y., Wang, Z., Xie, J. and Pan, J. (2022) ‘A new robust fuzzy
c-means clustering method based on adaptive elastic distance’,
Knowledge-Based Systems, Vol. 237, p.107769.

Ghosh, S., Samanta, G. and De la Sen, M. (2021) ‘Multi-model
approach and fuzzy clustering for mammogram tumor to
improve accuracy’, Computation, Vol. 9, No. 5, p.59.

Govindarajan, P., Soundarapandian, R.K., Gandomi, A.H., Patan,
R., Jayaraman, P. and Manikandan, R. (2020) ‘Classification
of stroke disease using machine learning algorithms’, Neural
Computing and Applications, Vol. 32, No. 3, pp.817–828.

Herbold, S., Trautsch, A. and Trautsch, F. (2020) ‘On the feasibility
of automated prediction of bug and non-bug issues’, Empirical
Software Engineering, Vol. 25, No. 6, pp.5333–5369.

Hooimeijer, P. and Weimer, W. (2007) ‘Modeling bug report quality’,
in Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering, pp.34–43.

JBoss-Seam (2021) JBoss-Seam Dataset [online] https://issues.
jboss.org/browse/JBSEAM (accessed 12 July 2021).

Jiang, J-Y., Tsai, S-C. and Lee, S-J. (2012) ‘FSKNN: multi-label
text categorization based on fuzzy similarity and k nearest
neighbors’, Expert Systems with Applications, Vol. 39, No. 3,
pp.2813–2821.

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P.,
Karimi-Mamaghan, A.M. and Talbi, E-G. (2021) ‘Machine
learning at the service of meta-heuristics for solving
combinatorial optimization problems: a state-of-the-art’,
European Journal of Operational Research.

Kavitha, P.K. and Saraswathi, P.V. (2021) ‘Content based satellite
image retrieval system using fuzzy clustering’, Journal of
Ambient Intelligence and Humanized Computing, pp.1–12.

Lee, S-J. and Jiang, J-Y. (2013) ‘Multilabel text categorization based
on fuzzy relevance clustering’, IEEE Transactions on Fuzzy
Systems, Vol. 22, No. 6, pp.1457–1471.

Mart́ınez-Cagigal, V., Santamaŕıa-Vázquez, E. and Hornero, R.
(2022) ‘Brain-computer interface channel selection optimization
using meta-heuristics and evolutionary algorithms’, Applied Soft
Computing, Vol. 115, p.108176.

Mei, M., Zhong, Y., He, F. and Xu, C. (2020) ‘An innovative
multi-label learning based algorithm for city data computing’,
Geo Informatica, Vol. 24, No. 1, pp.221–245.

Meng, Z., Li, G., Wang, X., Sait, S.M. and Yıldız, A.R.
(2021) ‘A comparative study of metaheuristic algorithms for
reliability-based design optimization problems’, Archives of
Computational Methods in Engineering, Vol. 28, pp.1853–1869.

Mohsin, H. and Shi, C. (2021) ‘SPBC: a self-paced learning model
for bug classification from historical repositories of open-source
software’, Expert Systems with Applications, Vol. 167, p.113808.

Mozilla (2021) Mozilla Bug Dataset [online] https://bugzilla.mozilla.
org/describecomponents.cgi (accessed 25 June 2021).

MySql (2021) MySql Bug Dataset [online] https://bugs.mysql.com
(accessed 10 July 2021).

Nagwani, N.K. and Verma, S. (2014) ‘A comparative study of
bug classification algorithms’, International Journal of Software
Engineering and Knowledge Engineering, Vol. 24, No. 1,
pp.111–138.

Naseem, U., Khushi, M., Khan, S.K., Shaukat, K. and Moni, M.A.
(2021) ‘A comparative analysis of active learning for biomedical
text mining’, Applied System Innovation, Vol. 4, No. 1, p.23.

Nemenyi, P.B. (1963) Distribution-Free Multiple Comparisons,
Princeton University.

Ni, Z., Li, B., Sun, X., Chen, T., Tang, B. and Shi, X. (2020)
‘Analyzing bug fix for automatic bug cause classification’,
Journal of Systems and Software, Vol. 163, p.110538.

Onan, A. (2021) ‘Sentiment analysis on massive open online
course evaluations: a text mining and deep learning approach’,
Computer Applications in Engineering Education, Vol. 29,
No. 3, pp.572–589.

Panda, R.R. and Nagwani, N.K. (2019) ‘Software bug categorization
technique based on fuzzy similarity’, in 2019 IEEE 9th
International Conference on Advanced Computing (IACC),
IEEE, pp.1–6.

Panda, R.R. and Nagwani, N.K. (2021) ‘Multi-label software bug
categorisation based on fuzzy similarity’, International Journal
of Computational Science and Engineering, Vol. 24, No. 3,
pp.244–258.

Peng, L. and Liu, Y. (2018) ‘Feature selection and overlapping
clustering-based multilabel classification model’, Mathematical
Problems in Engineering.

Pereira, R.B., Plastino, A., Zadrozny, B. and Merschmann,
L.H.C. (2018) ‘Correlation analysis of performance measures
for multi-label classification’, Information Processing &
Management, Vol. 54, No. 3, pp.359–369.

Qian, W., Huang, J., Wang, Y. and Xie, Y. (2021) ‘Label distribution
feature selection for multi-label classification with rough set’,
International Journal of Approximate Reasoning, Vol. 128,
pp.32–55.

Qian, W., Xiong, C. and Wang, Y. (2021) ‘A ranking-based
feature selection for multi-label classification with fuzzy relative
discernibility’, Applied Soft Computing, Vol. 102, p.106995.

