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Abstract: With the emergence of smartness in various fields including medical science, forensics 
and security, remote monitoring of human activities has gained more interests in research. The 
ambulatory health monitoring services includes monitoring the activities of mentally challenged 
and elderly people. In this research paper, we propose a novel framework for activity recognition 
from video sequences captured from static cameras and those captured from UAVs. The 
proposed framework, named HARDeep, consists of three models: an optional scene stabilisation 
model for UAV captured video sequences, a human detection model leveraging YOLOv3, and, to 
extract the set of video frames containing humans, an activity recognition model leveraging the 
ensemble of three deep learning models: GoogleNet, ResNet-50, and ResNet-101. HARDeep is 
evaluated against three datasets including Hollywood2, KTH and the UCF-ARG dataset, 
consisting of video sequences captured from UAVs. The recognition accuracies are compared 
with the various inference models leveraging wide learning paradigms. 
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1 Introduction 
One of the prominent areas of research, finding application 
in ambulatory healthcare, surveillance of suspected people, 
remote monitoring of a particular place for unwanted 
activities, is human activity recognition (HAR). It includes 
identifying human movements, activities and behaviour 
from a remote area. Thus, assisting in possible analysis for 
doctors in treating mentally challenged people and for 

investigators in predicting intentions of criminals. With the 
development of unmanned aerial vehicles (UAV) over 
traditional CCTV surveillance cameras, the problems of 
object occlusion are reduced. Hence it is possible to 
remotely control the positions of the camera agents of UAV 
drone, overcoming the fixed area coverage of traditional 
cameras. HAR on video sequences captured by drones 
provides better utilities for monitoring in open spaces. 
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Table 1 Survey of various activity inference paradigms 

Work Fog 
computing 

Deep 
learning 

Fixed camera 
inputs 

UAV 
inputs 

Performance analysis 

Latency Execution time Jitter Arbitration time 

Weighted hierarchical 
depth motion maps (Wang 
et al., 2016) 

        

Differential recurrent 
neural network (dRNN) 
(Veeriah et al., 2015) 

        

Layered 2-way RNN  
(Du et al., 2015) 

        

RNN + LSTM (Zhu et al., 
2016) 

        

Convolutional nets (deep 
CNN) (Li et al., 2016) 

        

Object recognition 
through LieNet models 
(Huang et al., 2016) 

        

Convolutional nets (RNN 
+ Deep CNN) (Shi et al., 
2017) 

        

Pretrained Alex NET 
model with SVM 
classifier (AlDahoul et al., 
2018) 

        

Pretrained Alex NET 
model with softmax 
classifier (Mliki et al., 
2019) 

        

Two stream convolutional 
nets (Simonyan and 
Zisserman, 2014) 

        

LSTM + CNN (Ng et al., 
2015) 

        

ResNET (Feichtenhofer  
et al., 2016) 

        

Volumetric video 
segmentation (Ke et al., 
2005) 

        

Error correction output 
codes (ECOC) + SVM 
(Islam et al., 2019) 

        

Proposed work         

 
Various state-of-the-art researches exist in the literature for 
recognising human activity from video sequences. But there 
is limited research in inferring the same from video 
sequences captured through drones. The video sequences 
captured through drones involve certain constraints 
including human presence in the scene, height of the 
camera, background lights, among others. In this paper, we 
depicted a novel approach, leveraging deep learning 
framework, for HAR, as an application to ambulatory 
healthcare service for mentally challenged patients. The 
problem is partitioned to two modules: 

1 identification of useful frames in the video sequence 

2 inference of appropriate human activity from the set of 
useful frames. 

The useful frames correspond to those containing the human 
presence. The problem confined to drone-captured video 
sequences involves a scene stabilisation module as a 
preliminary step. 

HAR typically finds services in crucial applications. In 
these applications, the results attained after the deadline, are 
not valuable, though being accurate. Processing the online 
video sequences obtained from drones typically require 
systems with sufficient storage and computation 
capabilities. Processing the videos in cloud poses additional 
data propagation time between edge devices to cloud and 
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vice versa. A fog-assisted cloud architecture overcomes this 
propagation delay, by providing fog nodes and servers close 
to the edge with minimum-required computation and 
storage powers. Processes that require more computation/ 
storage will be migrated to cloud. We propose fog-based 
architectures for human detection in video sequences and 
subsequently, activity inference from the human-present 
frames. 

