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Abstract: By first solving the equation x3 + y3 + z3 = k with fixed k for z and then
considering the distance to the nearest integer function of the result, we turn the sum of three
cubes problem into an optimisation one. To our knowledge, this is a novel approach. We then
present a modification of the dispersive flies optimisation (DFO) algorithm and apply it to this
function in the case with k = 2. We have two goals: to show the viability of using optimisation
when searching for integer solutions and to measure how efficient our modified DFO is. We
have significantly improved the performance of DFO for very large and discrete search spaces
by adding new mechanisms to increase the exploration behaviour of the flies. As a comparison
we also use two implementations of simulated annealing. The efficiency of the algorithms is
measured by their running times. We model the data by assuming two underlying probability
distributions – exponential and log-normal, and calculate relevant numerical characteristics for
them. Finally, we evaluate the statistical distinguishability of our methods with respect to some
standard parametric and non-parametric statistical tests.
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1 Introduction

The sum of three cubes problem can be stated in the
following way: let k be a positive integer. Is there a solution
to the equation

(1.1)

As is well known, for k ≡ 4 (mod 9) such a solution
does not exist (Davenport, 1939). For k ̸≡ 4 (mod 9)
however, it has been conjectured by Heath-Brown (1992)
that there are infinitely many solutions. A direct search
for solutions is one way to support this conjecture. Until
recently there were only two numbers below 100 for which
a representation as a sum of three integer cubes had not
been found. Those were 33 and 42.

x3 + y3 + z3 = k,

such that (x, y, z) ∈ Z3?

Copyright © 2023 Inderscience Enterprises Ltd.



168 B. Lazov and T. Vetsov

Figure 1 Sample of the function f2(x, y) in the range x, y ∈ [−50, 50], (a) many local optima of the function f2(x, y) (b) discrete
matrix plot of f2(x, y) with red pixels corresponding to the global minima, where f2(x, y) = 0 (see online version
for colours)

(a) (b)

Then the sum of three cubes problem gained an unusual
amount of fame in the last year after a Numberphile video
inspired a solution to the case with k = 33 (Booker, 2019).
What followed were a solution for k = 42 and a new (third)
solution for k = 3.

The main problem when directly searching for solutions
is the time it takes for a brute force approach. However,
there are ways to reduce this time and the latest method
by Booker reached a time complexity of O

(
B1+ε

)
, with

min {|x|, |y|, |z|} ≤ B (Booker, 2019), i.e., an almost linear
search.

When thinking about a way to improve this result, a
natural step seems to be to gamble a bit and rely on
the gods of probability. In other words we may try to
guess the solution via some random search heuristic. One
way this can be achieved is by turning the sum of three
cubes into an optimisation problem, for which there are
a wealth of such heuristics. As it turns out there have
been some attempts to solve Diophantine equations using
particle swarm optimisation (PSO) algorithms (Abraham
et al., 2010). And while we use PSO in some form, our
approach is different and permits the use of many other
stochastic optimisation methods.

The emerging optimisation problem, however, is highly
non-trivial. This is due to the enormous search space and
the large amount of ‘noise’, i.e., the large number of
local extrema, giving non-optimal solutions. This, combined
with the fact that the search space is discrete, makes
our optimisation problem similar to many real world
problems (e.g., travelling salesman, electroencephalography
data optimisation (Goh et al., 2015), optimal camera
placement (Lin et al., 2020), etc. (Kumar et al., 2020)), and
an algorithm that solves it can possibly be used with success
on some of them. Moreover, as far as we know, this is the
first attempt to solve the sum of three cubes problem via an
optimisation algorithm. Since this is a novel look at an old
problem we cannot know a priori which heuristic will give
us the best result.

The above leads us to develop a modified version
of dispersive flies optimisation (DFO) (Al-Rifaie, 2014),
which falls within the class of swarm optimisation
algorithms, and to compare its performance to that of
a well-known heuristic – simulated annealing (SA). We
chose to both use DFO as a base and SA for comparison,
because they are well known for being suitable for very
large and discrete search spaces. SA in particular is famous
for having been used to find solutions to the travelling
salesman problem (Kirkpatrick et al., 1983). Our modified
DFO (mDFO) can be viewed as the main contribution of
the current work.

The remainder of this paper is organised as follows. In
Section 2, we define the function to be optimised. Since
we’ve said that our approach was motivated by the desire to
use a random search heuristic, in the next sections we apply
to our function two such heuristics that look promising,
namely mDFO and SA. Their performance is then evaluated
empirically by measuring the time it takes the respective
algorithm to obtain a solution to equation (1.1) for k =
2. This choice of k is justified by its high density of
solutions, which makes testing much easier. In particular,
in Section 3, we introduce our mDFO algorithm in detail,
while in Section 4 we use two versions of SA – one
with restarts and one without. In Section 5, we conduct
a thorough statistical analysis of the performance of our
algorithms and of their similarities. We conclude this work
with Section 6, where we briefly comment on our results
and show some possible directions for future research.

2 Our approach

We first start by defining the function, which we will be
optimising. Solving equation (1.1) for z we trivially get

z =
(
k − x3 − y3

) 1
3 . (2.1)

We can then define a function fk(x, y) as

fk(x, y) := ∥z∥ =
∥∥∥(k − x3 − y3

) 1
3

∥∥∥ , (2.2)
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where ∥z∥ denotes the distance to the nearest integer from
z.1

Now let us fix k = k0. If (x0, y0, z0) is an integer
solution to equation (1.1), we have

fk0(x0, y0) = 0 (2.3)

and this is a global minimum. Conversely, if fk0(x, y) has a
local minimum at (x0, y0) ∈ Z2, such that equation (2.3) is
satisfied, it has a global minimum there and this gives the
solution (x0, y0, z0) to equation (1.1), where z0 is evaluated
from equation (2.1).

Hence, the problem now is to find a global minimum of
fk(x, y) with (x, y) ∈ Z2 and fixed k. As it turns out, this
is not an easy problem since our function has no shortage
of local optima. As an illustration we show a plot of the
function f2(x, y) with x, y ∈ [−50, 50] in Figure 1.

3 Swarm optimisation

The first algorithm we use to minimise (2.2) is a
representative from the family of swarm algorithms. These
algorithms try to find extrema of a function by emulating
the behaviour of swarms of insects searching for resources.
There are many algorithms based on this idea and they
may differ significantly in performance, depending on the
problem. For the latest development on the subject one may
refer to Cuevas et al. (2020).

For our particular function we first tried using
standard particle swarm optimisation (SPSO) (Clerc, 2012).
However, it turned out to be too slow and, searching for
a better alternative, we stumbled upon the DFO algorithm
developed by Al-Rifaie (2014). It has the benefit of
simplicity and we decided to use it as a base and see where
we end up. As it turned out we made some significant
changes in order to improve the performance for our
particular function.

As the main point we found the breaking of the swarm
in DFO to be too limited for our needs, so we opted for
simple randomisation of all flies after a certain criterion
has been met. This, however, meant that the swarm best
would change after every dispersion and may have lead to
insufficient exploration around it. To fix this we introduced
a memory of the best position of the swarm found so far.
We then used this ‘best swarm best’ in the position update
formula in addition to the neighbours best and swarm best
positions.

This improved the performance of our algorithm when
compared with unmodified DFO. However, our function
has a lot of local minima and the algorithm tended to
get stuck in them often. Furthermore, the closer the best
swarm best position’s fitness function was to 0, the harder
it was to find a better position (including after a dispersion).
One way to alleviate this somewhat was to introduce
simple restarts after a fixed number of iterations without an
improvement in the best swarm best position.