R-Software (2021) [online] https://www.r-project.org (accessed 10
June 2021).

Rubio, E., Castillo, O., Valdez, F., Melin, P., Gonzalez, C.I. and
Martinez, G. (2017) ‘An extension of the fuzzy possibilistic
clustering algorithm using type-2 fuzzy logic techniques’,
Advances in Fuzzy Systems.

Saha, I., Sarkar, J.P. and Maulik, U. (2019) ‘Integrated rough fuzzy
clustering for categorical data analysis’, Fuzzy Sets and Systems,
Vol. 361, pp.1–32.

154 R.R. Panda and N.K. Nagwani

Sanchez, M.A., Castillo, O., Castro, J.R. and Melin, P. (2014) ‘Fuzzy
granular gravitational clustering algorithm for multivariate data’,
Information Sciences, Vol. 279, pp.498–511.

Santander-Jiménez, S., Vega-Rodŕıguez, M.A. and Sousa, L. (2022)
‘Exploiting multi-level parallel metaheuristics and heterogeneous
computing to boost phylogenetics’, Future Generation Computer
Systems, Vol. 127, pp.208–224.

Si, T., Bagchi, J. and Miranda, P.B.C. (2022) ‘Artificial neural
network training using metaheuristics for medical data
classification: an experimental study’, Expert Systems with
Applications, p.116423.

Singh, L.K., Garg, H., Pooja and Khanna, M. (2020) ‘Performance
analysis of machine learning techniques for glaucoma detection
based on textural and intensity features’, International Journal
of Innovative Computing and Applications, Vol. 11, No. 4,
pp.216–230.

Soltani, M., Hermans, F. and Bäck, T. (2020) ‘The significance of
bug report elements’, Empirical Software Engineering, Vol. 25,
No. 6, pp.5255–5294.

Talbi, E-G. (2021) ‘Machine learning into metaheuristics: a survey
and taxonomy’, ACM Computing Surveys (CSUR), Vol. 54,
No. 6, pp.1–32.

Tarekegn, A., Giacobini, M. and Michalak, K. (2021) ‘A review
of methods for imbalanced multi-label classification’, Pattern
Recognition, p.107965.

Thakur, V. and Patel, A.C. (2021) ‘An improved dictionary based
genre classification based on title and abstract of e-book
using machine learning algorithms’, in Proceedings of Second
International Conference on Computing, Communications, and
Cyber-Security, Springer, pp.323–337.

Tzanetos, A. and Dounias, G. (2021) ‘Nature inspired optimization
algorithms or simply variations of metaheuristics?’, Artificial
Intelligence Review, Vol. 54, No. 3, pp.1841–1862.

Wang, R., Kwong, S., Wang, X. and Jia, Y. (2021) ‘Active
k-labelsets ensemble for multi-label classification’, Pattern
Recognition, Vol. 109, p.107583.

Wang, S., Xiao, S., Zhu, W. and Guo, Y. (2022) ‘Multi-view
fuzzy clustering of deep random walk and sparse low-rank
embedding’, Information Sciences, Vol. 586, pp.224–238.

Wu, G., Zheng, R., Tian, Y. and Liu, D. (2020) ‘Joint ranking
svm and binary relevance with robust low-rank learning for
multi-label classification’, Neural Networks, Vol. 122, pp.24–39.

Xi, S-Q., Yao, Y., Xiao, X-S., Xu, F. and Lv, J. (2019) ‘Bug triaging
based on tossing sequence modeling’, Journal of Computer
Science and Technology, Vol. 34, No. 5, pp.942–956.

Xia, X., Lo, D., Ding, Y., Al-Kofahi, J.M., Nguyen, T.N. and
Wang, X. (2016) ‘Improving automated bug triaging with
specialized topic model’, IEEE Transactions on Software
Engineering, Vol. 43, No. 3, pp.272–297.

Xia, Y., Chen, K. and Yang, Y. (2021) ‘Multi-label classification with
weighted classifier selection and stacked ensemble’, Information
Sciences, Vol. 557, pp.421–442.

Yadav, A., Singh, S.K. and Suri, J.S. (2019) ‘Ranking of
software developers based on expertise score for bug triaging’,
Information and Software Technology, Vol. 112, pp.1–17.

Zhang, D., Zhao, S., Duan, Z., Chen, J., Zhang, Y. and
Tang, J. (2020) ‘A multi-label classification method using a
hierarchical and transparent representation for paper-reviewer
recommendation’, ACM Transactions on Information Systems
(TOIS), Vol. 38, No. 1, pp.1–20.

Zhang, M-L. (2009) ‘ML-RBF: RBF neural networks for multi-label
learning’, Neural Processing Letters, Vol. 29, No. 2, pp.61–74.

Zhang, M-L. and Zhou, Z-H. (2007) ‘ML-KNN: a lazy learning
approach to multi-label learning’, Pattern Recognition, Vol. 40,
No. 7, pp.2038–2048.

Zhang, M-L. and Zhou, Z-H. (2013) ‘A review on multi-label
learning algorithms’, IEEE Transactions on Knowledge and
Data Engineering, Vol. 26, No. 8, pp.1819–1837.

Zhang, Y., Wang, Y., Liu, X-Y., Mi, S. and Zhang, M-L. (2020)
‘Large-scale multi-label classification using unknown streaming
images’, Pattern Recognition, Vol. 99, p.107100.

Zhou, C., Li, B., Sun, X. and Guo, H. (2018) ‘Recognizing
software bug-specific named entity in software bug repository’,
in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC), IEEE, pp.108–10811.