The subsequent sections of the paper are organised as 
follows: The state-of-the-art researches in HAR are 
discussed in Section 2. Section 3 depicts the proposed deep 
learning framework for activity inference. Experimental 
results are shown in Section 4, followed by conclusion and 
scope for future works. 

2 Background and related works 
Processing video sequences captured by drones, primarily 
require scene stabilisation. This pre-processing step is used 
to distinguish the movements caused by objects in the scene 
with the movements of the visual sensors in the drone. 
Scene stabilisation involves matching of features between 
consecutive frames followed by motion estimation and 
subsequent motion compensation. Feature matching 
involves detecting interest points or key points between two 
consecutive frames. Once matches are identified between 
frames, then motion detection is carried out. Motion can be 
global or local. Global motion corresponds to the motion 
induced by camera displacement, in case of drones. Whilst, 
the local motion is caused by object displacement in the 
video sequences. Motion compensation step is done for 
global motion detected sequences, to adjust the frames with 
respect to the previous position of the camera. 

Researches to identify global motions (Hsiao et al., 
2009; Shen et al., 2009) assumed that the foreground image 
is generally present in the centre block rather than the 
corners. This assumption is unrealistic in surveillance-based 
applications. Subsequent researches (Walha et al., 2015; 
Lowe, 2004) used scale invariant feature transforms (SIFT) 
to capture key points or interest points from the frames. 
Improvements on the SIFT leveraged algorithms are done 
using RANdom SAmple Consensus (RANSAC) (Fischler 
and Bolles, 1981) for filtering the outliers. Nearest 
neighbour criterion coupled with Euclidean distance 
measures is utilised to derive the displacement vectors. The 
vectors are analogous to the displacements occurred in the 
scene due to object passage or camera alignments. This is 
evident with the postulation that motion pertaining to object 
displacements is much faster than the motion created 
through camera displacements. Affine transformations are 
done on the frames to compensate the global motions. Other 
key point detectors including good features to track (GFTT) 
(Minaeian et al., 2018) are utilised to identify motions in 
consecutive frames. But these feature detectors have fixed 
parameters and are less reliable in detecting with global 
motions. 

Various authors subjected the need to compute the 
magnitude and direction of the displacement variable in the 

frame sequences (Mliki et al., 2019). With this estimate, the 
global motion detection process becomes straightforward. 
Patterns recognised through optic flows provide such an 
estimate for displacement variables. With the implications 
of above surveys, researches (Burghouts et al., 2014) used 
the assumption that the presence of foreground images in 
the centre is more compared to that in the corners. In 
surveillance-based applications, model accuracy 
requirements render this assumption useless. The reliable 
interest point detector SIFT will be less efficient in  
time-critical applications (Walha et al., 2015). This is 
because SIFT and its extension, speeded-up robust features 
(SURF) are computationally complex. To overcome timing 
constraints, optical flow can be computed between two 
consecutive frames. Optical flow depicts the shape of the 
motion of objects in subsequent frames, owing to object or 
camera displacement. Analysing the shape of the motion 
distinguishes the variations caused by object and camera. 
Hence, the motion compensation step becomes unnecessary. 
Scene stabilisation in our proposed model uses optical flow 
computation leveraging Lucas-Kande algorithm, which is 
faster, simple and accurate (Barron et al., 1994; Khobragade 
et al., 2012). 

The stabilised images are then subjected to the actual 
HAR framework. Images captured from fixed cameras can 
bypass the scene stabilisation process. In the next step, 
useful images need to be extracted from the set of video 
frames. The useful images are analogous to those with 
human presence, as human object is the area of interest in 
the given image, for the activity recognition task. The 
human detection step can be viewed as an object detection 
task. Several feature extraction techniques and deep 
learning models exist in the literature to perform object 
detection task. Binning techniques including histogram of 
oriented gradients (HOG) descriptors and SIFT are used for 
object detection (Burghouts et al., 2014; Uijlings et al., 
2013). These techniques are robust against shape of the 
object under study. But these descriptors do not render 
faster results. Texture descriptors such as local binary 
patterns (LBP) and local ternary patterns (LTP), used in 
object detection are computationally expensive. These 
texture descriptors do not scale well with the number of 
images. 