This required including a new parameter in the
algorithm however, namely the number of iterations. To
avoid it we decided to instead probabilistically change the

best swarm best to the current swarm best in the iteration
even if the new position was worse. The probability
depends on the difference between the fitness function
values in both positions.

3.1 Description of the algorithm

Our mDFO algorithm can in principle be used for any
discrete optimisation problem and in this subsection we will
give a general description, which does not refer to specifics
such as the dimension of the search space or the explicit
form of the fitness function.

Like all PSO algorithms it first starts with the
initialisation of the swarm (with s particles). This is
done by choosing a random position x⃗i for each particle
i ∈ {0, ..., s− 1} inside the (discrete) search space and
calculating its fitness function ff(x⃗i). Then the swarm best
position s⃗b ∈ {x⃗0, ..., x⃗s−1} is determined, such that

ff(s⃗b) = min
i∈{0,...,s−1}

{ff(x⃗i)}. (3.1)

As mentioned, the algorithm uses a memory of the best
position obtained so far, which we call best swarm best b⃗sb.
At initialisation this is set equal to the swarm best, i.e.,
b⃗sb← s⃗b.

As usual, the particles communicate with their
neighbours. We use the standard ring topology for the set
of neighbours ni of particle i (Clerc, 2012), i.e.,

ni = {(i− 1) mod s, i, (i+ 1) mod s} . (3.2)

Then, knowing the neighbours, the best position among
them is found for each particle. We call this the neighbours
best n⃗bi and it satisfies the following

ff(n⃗bi) = min
k∈ni

{ff(x⃗k)}, n⃗bi ∈ {x⃗k}k∈ni . (3.3)

Next follow the iterations. We can limit the number of
iterations to get some approximate solution or wait for some
condition to be satisfied. An iteration consists of a position
update, confinement and a s⃗b, b⃗sb and n⃗bi update.

First is the position update. Since, as we’ve said, the
swarm is periodically dispersed, the position update formula
depends on a simple dispersion condition. We first define
a dispersion parameter dp = s/5. Then the number of
particles that have reached the best swarm best position is
counted and, if they are no less than dp, the positions of all
particles are randomised across the search space.

If the dispersion condition has not been met, the
positions of the particles are updated by the formula

xi,d ← round
(
nbi,d +

r

2
(sbd + bsbd − 2xi,d)

)
,

d = 1, ..., D.
(3.4)

where r is drawn from a uniform distribution on the interval
(0, 1) and D is the dimension of the search space.

After the position update there may be some particles
outside the search space. We want them confined inside
however, so random positions are chosen for such particles.



170 B. Lazov and T. Vetsov

While this is a simple way to implement confinement, it
helps with the exploration behaviour that some problems so
desperately need.

Finally, s⃗b, b⃗sb, and n⃗bi need to be updated. After s⃗b is
determined as in the initialisation, it is used to update b⃗sb.
If ff(s⃗b) < ff(b⃗sb),

b⃗sb← s⃗b, (3.5)

as expected. If, however, ff(s⃗b) > ff(b⃗sb), the worse
position s⃗b is accepted as the new best swarm best with
probability

p = 1− ff(s⃗b)− ff(b⃗sb)

0.5
. (3.6)

As can be seen, the choice of b⃗sb borrows its idea from SA
algorithms. In practice the change to a worse b⃗sb happens
after the particles have dispersed, because this is when
ff(s⃗b) can be less than ff(b⃗sb).

Next, n⃗bi is determined as in the initialisation. Naturally,
after each b⃗sb update it needs to be checked whether some
suitable condition has been satisfied so the algorithm can
be exited.

3.2 Computational results

In order to experiment with mDFO we need to fix some
parameters for our particular problem. First of all, we want
to search for solutions to the Diophantine equation (1.1)
with k = 2, i.e., global minima of f2(x, y). This means
that our search space has 2 dimensions, i.e., D = 2. So we
denote the positions in the search space with (x, y) and we
fix our fitness function as

ff(x, y) = f2(x, y) =
∥∥∥(2− x3 − y3

) 1
3

∥∥∥ . (3.7)

We also need to determine the exit criterion. As
we are searching for integer solutions and thus an
approximate one is not good enough, we first choose
some threshold thr and the algorithm looks for a pair
(x0, y0), such that ff(x0, y0) ≤ thr. Then the candidate
solution (x0, y0, round (z0)), where z0 is calculated from
equation (2.1), is plugged into equation (1.1) and the
algorithm is exited, if the equation is satisfied.

Additionally, after some experimenting, that is in no
way conclusive, we found that a particle swarm size of s =
50 works best in our case.

With the above fixed we tested the time performance of
our algorithm for different ranges of x and y by recording
the time it needs to find a solution. The full code which we
used for testing is included in Appendix A1. We wrote the
algorithm in C.

We chose to scan three different ranges of values for x
and y, namely

R3 = {(x, y) : x, y ∈ Z,−103 ≤ x ≤ 0 ≤ y ≤ 103},
N = 104,

R4 = {(x, y) : x, y ∈ Z,−104 ≤ x ≤ 0 ≤ y ≤ 104},
N = 104,

R5 = {(x, y) : x, y ∈ Z,−105 ≤ x ≤ 0 ≤ y ≤ 105},
N = 103.

(3.8)

Here we denote with N the respective number of runs
completed by the algorithm in the corresponding range.
Hence, N is also the sample size of the time data for a
given range.

The results are arranged in histograms based on the
dataset {ti}Ni=1 of running times ti. The data is gathered
into bins with equal widths

∆t =
max{ti} −min{ti}

ℓ
, (3.9)

where max{ti} is the longest time for finding a
solution, min{ti} is the shortest one, and ℓ < N is
an arbitrary partition. The data is also normalised to
show the corresponding probability density function (PDF)
(Figure 2). In this case, the data is discrete and the PDF
function states that the probability of ti falling within an
interval of width ∆t is the density in that range times ∆t.

4 Simulated annealing

SA is a search heuristic based on the physical process
of annealing (Bertsimas and Tsitsiklis, 1993). It has
the advantage of being effective despite its ease of
implementation. SA has been extensively studied and has
many variations, e.g., in the choice of cooling schedule
or neighbours. Those variations of course affect the
algorithm’s performance.

One particularly interesting modification to SA is the
inclusion of restarts. It has been shown that under some
conditions restarting the algorithm according to certain
criteria results in improved times for finding a desired
extremum (Mendivil et al., 2001). More precisely a
restarting SA (rSA) algorithm with a local generation matrix
and cooling schedule temp(m) ∼ 1

m has probabilities that
the extremum has not been reached by time m which
converge to zero at least geometrically fast in m.