Various deep learning architectures are in exploration to 
perform human detection. Deep learning algorithms learn 
features automatically and provide effective and efficient 
results. Human detection algorithms leveraging convolution 
neural networks (CNNs) are prevalent in researches (He  
et al., 2016; Krizhevsky et al., 2012). The taxonomy of 
various object recognition, activity inference models is 
depicted in Table 1. Pretrained image net models (Wang  
et al., 2016; Veeriah et al., 2015; Du et al., 2015; Zhu et al., 
2016; Li et al., 2016; Huang et al., 2016; Shi et al., 2017; 
Simonyan and Zisserman, 2014; Ng et al., 2015; 
Feichtenhofer et al., 2016; AlDahoul et al., 2018) including 
AlexNet, VGGNet, ResNet, LieNet, GoogleNet are 
leveraged for object inference paradigms by various 
researchers. Supervised CNN and Pretrained CNN models 
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are the two deep learning algorithms used by AlDahoul  
et al. (2018) on UCF-ARG dataset (Nagendran et al., 2010). 
It is empirically stated that pretrained models provide better 
results compared to the former models. Pretrained models 
are robust against typical visual parameters: camera altitude, 
lightings, angles, affecting video quality. These deep 
learning models are not stringent in close object scenarios. 
In our earlier research (Subramanian and Vasudevan, 2021), 
we have used deep genetic algorithms for recognising 
activities from human videos, streaming at a faster rate. 
Efficiency of the application is visualised leveraging fog 
computing frameworks. In this research, we strive to 
architect an ensemble deep learning network for HAR. 
Linear classifier, SVM (Islam et al., 2019), RNN (Veeriah 
et al., 2015; Du et al., 2015), and deep CNN (Wang et al., 
2016; Zhu et al., 2016) models are the common 
classification methods used in HAR and object inference 
tasks. Typical deep learning models for object detection use 
pretrained model with the final layer replaced with a 
classifier, either SVM or softmax. Since, human detection is 
only the preliminary step and the main process is activity 
recognition, the time to extract the useful frames containing 
human, need to be much lower. Hence, we include a model 
for human object detection, that screens maximum frames in 
a limited duration compared to the above stated traditional 
object detection algorithms. 

With the available set of useful frames, containing 
human images, the next step is to recognise their activity. 
Typical deep learning framework for activity recognition 
involves two phases: Extraction of spatio-temporal features 
from the frames, and inference of appropriate activity by 
analysing the extracted features. SURF leveraged 
algorithms are used by Islam et al. (2019) for HAR. The 
response times of activity recognition in the SURF based 
HAR are enhanced by blockchain-based fog computing 
architectures. The key point feature descriptors are less 
effective on image frames with noise. Hence a robust 
feature descriptor is required for detection and classification 
purposes. Wang et al. (2018) used CNN model to extract the 
spatial features from the frames. Subsequently time-domain 
features are extracted through long short-term memory 
models. Finally, the temporal features are merged with an 
optimisation layer, depicting the activity. Sargona et al. 
(2017) proposed a model leveraging the pretrained AlexNet 
model, with the last softmax layer replaced by the  
SVM-KNN hybrid classifier. The authors conducted 
evaluations on KTH and UCF-Sport datasets and proved the 
proficiency of pretrained models in recognising the human 
activity. 

From the literature, it is evident that HAR can be done 
through UAV captured video sequences or fixed cameras in 
confined environment. Video sequences captured through 
drones require scene stabilisation process due to camera 
movements. The core part lies in extracting the useful 
frames containing human and inferring the activity of the 
user from consecutive frames. The key contributions of our 
work are as follows: 

1 We propose a novel architecture for HAR from video 
sequences captured by static cameras or moving 
cameras. 

2 An ensemble deep learning model for recognising 
human activity from the ordered set of video frames. 

3 Evaluation of the algorithm against various benchmark 
datasets. 

3 Proposed work 
The proposed framework for HAR, HARDeep, consists of 
three modules: 

1 an optional scene stabilisation module 

2 identification of useful frames 

3 inference of human activity. 

The architecture of HARDeep is depicted in Figure 1. 

3.1 Scene stabilisation 
Scene stabilisation is carried out to distinguish the motions 
caused by object displacements and the motions caused by 
camera displacements. The latter motions require 
stabilisation to counter the motions caused by camera 
movements. If there exists a motion between two 
consecutive frames, an image pixel in initial frame ( )tKI  
and that in the consecutive frame +( ),t dtKI  will have a 
displacement during the time interval dt. The pixel intensity 
during the motion is assumed to be constant and the images 
are therefore operated in greyscale. In order to estimate the 
displacement (dx, dy) of a pixel I(x, y, t) during the time 
interval dt, the Taylor series can be applied: 

( + , + , + ) ( , , )

+ + + +

I x dx y dy t dt I x y t
I I Idx dy dt
x y t

=
∂ ∂ ∂
∂ ∂ ∂


 (1) 

Based on our assumption on the invariance of the pixel 
intensity between two consecutive frames, we can state that 

( , , ) ( + , + , + )I x y t I x dx y dy t dt=  (2) 

From (1) and (2) 

+ + + 0I I Idx dx dx
x x x

∂ ∂ ∂ =
∂ ∂ ∂

  (3) 

The optical flow between the frames can be calculated by 
dividing (3) by dt. 

+I I x I y
t x t y t

∂ ∂ ∂ ∂ ∂− =
∂ ∂ ∂ ∂ ∂

 (4) 

where andx y
x yV V
t t

∂ ∂= =
∂ ∂

 are the optical flow 

components, with the direction V


 at the two-dimensional 
space. Hence the optic flow pattern can be calculated as: 
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+x y
I I IV V
t x y

∂ ∂ ∂− =
∂ ∂ ∂

 (5) 

Rewriting (5) with respect to pixels m 

( ) ( ) + ( )t x x y yI m I m V I m V− =  (6) 

With the known pixel intensities Ix(m) and Iy(m), the task is 
to solve (6) for Vx and Vy. Horn-Schunck and Lucas-Kande 
are the two commonly used techniques (Huang et al., 2016) 
to solve such optical flow equations. Lucas-Kande, being 
more efficient than the former in terms of time, is used in 
our experimentation. The techniques work on top of the 
assumption that in a window of dimension (n × n), and 
centre m, all the pixels will have the same motion as pixel 
m. Hence, we obtain a system of n2 equations, 
corresponding to various pixels pi: 1 ≤ i ≤ n2 in the search 
window. 

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )2 2 2

1 1 1

2 2 2

x y t

xx y t

y

x y tn n n

I p I p I p
VI p I p I p
V

I p I p I p

   
       = −        
      

  
 (7) 

There are n2 equations to solve two unknowns in (7). Hence 
the equations can be solved using least square method. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2 2 2

2 2 2

1
2

1 1 1

2

1 1 1

n n n

x i x i y i x i t i
x

n n ny
x i y i y i y i t i

I p I p I p I p I p
V
V

I p I p I p I p I p

−
   

−   
     

=     
     −   

   

  

  
 (8) 

The motion vectors Vx and Vy of each pixel corresponding to 
potential motions regions and UAV displacements are 
estimated using (8). It is obvious that the velocity of 
displacement caused by object movements is greater than 
that caused by the camera displacements. The vectors are 
normalised with the displacement at highest magnitude. 
These norms are put together to form an image of 
appropriate pixel intensities. The resultant image will have 
pixels of intensity between [0..1]. Images with a smaller 
number of pixels are eliminated as noise. Hence the set of 
potential motion regions are detected. 

3.2 Human detection model generation 
The human detection task, being analogous to object 
detection in the video sequences, is carried out using you 
only see once (YOLOv3) network model (Lu et al., 2019; 
Zhang et al., 2019; Redmon and Farhadi, 2018). YOLOv3 
leverages the idea of Redmon, in using residual learning of 
YOLOv2. YOLOv3 follows one-stage mode and multi-scale 
features. Thus, the model is faster and has high accuracy in 
object detection scenarios. It uses DarkNet53 unlike 
YOLOv2, which leverages on DarkNet19. DarkNet53 is a 
53 layered convolution network. The series of 1 * 1 and  
3 * 3 convolution layers compose the 53 layers of YOLOv3, 
including the fully connected layer, but leaving the residual 
layer. Each layer is followed by a batch normalisation (BN) 

layer and activated by the Leaky ReLU function. The 
presence of residual layers, derived from ResNet, covers the 
gradient explosion problems in the network and aids 
controlled gradient propagation and appropriate training. 
Despite having many convolution layers in the network, the 
number of parameters is reduced significantly. Thus, 
DarkNet53 serves in faster extraction of features from video 
frames. 