Here we implement two versions of SA – one without
restarts and one with restarts. As will be seen, we are using
a logarithmic cooling schedule and thus our implementation
of the algorithm fails to satisfy all the assumptions of
Theorem 4.1 of Mendivil et al. (2001). Nevertheless, those
are not necessary conditions and it turns out that restarting
significantly improves the running time in our particular
case.
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Figure 2 Time performance of mDFO: every histogram gives the distribution of the individual times the mDFO algorithm took to
find a solution in the, (a) range R3 with sample size N = 104 (b) range R4 with sample size N = 104 (c) range R5 with
sample size N = 103 (see online version for colours)

(a) (b)

(c)

4.1 Computational results

As in Subsection 3.2, we again want to test the performance
of the algorithm for f2(x, y), so this is our energy function
in the context of SA. A state here is just a point (x, y) ∈ Z2.
The exit criterion is also the same as in Subsection 3.2. We
use the following cooling schedule:

temp(m) =
1

lnm+ 0.01
, (4.1)

where m as usual is the current iteration number.
The neighbourhood of a state (x, y) is

n(x, y) = {(x+ a, y + b) : a, b ∈ Z,
a, b ∈ [−10, 10]}

(4.2)

except for the states close to the border of the search space,
where we remove the appropriate points so as not to end
up outside. The generation matrix allows transitions from
(x, y) to all points in n(x, y) with equal probability except
to (x, y) itself.

For the rSA algorithm, we use the criterion suggested
in Mendivil et al. (2001), namely restarting after rtm
consecutive states have the same energy. After some
experimenting, we decided to use rtm = 30.

Again, we wrote the algorithms in C and include the
full codes in Appendices A2 and A3. Figures 3 and 4 show
the PDF histograms for the two versions of SA in different
ranges.

5 Data models and statistical analysis

In this section we conduct a standard statistical analysis by
modelling the time data, produced by the given algorithms,
with carefully chosen continuous probability distributions.
Our goal is to evaluate the relative performance of the three
algorithms and furthermore to estimate their similarities.
We chose to describe the accumulated time data by
two statistical models, namely a simple one-parameter
exponential model f(t;λ), and a two-parameter log-normal
distribution f(t;α, β). Here the stochastic variable is the
individual time t a given method takes to find an integer
solution to x3 + y3 + z3 = 2.

5.1 Exponential distribution

The exponential model is a simple one-parameter
probability distribution, where one assumes that the
underlying statistics models a Poisson process. The PDF of
an exponential distribution is given by

f(t;λ) =

{
λe−λt, t ≥ 0

0, t < 0
, (5.1)

where λ > 0 is the rate parameter.
The expected value t̄, the variance Var[t] and the median

Med[t] of an exponentially distributed random variable t
with rate parameter λ are well known, namely

t̄ = E[t] =
1

λ
, Var[t] =

1

λ2
, Med[t] =

ln 2
λ

. (5.2)
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Figure 3 Time performance of SA: every histogram gives the distribution of the individual times the SA algorithm took to find a
solution in the, (a) range R3 with sample size N = 104 (b) range R4 with sample size N = 104 (c) range R5 with sample
size N = 103 (see online version for colours)

(a) (b)

(c)

Figure 4 Time performance of rSA: every histogram gives the distribution of the individual times the rSA algorithm took to find a
solution in the, (a) range R3 with sample size N = 104 (b) range R4 with sample size N = 104 (c) range R5 with sample
size N = 103 (see online version for colours)

(a) (b)

(c)
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When a finite sample data is available the mean time t̄ for
finding a solution also coincides with the mean time from
the sample data:

t̄ =
1

N

N∑
i=1

ti. (5.3)

The 95% confidence intervals for λ and t are given by

λlower ≤ λ ≤ λupper,
1

λupper
≤ t̄ ≤ 1

λlower
, (5.4)

where

λlower = λ

(
1− 1.96√

N

)
,

λupper = λ

(
1 +

1.96√
N

)
.

(5.5)

5.2 Log-normal distribution

The two-parameter log-normal distribution f(t;α, β),
α ∈ (−∞,∞), β > 0, is a continuous probability
distribution of a positive random variable t > 0, whose
logarithm is normally distributed. There are many different
parameterisations of the log-normal distribution, but we
prefer the following:

f(t;α, β) =
1

β
√
2πt

e−
(ln t−α)2

2β2 , (5.6)

where the parameters of the distribution can be obtained
directly from the sample data via

α =
1

N

N∑
i=1

ln ti, β =
1√
N

√√√√ N∑
i=1

(ln ti − α)
2
. (5.7)

In this case, the mean time t̄ for finding a solution and its
standard deviation SD[t] are given by

t̄ = E[t] = eα+
β2

2

SD[t] =
√
Var[t] = eα+

β2

2

√
eβ2 − 1,

(5.8)

where t̄ does not coincide with the mean sample time (5.3).
Furthermore, the median and the mode Mode[t] yield

Med[t] = eα, Mode[t] = eα−β2

, (5.9)

where the mode defines the point of global maximum of
the probability density function.

The standard scatter intervals for the log-normal
distribution are written by

t68% ∈ [eα−β , eα+β ], t95% ∈ [eα−2β , eα+2β ]. (5.10)

However, these estimates are not very informative for
skew-symmetric distributions such as the log-normal one.
In this case, we can extract an efficient 95% confidence
interval for the log-normal model based on the Cox
proposal, namely (Zhou and Gao, 1997):

t̄95% ∈ e

[
α+ β2

2 −1.96
√

β2

N + β4

2(N−1)
,α+ β2

2 +1.96
√

β2

N + β4

2(N−1)

]
, (5.11)

where we can estimate an absolute confidence δt =
max|t̄− t̄95%|.

Table 1 A sample statistic of goodness of fit for mDFO in the
lowest range R3 by Wolfram Mathematica

Test Statistic p-value
Anderson-Darling 461.415 0
Baringhaus-Henze 578.195 0
Cramér-von Mises 78.3105 0
Jarque-Bera ALM 13,272.5 0
Kolmogorov-Smirnov 0.15508 0
Mardia combined 13,272.5 0
Mardia kurtosis 87.6429 0
Mardia skewness 5,574.22 0
Pearson χ2 7,073.31 0

Note: The standard level of confidence is at 95%, i.e.,
α = 0.05. All p-values are smaller that 0.05, thus
one can confidently reject normally distributed time
data.

Our choice of log-normal distribution can also be confirmed
by performing some standard goodness of fit statistical
tests such as Kolmogorov-Smirnov test, Shapiro-Wilk test,
Anderson-Darling test, Cramér-von Mises test, etc. This
is included in the statistical capabilities of the Wolfram
Mathematica system. The following sample code can
be used to estimate the parameters of the log-normal
distribution and also performs the goodness of fit tests of
our data:

data = ReadList[“timedata.txt”];
eD = EstimatedDistribution[data,

LogNormalDistribution[α, β]]
D = EmpiricalDistribution[data];
#[D]&/@{Mean,Variance,Skewness,Kurtosis};
H = DistributionFitTest[data,Automatic,

HypothesisTestData];
H(TestDataTable,All);

A sample statistic of goodness of fit for mDFO, in the
lowest range R3, is shown in Table 1. The null hypothesis
states that our time data follows a normal distribution.
The alternative hypothesis states it follows a different
distribution. All p-values in the table are effectively zero,
thus we can confidently reject the null hypothesis and
assume that the underlying distribution is not normal.

5.3 Statistical models for the mDFO time data

5.3.1 mDFO time data in the range R3

We begin by analysing our mDFO method. We looked
for solutions to x3 + y3 + z3 = 2 in the lowest range R3.
In this case, the method was tested N = 104 times. The
produced set of running times {ti}Ni=1 is divided into bins
with width ∆t = 0.00019 s and its PDF histogram is shown
in Figure 2(a).
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Figure 5 Statistical models for the mDFO time data in the range R3, (a) simple one-parameter exponential probability distribution
f(t;λ) with λ = 14.301 s−1 and mean time for finding a solution t̄ = 0.070 s (b) two-parameter log-normal distribution fit
f(t;α, β) with α = −3.229, β = 1.275, and mean time for finding a solution t̄ = 0.089 s (see online version for colours)

(a) (b)

The two statistical models, describing the mDFO time
data, are shown in Figure 5. The first one is a simple
one-parameter exponential model f(t;λ) with λ =
14.301 s−1 [Figure 5(a)]. The second one is a
two-parameter log-normal distribution f(t;α, β) with α =
−3.229, β = 1.275 [Figure 5(b)].

Exponential model

The expected value, the variance and the median of
an exponentially distributed random variable t with rate
parameter λ = 14.301 s−1 yield

t̄ = E[t] =
1

λ
= 0.070 s,

Var[t] =
1

λ2
= 0.005 s2,

Med[t] =
ln 2
λ

= 0.048 s.

(5.12)

The 95% confidence intervals for λ and t̄ are given by

λlower ≤ λ ≤ λupper, λ−1
upper ≤ t̄ ≤ λ−1

lower, (5.13)

where

λlower = λ

(
1− 1.96√

N

)
≈ 14.021 s−1,

λupper = λ

(
1 +

1.96√
N

)
≈ 14.581 s−1,

(5.14)

λ−1
upper = 0.069 s, λ−1

lower = 0.071 s, (5.15)

with absolute confidences δλ = |λ− λupper| = 0.280 s−1

and δt = |t̄− λ−1
lower| = 0.001 s. Therefore, we can write

our results for the Poisson distributed mDFO time data as

λ = (14.301± 0.280) s−1,

t̄ = (0.070 ± 0.001) s.
(5.16)

Because λ and t̄ are inversely proportional to each other,
from now on we will be interested only in t̄.

Log-normal model

The two-parameter log-normal distribution f(t;α, β) for
the mDFO time data has estimated parameters α =
−3.229, β = 1.275, which is depicted in Figure 5(b). The
parameters can be obtained from the sample data via

α =
1

N

N∑
i=1

ln ti = −3.229,

β =
1√
N

√√√√ N∑
i=1

(ln ti − α)
2
= 1.275.

(5.17)

Consequently, the mean time t̄ for finding a solution and its
standard deviation are given by

t̄ = E[t] = eα+
β2

2 = 0.089 s,

SD[t] =
√
Var[t] = eα+

β2

2

√
eβ2 − 1 = 0.180 s.

(5.18)

Furthermore, the median and the mode yield

Med[t] = eα = 0.040 s,

Mode[t] = eα−β2

= 0.008 s,
(5.19)

The standard scatter intervals for the log-normal distribution
are given by

t68% ∈ [eα−β , eα+β ] = [0.011 s, 0.142 s], (5.20)

for the 68% confidence interval, and

t95% ∈ [eα−2β , eα+2β ] = [0.003 s, 0.507 s], (5.21)

for the 95% confidence interval.
The efficient 95% confidence interval for t̄ yields

t̄95% ∈ e

[
α+ β2

2 −1.96
√

β2

N + β4

2(N−1)
,α+ β2

2 +1.96
√

β2

N + β4

2(N−1)

]

= [0.086 s, 0.092 s],
(5.22)

with absolute confidence δt = max|t̄− t̄95%| = 0.003 s,
thus

t̄ = (0.089 ± 0.003) s. (5.23)

The relevant data is collected in Table 2.
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Table 2 The relevant characteristics of the models for mDFO in R3

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 14.301 0.070 ± 0.001 [0.069, 0.071] 0.048 –
Log-normal –3.229 1.275 – 0.089 ± 0.003 [0.086, 0.092] 0.040 0.008

Figure 6 Statistical models for the mDFO time data in the range R4, (a) one-parameter exponential model fit f(t;λ) with
λ = 0.31 s−1 and mean time for finding a solution t̄ = 3.27 s (b) two-parameter log-normal distribution fit f(t;α, β) with
α = 0.62, β = 1.28, and mean time for finding a solution t̄ = 4.17 s (see online version for colours)

(a) (b)

Table 3 The relevant characteristics of the models for mDFO in R4

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 0.31 3.27 ± 0.07 [3.21, 3.34] 2.27 –
Log-normal 0.62 1.28 – 4.17 ± 0.14 [4.03, 4.31] 1.85 0.36

Figure 7 Statistical models for the mDFO time data the range R5, (a) one-parameter exponential model fit f(t;λ) with
λ = 0.008 s−1 and mean time for finding a solution t̄ = 123.8 s (b) two-parameter log-normal distribution fit f(t;α, β)
with α = 4.27, β = 1.25, and mean time for finding a solution t̄ = 154.5 s (see online version for colours)

(a) (b)

Table 4 The relevant characteristics of the models for mDFO in R5

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 0.008 123.8 ± 8.2 [116.6, 132.0] 85.8 –
Log-normal 4.27 1.25 – 154.5 ± 17.0 [139.5, 171.5] 71.1 15.1

5.3.2 mDFO time data in the range R4

Next, we analyse the mDFO time data, accumulated when
looking for integer solutions to x3 + y3 + z3 = 2 in the mid
range R4. In this case, the method was tested N = 104

times. The produced time set {ti}Ni=1 is divided into bins
with width ∆t = 0.01 s and its PDF histogram is shown in
Figure 2(b). As in the previous case, we model the mDFO
time data by an exponential model, shown in Figure 6(a),
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and a log-normal model, shown in Figure 6(b), with the
relevant characteristics collected in Table 3.

5.3.3 mDFO time data in the range R5

We continue our analysis by looking for solutions to x3 +
y3 + z3 = 2 in the range R5. In this case, the method
was tested N = 103 times. The produced time set {ti}Ni=1

is divided into bins with width ∆t = 2.15 s and its PDF
histogram is shown in Figure 2(c). The statistical models,
describing the mDFO time data, are shown in Figures 7(a)
and 7(b) and their characteristics – in Table 4.

5.4 Statistical models for the SA algorithm time data

5.4.1 SA time data in the range R3

In this section we focus on the time data accumulated from
the SA algorithm (without restarts). The analysis mimics
the one for the mDFO method.

In the lowest range R3 the produced time data {ti}Ni=1

is divided into bins with width ∆t = 0.00034 s and its PDF
histogram is shown in Figure 3(a). The chosen statistical
models, describing the time data of the algorithm, are
shown in Figures 8(a) and 8(b), correspondingly. Their
characteristics are collected in Table 5.

5.4.2 SA time data in the range R4

We consider the range R4 with N = 104. The produced
time set {ti}Ni=1 is divided into bins with width ∆t =
0.027 s and its PDF histogram is shown in Figure 3(b). The
considered statistical models, describing the SA time data,
are shown in Figures 9(a) and 9(b) and their characteristics
– in Table 6.

5.4.3 SA time data in the range R5

Next, we analyse the SA data in the range R5 with N =
103 tests. The produced time set {ti}Ni=1 is divided into
bins with width ∆t = 20.4 s and its PDF histogram is
shown in Figure 3(c). The statistical models are shown in
Figures 10(a) and 10(b), correspondingly. Table 7 shows
their characteristics.

5.5 Statistical models for the rSA algorithm time data

5.5.1 rSA time data in the range R3

Here, we consider the rSA method in the lowest range R3

and N = 104. The produced time set {ti}Ni=1 is divided into
bins with width ∆t = 0.00033 s and its PDF histogram is
shown in Figure 4(a). The relevant statistical models are
depicted in Figures 11(a) and 11(b) with their characteristics
shown in Table 8.