Former versions of YOLO use softmax function in the 
final layer to classify the objects. But, YOLOv3 reforms the 
network using independent logistic classifiers, in place of a 
softmax classifier. Thus, the probability of the object to map 
any one of the class labels is calculated. The replacement of 
softmax layer, allows usage of cross-entropy for 
classification loss calculation. Thus, decreasing the 
computation complexity of the network. YOLOv3 is known 
for its fast detection. HAR, being a time-critical application, 
preliminarily requires effective and efficient recognition of 
video frames with human objects. YOLOv3, the state-of-
the-art object detector can perform this task accurately and 
at a faster rate. 

YOLO models typically scan the images on the whole 
and partitions the images into various windows of size s * s. 
For each object (human object in our scenario) and 
corresponding windows, the model calculates the 
probability that the window composes the centre of the 
object. The object is categorised with appropriate 
confidence, if the probability crosses certain threshold. 
Windows are confined to B boundary boxes and the 
confidence levels are estimated for each box 
simultaneously. Confidence level depicts the inference of 
object in the corresponding bounding box. The probability 
of this confidence parameter PC is calculated as follows: 

( )CP P object IOU= ∗  (9) 

( )
( )

r d

r d

area BB BBIOU
area BB BB

= 


 (10) 

P(object) is the probability that the bounding box contains 
the object. Intersection over union (IOU) depicts the 
accuracy of an object detector on the dataset in question. 
BBr represents the reference bounding box corresponding to 
training labels. BBd is the decision bounding box. 

Each bounding box compose a configuration (x, y), h, w, 
PC where (x, y) is the centre pixel, h, w depicts the height, 
width respectively and PC represents the confidence level. 
For each grid, the probability of an object in the frame to get 
classified in one of the classes C is calculated as P(Ci 
|object). With respect to the confidence level, the frames 
which compose the object corresponding to class: person 
are categorised as useful frames containing human. As the 
bounding box which consists of maximum probability of 
containing a class object is indicated as the object holder, 
the complexity of the model is not affected by the 
overlapping objects. 
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Figure 1 HARDeep architecture 

 

Figure 2 Ensemble deep model for HAR (see online version for colours) 

 

 
3.3 Deep ensemble model for activity recognition 
An ensemble model combines the efforts of multiple 
learning models and accumulates the results by weighting 
their decisions. Thus, ensemble algorithm will have better 
performance than the atomic ones. In order to build a deep 
ensemble model, the performance of five pretrained models: 
Alexnet, Vgg-16, Resnet-50, Resnet-101 and GoogleNet are 
evaluated and the best three models: Resnet-50, Resnet-101, 
GoogleNet are collaborated to develop an ensemble 
classifier leveraging majority voting scheme as shown in 
Figure 2. These ImageNet models have a common 
capability of describing an image with 1000 features in one 

of the layers. The layer from which the features are 
extracted are as follows: Loss3 in GoogleNet, FC-1000 in 
Resnet-50 and Resnet-101. The ImageNet models being 
pretrained and successful in classifying various objects, are 
subjected to high variance issues. The issue propagates with 
the increase in the number of trainings. The input for the 
activity recognition model in HARDeep comes from the 
output of YOLO human detection model. The human 
frames bounded at YOLO come in huge numbers as input to 
activity recognition model. Hence the model has a higher 
possibility to get overfitted. To overcome the variance 
issues, ensemble of three best ImageNet models is 
leveraged. 
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GoogleNet composes a complex structure encapsulating 
various convolutional and pooling layers, and block stacks. 
The image features are stacked across various networks. In 
order to propagate the errors in the deep network, there 
softmax layers are used during training. Resnet consists of a 
deep network architecture with a novel residual blocks that 
project input with appropriate identity mapping function to 
result in the appropriate output criterion. Resnet 
architectures are highly significant in overcoming the 
vanishing gradient issues, which lasts due to the high 
variance of the model. Hence HARDeep – activity 
recognition model ensembles two Resnet architectures vis. 
Resnet-50 and Resnet-101, along with the GoogleNet 
architecture. Hence the model issues with respect high 
variance, overfitting and vanishing gradient are overcome. 
The final layers of the three pretrained deep models are 
replaced with a softmax layer with N classes, where N 
corresponds to the activity classes. The ensemble classifier 
outputs a class that receives a maximum vote from the deep 
models. The decision of the kth deep classifier is depicted as 
dcs(c, a) ∈ (0, 1), c = {1, 2, 3, …, P} and a = {1, 2, 3, …, 
N} where P corresponds to the number of classifiers (P = 3 
in the proposed model) and N, the number of activity 
classes. If the kth classifier outputs the class ai, then dcs(c, 
ai) = 1 and 0, otherwise; i ∈ k. The majority voting criterion 
is put forth as follows (11): 