5.5.2 rSA time data in the range R4

We consider the range R4 with N = 104. The time data
{ti}Ni=1 is divided into bins with width ∆t = 0.011 s and
its PDF histogram is shown in Figure 4(b). The statistical
models are also shown in Figures 12(a) and 12(b). Table 9
shows the relevant characteristics.

5.5.3 rSA time data in the range R5

The final range is R5 with N = 103. The accumulated time
data {ti}Ni=1 is divided into bins with width ∆t = 4.6 s and
its PDF histogram is shown in Figure 4(c). The statistical
data models are depicted in Figures 13(a) and 13(b). Their
characteristics are in Table 10.

5.6 Parametric and non-parametric statistics

5.6.1 Parametric statistics based on the Fisher
information distance

In order to compare how dissimilar our statistical models
are relative to each other, we need the explicit form of the
Fisher information metric (Rao, 1945; Amari and Nagaoka,
2007; Amari, 2016, 2012; Frieden and Gatenby, 2010) for
our distribution functions. Let f(u⃗; ξ⃗) be a PDF of some
statistical model for a d-dimensional random variable U
with parameters ξ⃗ = (ξ1, ξ2, . . . , ξn). The Fisher metric gab
is defined by the following integral over the range of U :

gab(ξ⃗) =

∫
U

∂ ln f(u⃗; ξ⃗)
∂ξa

∂ ln f(u⃗; ξ⃗)
∂ξb

f(u⃗; ξ⃗)ddu,

a, b = 1, . . . , n.

(5.24)

For one-dimensional models, consisting of a single free
parameter, the above definition reduces to the so-called
Fisher information

I(ξ) =

∫
U

(
∂ ln f(u⃗; ξ)

∂ξ

)2

f(u⃗; ξ)ddu. (5.25)

The Fisher metric plays the role of a Riemannian metric
on the space of parameters ξ⃗ = (ξ1, ξ2, . . . , ξn), where
every point defines a different statistical model (or a PDF).
We will not distinguish a given point ξ⃗ in the parameter
space and its associated PDF f(u⃗; ξ⃗). Hence, given two
points on the manifold their geodesic distance is interpreted
as the statistical distinguishability of the PDFs (Costa et al.,
2015).

The action for the geodesics on the statistical manifold
is given by the functional

L =

r2∫
r1

√
gab(ξ⃗)

dξa(r)
dr

dξb(r)
dr

dr, (5.26)

which under variation yields the system of geodesic
equations

d2ξc(r)
dr2

+ Γc
ab

dξa(r)
dr

dξb(r)
dr

= 0, c = 1, ..., n. (5.27)
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Figure 8 Statistical models for the SA time data in the range R3, (a) exponential model fit f(t;λ) with λ = 8.800 s−1 and mean
time for finding a solution t̄ = 0.114 s (b) log-normal distribution fit f(t;α, β) with α = −2.791, β = 1.343, and mean
time for finding a solution t̄ = 0.151 s (see online version for colours)

(a) (b)

Table 5 The relevant characteristics of the models for SA in R3

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 8.800 0.114 ± 0.002 [0.111, 0.116] 0.079 –
Log-normal -2.791 1.343 – 0.151 ± 0.006 [0.146, 0.157] 0.061 0.010

Figure 9 Statistical models for the SA time data in the range R4, (a) exponential model fit f(t;λ) with λ = 0.16 s−1 and mean time
for finding a solution t̄ = 6.18 s (b) log-normal distribution fit f(t;α, β) with α = 1.08, β = 1.49, and mean time for
finding a solution t̄ = 8.86 s (see online version for colours)

(a) (b)

Table 6 The relevant characteristics of the models for SA in R4

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 0.16 6.18 ± 0.12 [6.06, 6.30] 4.28 –
Log-normal 1.08 1.49 – 8.86 ± 0.38 [8.50, 9.25] 2.94 0.32

Table 7 The relevant characteristics of the models for SA in R5

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 0.0017 583.5 ± 38.6 [549.4, 622.0] 404.4 –
Log-normal 5.43 1.62 – 847.9 ± 141.4 [728.6, 989.3] 228.2 16.5

Table 8 The relevant characteristics of the models for rSA in R3

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 10.014 0.100 ± 0.002 [0.098, 0.102] 0.070 –
Log-normal –2.886 1.298 – 0.130 ± 0.005 [0.125, 0.134] 0.056 0.010
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Figure 10 Statistical models for the SA method in the range R5, (a) exponential model fit f(t;λ) with λ = 0.0017 s−1, and mean
time for finding a solution t̄ = 583.5 s (b) log-normal distribution fit f(t;α, β) with α = 5.43, β = 1.62, and mean time
for finding a solution t̄ = 847.9 s (see online version for colours)

(a) (b)

Figure 11 Statistical models for the rSA method in the range R3, (a) exponential model fit f(t;λ) with λ = 10.014 s−1 and mean
time for finding a solution t̄ = 0.100 s (b) log-normal distribution fit f(t;α, β) with α = −2.886, β = 1.298, and mean
time for finding a solution t̄ = 0.130 s (see online version for colours)

(a) (b)

Figure 12 Statistical models for the rSA time data in the range R4, (a) one-parameter exponential model fit f(t;λ) with
λ = 0.32 s−1 and mean time for finding a solution t̄ = 3.08 s (b) two-parameter log-normal distribution fit f(t;α, β)
with α = 0.42, β = 1.41, and mean time for finding a solution t̄ = 4.14 s (see online version for colours)

(a) (b)

Table 9 The relevant characteristics of the models for rSA in R4

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 0.32 3.08 ± 0.06 [3.02, 3.14] 2.14 –
Log-normal 0.42 1.41 – 4.14 ± 0.17 [3.98, 4.30] 1.52 0.21

Table 10 The relevant characteristics of the models for rSA in R5

PPPPPPPDist.
Param. α β λ [s−1] t̄± δt [s] t̄95% [s] Med[t] [s] Mode[t] [s]

Exponential – – 0.0048 206.6 ± 13.7 [194.5, 220.2] 143.2 –
Log-normal 4.06 1.99 – 421.3 ± 101.3 [341.0, 522.6] 57.9 1.1
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Figure 13 Statistical data models for rSA in the range R5, (a) exponential model fit f(t;λ) with λ = 0.0048 s−1 and mean time for
finding a solution t̄ = 206.6 s (b) log-normal distribution fit f(t;α, β) with α = 4.06, β = 1.99, and mean time for
finding a solution t̄ = 421.3 s (see online version for colours)

(a) (b)

The invariant geodesic length L between statistical models
is then obtained from equation (5.26) after solving
equation (5.27) for the geodesic profiles of the parameters
ξa(r) as functions of some proper ordering parameter r.