( )1
1 1

( , ) max ,
P N

N
ia

c c

dcs c a dcs c a=
= =

=   (11) 

Such an ensemble model outperforms atomic models in 
terms of response time. But the operational complexity of 
the model is higher. To overcome this, HARDeep works on 
top of a fog computing architecture fogbus. The 
orchestration of HARDeep in fogbus (Tuli et al., 2019) and 
the empirical results on the performance is depicted in 
Section 5. 

4 Experimental study 
The experimentation is carried out in two phases: human 
detection from video sequences and activity recognition 
from the detected set of useful frames. Three benchmark 
datasets used, are described and the series of experiments 
conducted on those datasets are explained in this section. 
The empirical evaluations of the proposed approach are 
compared with the state-of-the-art approaches. 

4.1 Hollywood2 action dataset 
Hollywood2 action dataset (Marszalek et al., 2009) is a 
dataset captured from fixed camera. Thus, these video 
sequences do not require scene stabilisation, to counter the 
camera movements. The dataset composes 1,707 video 
sequences from around 69 movies. The video sequences 
evidence 12 different activity classes including 
answer_phone, handshake, drive_car, eat, get_out_of_car, 
fight_person, hug_person, kiss, run, sit_down, sit_up, and 

stand_up. The video dataset occupies storage of around 15 
GB playing for 20.1 hours. Figure 3 depicts the image 
frames from Hollywood2 dataset pertaining to various 
activities. 

Figure 3 Sample frames depicting actions: Hollywood2 dataset 
(see online version for colours) 

 

4.2 KTH dataset 
KTH dataset (Schuldt et al., 2014) also composes video 
sequences captured from static cameras. This dataset, 
commonly used for activity recognition research, has 2391 
video sequences captured from 25 fps camera in same 
background. The video is contributed by 25 people with six 
activities namely boxing, clapping, hand-waving, jogging, 
running, walking. The sample images from KTH dataset for 
the six classes of activities are depicted in Figure 4. 

Figure 4 Sample frames depicting actions: KTH dataset ( 
see online version for colours) 

 

4.3 UCF-ARG dataset 
UCF-ARG dataset (Nagendran et al., 2010) is a benchmark 
dataset for conducting experiments on human detection and 
corresponding activity recognition from video sequences 
captured from aerial cameras. The dataset possesses videos 
contributed by 12 people witnessing ten human activities. 
The dataset is multifaceted with its constraints including the 
extreme ego-motion, the lighting levels and the camera 



162 R.R. Subramanian and V. Vasudevan  

height variation. In our experimentation, we focus on the 
recognition of following five activity classes: throwing, 
running, digging, waving and walking. The sample image 
frames from the UCF-ARG dataset for the five activity 
classes are depicted in Figure 5. 

Figure 5 Sample frames depicting actions: UCF-ARG dataset 
(a) digging, (b) throwing, (c) running, (d) walking and 
(e) waving (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

4.4 Human detection from video sequences 
Video sequences captured by dynamic cameras in drones 
are subjected to scene stabilisation. The stabilised video 
sequences are then subjected to the first series of 
experiments to extract the useful frames. The useful frames 
are analogous to those set of frames containing human. The 
proposed framework uses YOLOv3 model to detect human 
objects in the video sequences. The video frames are parted 
into various windows, and the probability for the presence 
of the centre of human object in the window is calculated. 
The appropriate number of objects is extracted through the 
calibrated B boundary boxes. The YOLOv3 based human 
detection model showed a detection accuracy of 99.87% on 
Hollywood2, 99.94% on KTH and 99.72% UCF-ARG 
datasets respectively. It is obvious that the human detection 
using YOLOv3 outperforms the techniques leveraging the 
CNN models with the final layer replaced with SVM or 
softmax layer. In addition, YOLO model is much faster than 
the CNN models for object detection tasks. 