For models with a single parameter one can determine
the Fisher information L exactly up to a scale factor. For
example, the Fisher information (metric) for the exponential
distribution (5.1) is given by

gλλ = I(λ) =
1

λ2
. (5.28)

Therefore, one can compute the distance function for this
model directly by solving a single geodesic equation. For
this purpose, we find the inverse metric gλλ = λ2 and the
Christoffel symbol Γλ

λλ = gλλ∂λgλλ/2 = −1/λ. Thus, the
geodesic equation for the model parameter λ(r) is

d2λ
dr2
− 1

λ

(
dλ
dr

)2

= 0 (5.29)

with the simple solution λ(r) = c2e
c1r. Imposing

boundary conditions, λ(0) = λ1 and λ(1) = λ2, one finds
c1 = ln(λ2/λ1) and c2 = λ1. Therefore, the geodesic
distance between two statistical exponential models with
corresponding parameters λ1 and λ2 is written by Taylor
(2019)

L12 = L(λ1, λ2) =

∣∣∣∣∣∣
1∫

0

√
gλλ

(
dλ
dr

)2

dr

∣∣∣∣∣∣
=

∣∣∣∣ln λ2

λ1

∣∣∣∣ .
(5.30)

On the other hand, the Fisher metric for the log-normal
distribution (5.6) is given by

ds2 = gab(ξ⃗)dξadξb =
dα2 + 2dβ2

β2
. (5.31)

The geodesic profiles for α(r) and β(r) under this metric
are given by the coupled system of ordinary second order
differential equations

α′′(r)− 2β′(r)

β(r)
α′(r) = 0,

β′′(r)− β′(r)
2

β(r)
+

α′(r)
2

2β(r)
= 0,

(5.32)

together with the boundary conditions α(0) = α1, α(1) =
α2, β(0) = β1, β(1) = β2.

Table 11 Geodesic distances in the parameter spaces of the
respective distributions between the three algorithms
in the tested ranges

L12 L13 L23

R3

Exponential 0.49 0.36 0.13

Log-normal 0.34 0.27 0.09

R4

Exponential 0.635 0.060 0.695

Log-normal 0.40 0.20 0.46

R5

Exponential 1.550 0.512 1.038

Log-normal 0.88 0.67 0.81

Notes: We use the indices of L to denote the following:
1 for mDFO, 2 for SA, and 3 for rSA.

In what follows, we will compute the Fisher distances
between our models in the given ranges and find out
how dissimilar they are from each other. For shortness of
notation we will use the following indices: 1 for mDFO, 2
for SA, and 3 for rSA.

We begin by computing the Fisher distances between
our exponential distributions for the time data in the range
R3, namely

L12 =

∣∣∣∣ln 8.80

14.30

∣∣∣∣ = 0.49,

L13 =

∣∣∣∣ln 10.01

14.30

∣∣∣∣ = 0.36,

L23 =

∣∣∣∣ln 10.01

8.00

∣∣∣∣ = 0.13.

(5.33)
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Table 12 The data average times t̄ and their ranks according to the Friedman non-parametric test

Range mDFO, t̄, [s] rank rij rSA, t̄, [s] rank rij SA, t̄, [s] rank rij

R3 0.07 1 0.10 2 0.11 3
R4 3.27 2 3.08 1 6.18 3
R5 124 1 202 2 584 3
Total rank ri 4 5 9

Table 13 Tie adjusted ranks according to the Friedman non-parametric test

Range mDFO, t̄, [s] rank rij rSA, t̄, [s] rank rij SA, t̄, [s] rank rij

R3 0.1 2 0.1 2 0.1 2
R4 3.3 2 3.1 1 6.2 3
R5 124 1 202 2 584 3
Total rank ri 4 5 8

Table 14 The data average times t̄ and their ranks according to the Kruskal-Wallis non-parametric test

Range mDFO, t̄, [s] rank rij rSA, t̄, [s] rank rij SA, t̄, [s] rank rij

R3 0.07 1 0.10 2 0.11 3
R4 3.27 5 3.08 4 6.18 6
R5 124 7 202 8 584 9
Total rank ri 13 14 18

With similar computation one finds the Fisher distances in
the range R4:

L12 =

∣∣∣∣ln 0.305

0.162

∣∣∣∣ = 0.635,

L13 =

∣∣∣∣ln 0.305

0.324

∣∣∣∣ = 0.060,

L23 =

∣∣∣∣ln 0.324

0.162

∣∣∣∣ = 0.695.

(5.34)

Finally, in the range R5, one finds

L12 =

∣∣∣∣ln 0.008

0.002

∣∣∣∣ = 1.550,

L13 =

∣∣∣∣ln 0.008

0.005

∣∣∣∣ = 0.512,

L23 =

∣∣∣∣ln 0.005

0.002

∣∣∣∣ = 1.038.

(5.35)

If we want to compare the log-normal models, we
can find numerically the functions α(r) and β(r) from
equation (5.32) and consequently calculate the following
integral:

Lij =

1∫
0

1

β(r)

√
α′2 + 2β′2 dr,

i, j = 1, 2, 3, i ̸= j, (5.36)

with the proper boundary conditions, namely
(α(0), β(0)) = (αi, βi) and (α(1), β(1)) = (αj , βj). In this
case, one can show that in R3 the Fisher distances between
the tree log-normal models are

L12 = 0.34, L13 = 0.27, L23 = 0.09. (5.37)

For the models in the mid range R4 we find

L12 = 0.40, L13 = 0.20, L23 = 0.46. (5.38)

And finally, in R5, one has

L12 = 0.88, L13 = 0.67, L23 = 0.81. (5.39)

It is useful to collect the results in tables (Table 11).
One can infer that in the lowest range R3, when

considering the exponential distribution, the SA and rSA
algorithms are similar relative to each other (L23 = 0.13,
i.e., they are closest), while they are quite dissimilar to
mDFO (L12 = 0.49 and L13 = 0.36). The same is valid
also for the log-normal model in R3.

On the other hand, in the mid range R4, the mDFO
and rSA algorithms are similar relative to each other, for
example L13 = 0.060, while they are notably dissimilar to
SA, i.e., L12 = 0.635 and L23 = 0.695. This result persists
also in the next range R5.

5.6.2 Non-parametric statistics

The next step is to perform a non-parametric statistical
analysis. Some of the standard tests in this case are the
Friedman test and the post-hoc Nemenyi test (Hollander
et al., 2014). For recent trends in the use of statistical
tests for comparing swarm and evolutionary computing
algorithms see Carrasco et al. (2020) and Derrac et al.
(2014).

In Table 12, we perform the standard non-parametric
statistical Friedman test over the average times t̄ from the
sample data of the three methods. The test requires to rank
the measurements by their ascending value. For example:
t̄ = 0.07 is ranked 1, t̄ = 0.1 has rank 2 and t̄ = 0.07 has
rank 3. We are testing the following hypotheses: the null
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hypothesis H0 states that all mean values t̄ are equal; the
alternative hypothesis H1 is that at least one of them is
significantly different. The Friedman test yields

Fr =
12

nk(k + 1)

k∑
i=1

r2i − 3n(k + 1) = 4.66(6), (5.40)

where k = 3 is the number of methods (groups) n = 3 is
the number of ranges. The number Fr = 4.66 is smaller
than the corresponding value of the chi-squared statistics
χ2
α,k−1 = χ2

0.05,2 = 5.99 > Fr at p-value α = 0.05, thus
there is insufficient evidence to reject H0 at this level of
confidence. A non-significance result cannot prove that H0

is correct, only that the null assumption cannot be rejected.
The rejection of H0 starts at confidence coefficient α =
0.097 corresponding to χ2

0.097,2 = Fr.
If we round up our data the values in the first row

will become ties at 0.1 s. Therefore an adjustment for ties
is often made to the calculation. The adjustment employs
a correction factor C = nk(k + 1)2/4. Denote the rank of
each individual observation by rij . In our case, one could
consider all values in the range R3 a tie and assign them
a rank in a non-unique way. To determine the ranks of
the three tied observations an average rank technique can
be applied, i.e., r11 = r12 = r13 = 2 (Gibson and Melsa,
1975). This value is produced by the average of their
ranks if there were no ties, i.e., (1 + 2 + 3)/3 = 2. The
latter coincides also with the midrank technique for the tied
values:

midrank =
1

2
(1 +N +M) = 2, (5.41)

where N = 0 is the number of observations less than
the tied observations, while M = 3 is the number of
observations less than or equal to the number of tied
observations. The adjusted values are summarised in
Table 13. The adjusted test statistic is

F (ties)
r =

(k − 1)

(
k∑

i=1

r2i − nC

)
k∑

j=1

k∑
i=1

r2ij − C

= 4.93, (5.42)

which corresponds to a slightly better p-value α = 0.085.
Therefore, if one considers a tie adjusted Friedman statistic
the result still supports H0.