4.5 HAR from useful frames 
The detected set of useful frames containing human is used 
for subsequent recognition of activities. All the deep 
ensemble models are configurated with 70% Training and 
30%. The video dataset consisting the activities and the 
human frame are subjected to the ensemble models 
composing GoogleNet, ResNet-50 and ResNet-101. The 
softmax layer, forming the last layer of the ImageNet 
models will consist of the number of activities to be 
recognised (N). Furthermore, we have a majority voting 
criterion to take the best of the three ImageNet models. 
Hence this ensemble model exhibits better recognition rates 
compared to the state-of-the-art HAR techniques. In order to 
have a trade of between the accuracy and complexity of 
ensemble model, we have experimented the activity 
recognition framework leveraging fog computing. The 
captured videos from UAV or static cameras are stored in 
the fog master node. The human detection model present in 
the fog master generates the set of useful human frames. 
These human frames are provided as input to three cluster 
heads, each containing GoogleNet, ResNet-50 and  
ResNet-101 models with the appropriate softmax layers. 
The activity recognition tasks are carried out in parallel by 
the three nodes consisting of the ImageNet models. The 
results from the fog nodes are ensemble at the fog master 
with the majority voting criterion. 

Figure 6 HARDeep in Hollywood2 dataset: confusion matrix 
(see online version for colours) 

 

The inference accuracy of the HARDeep framework is 
evaluated against various standard and complex video 
datasets including Hollywood2 dataset, KTH dataset and the 
UCF-ARG dataset, containing videos captured from UAV. 
Table 2 depicts the evaluation results of HARDeep on the 
three activity datasets under study. The confusion matrix for 
Hollywood2 dataset is depicted in Figure 6. It exhibits a 
recognition accuracy of 97.13%. The proposed framework 
recognises activities from KTH dataset at the accuracy level 
of 96.75%. The confusion matrix for the KTH dataset is 
presented in Figure 7. The framework is also experimented 



 HARDeep: design and evaluation of a deep ensemble model for human activity recognition 163 

against dynamic aerial camera captured video sequences 
from UCF-ARG dataset, and an inference accuracy of 
80.72% is obtained. Figure 8 consists of the confusion 
matrix for the UCF-ARG dataset. The proficiency of 
HARDeep is compared with various activity inference 
techniques and the same is depicted in Table 3. It shows that 
the proposed model exhibits better recognition accuracy 
than the existing models. These results are mainly because 
of the combination of three best image classifiers and the 
YOLOv3 model, effectively providing the human-frames as 
input to these models. The accuracy of HARDeep is 
improved greatly with respect to Hollywood2 and  
UCF-ARG datasets, compared to the state-of-the-art 
models. The improvisation is witnessed with the 
sophistication of HARDeep architecture with ensemble 
deep learning models. However, the ensemble models, does 
not have significant effect in datasets like KTH, compared 
to state-of-the-art models. KTH consists of images captured 
in homogeneous backgrounds and variations in light. The 
most similar among the six actions like jog, run, walk are 
also distinguished through the geometrical difference in leg 
part of the image. Hence the atomic models in the 
HARDeep architecture typically give identical results, thus 
making the majority voting straight forward. 

Figure 7 HARDeep in KTH dataset: confusion matrix  
(see online version for colours) 

 

Table 2 Evaluation results of HARDeep on three activity 
datasets under study 

Datasets TP TN FN FP 

Hollywood2 3,282 83,588 1,406 1,179 
KTH 18,939 79,198 1,313 1,995 
UCF-ARG 14,895 57,033 9,035 8,087 
Datasets Precision Recall Accuracy 

Hollywood2 0.7357 0.7001 0.9713 
KTH 0.9047 0.9352 0.9675 
UCF-ARG 0.6481 0.6224 0.8072 

Figure 8 HARDeep in UCF-ARG dataset: confusion matrix  
(see online version for colours) 

 

Table 3 Comparison of HARDeep with various HAR models 

Techniques Hollywood2 KTH UCF-ARG 

Alex NET model with 
softmax classifier (Mliki 
et al., 2019 ) 

- - 68.00 

HoG + SIFT. (Burghouts 
et al., 2014) 

- - 57.00 

ECOC based multi-class 
SVM (Islam et al., 2019) 