Let us try another test, namely Kruskal-Wallis. The
ranking of the data is presented in Table 14. The statistic of
the test yields

KW = (N − 1)

k∑
i=1

ni(r̄i − r̄)2

k∑
i=1

ni∑
j=1

(rij − r̄)2
= 0.622(2), (5.43)

where N = 9 is the total number of observations, ni = 3
are the number of observations in group i, r̄i = ri/ni is the
average rank of all observations in group i, r̄ =

∑
i,j

rij/N

is the average of all the rij . The result of the test suggests
there is insufficient evidence to reject H0 at α = 0.05.

Accounting for ties one should calculate the correction
coefficient given by

C = 1−

∑
i

(t3i − ti)

N(N − 1)(N + 1)
= 0.967, (5.44)

where ti = 3 is the number of ties in ith group. In this case
the adjusted statistic is negligably corrected:

KW (ties) =
KW

C
=

0.622

0.967
= 0.64. (5.45)

5.6.3 Post-hoc Nemenyi test

Although the Friedman or the Kruskal-Wallis test did not
rejected the null hypothesis it is still curious to apply a pair-
wise post-hoc Nemenyi test in order to find out which pair
of methods differ significantly from each other. The results
of the test are summarised in Table 15. The Nemeyi post-
hoc test returns the p-values for each pair-wise comparison
of means t̄:

• p-value of mDFO vs. rSA: 0.90

• p-value of mDFO vs. SA: 0.10

• p-value of rSA vs. SA: 0.23.

These p-values show that none of the methods should be
regarded as different at α = 0.05, but at least at α = 0.10.
The latter confirms the result from the Friedman test.

Table 15 Post-hoc Nemenyi test

Method mDFO rSA SA

mDFO 1.00 0.90 0.10
rSA 0.90 1.00 0.23
SA 0.10 0.23 1.00

Let us make a short summary of the results in this section.
The pair-wise Fisher distance showed that mDFO and SA
differ most in terms of their distributions, while the non-
parametric Friedman and post-hoc Nemenyi tests show that
this difference can be considered statistically significant
only at confidence level of at least α = 0.10. There is
no sufficient evidence to reject the null hypothesis at the
conventionally accepted value α = 0.05.

6 Conclusions

In this paper we adapted the number-theoretic sum of
three cubes problem to an optimisation setting. This was
motivated by the desire to use a random search algorithm
to hopefully improve the time it takes to find a solution.
Turning the problem into an optimisation one was not hard
and resulted in equation (2.2). However, finding a global
minimum to equation (2.2) with sufficient speed turned out
to be a highly non-trivial task (as was expected).

Our attempts in this direction led us to develop a
modified version of DFO and to test its performance against
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two other search heuristics in three ranges for (x, y) when
applied to our problem in the special case k = 2. These last
two algorithms are more or less direct implementations of
SA and rSA.

The metric for the performance of all algorithms was the
time it takes them to reach a solution to equation (1.1) [i.e.,
a global minimum of equation (2.2)]. After a large number
of tests, we analysed the results by fitting the respective
datasets of running times with two different distributions –
exponential and log-normal.

We have analysed two specific aspects of the algorithms,
namely their time performance and their similarity. A
conclusion about the time performance can be made by
looking both at the mean and the mode of the running times
(collected in Table 16), while the relative similarity between
the algorithms can be measured by the Fisher distances
between the respective PDFs (Table 11).

The main conclusion, when considering the average
times, is that for this particular problem mDFO is the fastest
of the three algorithms, except in R4, where mDFO and
rSA show similar results. As expected rSA is better than
SA in all ranges. The relative performance of the algorithms
in the considered ranges, as measured by the ratios of the
average times, is shown in Table 17.

Table 16 Expected values and modes for the respective
distribution fits for all the algorithms in the tested
ranges

mDFO SA rSA

R3

t̄exp [s] 0.070± 0.001 0.114± 0.002 0.100± 0.002

t̄l-n [s] 0.089± 0.003 0.151± 0.006 0.130± 0.005

Model-n[t] [s] 0.008 0.010 0.010

R4

t̄exp [s] 3.27± 0.07 6.18± 0.12 3.08± 0.06

t̄l-n [s] 4.17± 0.14 8.86± 0.38 4.14± 0.17

Model-n[t] [s] 0.36 0.32 0.21

R5

t̄exp [s] 123.8± 8.2 583.5± 38.6 206.6± 13.7

t̄l-n [s] 154.5± 17.0 847.9± 141.4 421.3± 101.3

Model-n[t] [s] 15.1 16.5 1.1

Table 17 Relative performance of the algorithms in the tested
ranges

Exponential R3 R4 R5 Log-normal R3 R4 R5

t̄SA/t̄mDFO 1.6 1.9 4.7 t̄SA/t̄mDFO 1.7 2.1 5.5
t̄rSA/t̄mDFO 1.4 0.9 1.7 t̄rSA/t̄mDFO 1.5 1.0 2.7
t̄SA/t̄rSA 1.1 2.0 2.8 t̄SA/t̄rSA 1.1 2.1 2.0

Notes: For example, the exponential model fit in R3

shows that our mDFO is 1.6 times faster on
average than SA and 1.4 times faster than rSA. On
the other hand, the log-normal fit states that
mDFO is 1.7 times faster than SA and 1.5 times
faster than rSA on average.

When looking at the modes of the respective log-normal
distributions, we see a slightly different picture in the
highest range – rSA is by far the best method, which is not
so pronounced in the lower ranges. This is evident from the
distribution of its running times, which has Mode[t] = 1.1 s
in R5, compared to 15.1 s and 16.5 s for mDFO and SA,
respectively (Table 16). In other words, most of the time
rSA finds a solution notably more quickly than mDFO and
SA.

Finally, we have performed two types of statistical
tests over the sample data: parametric and non-parametric.
First, we have considered non-parametric tests such as
Kolmogorov-Smirnov, Anderson-Darling etc. to confirm
that our data is not normally distributed. A consequent
analysis of our data based on the the Fisher distance
between distributions showed how dissimilar the proposed
algorithms are from each other. The result suggested
that mDFO and rSA are most similar, while they
are significantly dissimilar from SA. However, the
non-parametric Friedman and post-hoc Nemenyi tests,
performed on the average times t̄ of the three methods,
show that this difference can be considered statistically
significant only at 90% confidence level (α = 0.10),
instead of the conventionally accepted value α = 0.05.
Nevertheless, a non-significance result cannot prove that H0

is correct, only that the null assumption cannot be rejected.
Now, where can we go from here? The current work’s

contribution is twofold. While it is a proof of concept
paper for the idea to solve the sum of three cubes via
optimisation, it also goes further to suggest an algorithm
that is suitable for the job, but that can also be applied
to various discrete optimisation problems, which are not
purely theoretical. For this reason, we have given a generic
version of mDFO that does not depend on the particular
fitness function. A next step could be to test it on some of
the standard benchmark functions.