87.00 75.00 - 

Multi-skip feature 
stacking (Lan et al., 2015) 

68.00 - - 

HoG + Gaussian classifier 
(Tian et al., 2012) 

- 94.50 - 

Spatio-temporal 
relationship match (Ryoo 
and Aggarwal, 2009) 

- 91.10 - 

Interest points detection + 
clustering  
(Bregonzio et al., 2009) 

- 93.17 - 

Sparse Bayesian feature 
classifier (Thi et al., 2012) 

- 94.67 - 

Bag of video words 
(Roshtkhari and Levine, 
2013) 

- 95.00 - 

Local features + 
randomised KD trees 
(Mikolajczyk and 
Uemura, 2011) 

- 95.3 - 

Volumetric features  
(Ke et al., 2005) 

64.60 - - 

Proposed model 97.13 96.75 80.72 

5 Performance evaluation of the HARDeep model 
in fog environment 

The proposed model, HARDeep, for activity recognition 
gives better accuracy with three standard video datasets, vis. 
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Hollywood2, KTH and UCF-ARG. Since activity 
recognition models finds use cases in time-critical 
applications, the model complexity in terms of response 
time need to be estimated. We execute the ensemble HAR 
model in fogbus (Lan et al., 2015; Tian et al., 2012) 
framework. Fogbus, being the state-of-the-art framework 
for modelling fog-based cloud computing architectures, is 
leveraged. The efficiency of the proposed HAR model is 
estimated in terms of latency, execution time, jitter and 
arbitration rate, for four different fog scenarios: 

1 master only 

2 single edge node 

3 two edge nodes 

4 cloud. 

Fog assisted models performs at its best, when the requests 
from the app is handled at the fog nodes, rather being 
forwarded to cloud. Fog shows its effectiveness by 
diminishing the unwanted data transit time to the cloud. It is 
evident from Figure 9(a) that latency is higher for the 
requests handled at the cloud layer, due to the multi-hop 
data transfer requirements. Whilst, the latency for the task 
handled at master or with any of the edge nodes is lower 
than that of the cloud. This is due to the fact that all the 
communications are confined through single hop. 

Figure 9 (a) Latency and (b) execution time in different fog 
setups (see online version for colours) 

 
(a) 

 
(b) 

On the other hand, the sophisticated processing capabilities 
of the cloud render the task to get executed at a much faster 
rate. The fog worker nodes composing processing capacity 
with low clock frequency, exhibits a higher execution time. 
Figure 9(b) depicts the execution characteristics of the 

HARDeep model under four different fog scenarios. The 
delay in response for consequent job requests is measured 
by jitter. The jitter characteristics of the proposed HARDeep 
model under various fog setups are presented in  
Figure 10(a). It is obvious that the response time for the 
tasks is affected by the data transit time for the data being 
processed at cloud. For local nodes, the jitter is low and the 
measure is directly proportional to the number of edge 
nodes contained in the cluster. Load balancing, task 
assignment, parallelisation becomes difficult to manage 
with the increase in number of nodes for consensus. Hence 
arbitration rate is very low at the master only and the cloud 
scenarios. And it increases with the increase in number of 
nodes in the network. The arbitration characteristics of the 
HARDeep model at different fog setups are presented in 
Figure 10(b). 

Figure 10 (a) Jitter and (b) arbitration time in different fog 
setups (see online version for colours) 

 
(a) 

 
(b) 

6 Conclusions 
Activity recognition is evolving as a strong area of research 
in the area of medical science, forensics and security. 
Giving more focus to medical science, the recognition of the 
daily activities of mentally challenged and elderly people, 
from a remote location becomes predominant. In the view 
of such time-critical task, we have proposed models for 
inference of human objects and subsequent identification of 
human activity from the videos captured from the static 
cameras and those from the dynamic UAVs. The human 
detection model is constructed on top of YOLOv3 object 
detector and a fog assisted deep ensemble classifier is 
leveraged for activity recognition tasks. The model is 
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evaluated against standard video datasets and a sound 
recognition accuracy is evidenced. In future, we aspire to 
develop a model to recognise the exercises, suggested by 
physiotherapists for patients with musculoskeletal problems. 
Thus, assisting the physicians to monitor the patient from 
remote locations and provide appropriate suggestions 
online. 
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