However, the final goal for the particular problem, that
inspired the algorithm’s development, is to be able to
find solutions to equation (1.1) for various values of k in
ranges above 1020 in reasonable time. As is well known,
the solution density there is significantly reduced and this
means that the search becomes very time consuming. We
believe that some stochastic algorithm can be found that
could produce solutions in acceptable time.

One way to reduce the search time is parallelisation.
Generally, this can be done in many ways. As was
already mentioned, the mode of the running times of rSA
in the highest range is peculiarly small. This suggests
probably the simplest method to achieve some sort of
parallelisation – run the same instance of the algorithm
on many cores and just wait for the first one to finish.
The probability of achieving a running time in R5 with
rSA of less than 1.5s for example is PrSA (t ≤ 1.5) ≈
0.0333. Compare that to the probabilities for the same event
with the other two algorithms: PSA (t ≤ 1.5) ≈ 0.00096 and
PmDFO (t ≤ 1.5) ≈ 0.00097. This means that for the above
parallelisation to work with mDFO, the algorithm needs to
be improved.
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Another line of investigation is to search for a better
heuristic, not in the class of PSO or SA. In general,
stochastic optimisation algorithms are highly specific to the
problem and finding a good one is not easy. A promising
new development with regards to this is Li and Malik
(2016), which may enable us to delegate the task to AI.

Acknowledgements

The authors would like to thank R.C. Rashkov,
S. Yazadjiev, H. Dimov, P. Nedkova, G. Gyulchev and
K. Staykov for many useful discussions on various topics.
The authors would also like to thank Mohammad Majid
al-Rifaie for the insightful comments and suggestions. B.L.
greatly appreciates M. Kunev’s comments on the code’s
readability and style. T.V. gratefully acknowledges the
support of the Bulgarian national program ‘Young Scientists
and Postdoctoral Research Fellows 2020’, and the Sofia
University Grant 80-10-68. This work was also partially
supported by the Bulgarian NSF grant N28/5.

References

Abraham, S., Sanyal, S. and Sanglikar, M. (2010) ‘Particle swarm
optimisation based Diophantine equation solver’, International
Journal of Bio-Inspired Computation, Vol. 2, No. 2, pp.100–114.

Al-Rifaie, M.M. (2014) ‘Dispersive flies optimisation’, Proceedings
of the 2014 Federated Conference on Computer Science and
Information Systems, ACSIS, Vol. 2.

Amari, S. (2012) ‘Differential-geometrical methods in statistics’,
Lecture Notes in Statistics, Springer, New York.

Amari, S. and Nagaoka, H. (2007) ‘Methods of information
geometry’, Translations of Mathematical Monographs, AMS,
Tokyo.

Amari, S-I. (2016) Information Geometry and Its Applications, 1st
ed., Springer Publishing Company, Incorporated, Tokyo.

Bertsimas, D. and Tsitsiklis, J. (1993) ‘Simulated annealing’,
Statistical Science, Vol. 8, No. 1, pp.10–15.

Booker, A.R. (2019) ‘Cracking the problem with 33’, Research in
Number Theory, Vol. 5, p.26.

Carrasco, J., Garcia, S., Rueda, M.M., Das, S. and Herrera, F.
(2020) ‘Recent trends in the use of statistical tests for
comparing swarm and evolutionary computing algorithms:
Practical guidelines and a critical review’, Swarm and
Evolutionary Computation, Vol. 54, p.100665.

Clerc, M. (2012) Standard Particle Swarm Optimisation,
hal-00764996.

Costa, S.I.R., Santos, S.A. and Strapasson, J.E. (2015) ‘Fisher
information distance: a geometrical reading’, Discrete Applied
Mathematics, Vol. 197, pp.59–69.

Cuevas, E., Fausto, F. and González, A. (2020) New Advancements
in Swarm Algorithms: Operators and Applications, Springer
Nature Switzerland AG.

Davenport, H. (1939) ‘On Waring’s problem for cubes’, Acta
Mathematica, Vol. 71, pp.123–143.

Derrac, J., García, S., Hui, S., Suganthan, P.N. and Herrera, F.
(2014) ‘Analyzing convergence performance of evolutionary
algorithms: a statistical approach’, Information Sciences,
Vol. 289, pp.41–58.

Frieden, R. and Gatenby, R.A. (2010) ‘Exploratory data analysis
using Fisher information’, Applied Mathematical Sciences,
Springer, London.

Gibson, J.D. and Melsa, J.L. (1975) ‘Introduction to nonparametric
detection with applications’, Mathematics in Science and
Engineering, Vol. 119, pp.3–12, pp.1–241.

Goh, S.K., Tan, K.C., Al-Mamun, A. and Abbass, H.A. (2015)
‘Evolutionary big optimization (BigOpt) of signals’, 2015 IEEE
Congress on Evolutionary Computation (CEC).

Heath-Brown, D.R. (1992) ‘The density of zeros of forms for
which weak approximation fails’, Mathematics of Computation,
Vol. 59, No. 200, pp.613–623.

Hollander, M., Wolfe, D.A. and Chicken, E. (2014) Nonparametric
Statistical Methods, Wiley Series in Probability and Statistics,
John Wiley and Sons, New Jersey.

Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1983)
‘Optimization by simulated annealing’, Science, Vol. 220,
No. 4598, pp.671–680.

Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N.
and Das, S. (2020) ‘A test-suite of non-convex constrained
optimization problems from the real-world and some baseline
results’, Swarm and Evolutionary Computation, Vol. 56,
p.100693.

Li, K. and Malik, J. (2016) Learning to Optimize, arXiv:1606.01885.
Lin, W., Ma, F., Su, Z., Zhang, Q., Li, C. and Lü, Z. (2020)

‘Weighting-based parallel local search for optimal camera
placement and unicost set covering’, GECCO ‘20: Proceedings
of the 2020 Generic and Evolutionary Computation Conference
Companion, pp.3–4.

Mendivil, F., Shonkwiler, R. and Spruill, M.C. (2001) ‘Restarting
search algorithms with applications to simulated annealing’,
Advances in Applied Probability, Vol. 33, pp.242–259.

Rao, C.R. (1945) ‘Information and the accuracy attainable in the
estimation of statistical parameters’, Bulletin of the Calcutta
Math. Soc., Vol. 37, pp.81–91.

Taylor, S. (2019) ‘Clustering financial return distributions using
the Fisher information metric’, Entropy, Vol. 21, p.110,
DOI: 10.3390/e21020110.

Zhou, X.H. and Gao, S. (1997) ‘Confidence intervals for the
log-normal mean’, Statistics in Medicine, Vol. 16, No. 7,
pp.783–790.

Notes
1 For a summary of the main properties of the distance to

the nearest integer function see https://www.researchgate.
net/publication/308023356_Note_on_the_Distance_to_the_
Nearest_Integer.



184 B. Lazov and T. Vetsov

Appendix

C code implementation

The code is available on GitHub under GNU GENERAL PUBLIC LICENSE Version 3 at: https://github.com/Vetsov/Swarm-Optimization-
Algorithms/tree/main

Appendix A1

mDFO

# inc lude <s t d i o . h>
# inc lude < s t d l i b . h>
# inc lude <math . h>
# inc lude <t ime . h>

double f f ( i n t x , i n t y , i n t kk ) ; / / The f i t n e s s f u n c t i o n .
i n t s o r t a n d b r e a k ( double q [ ] , i n t n ) ; / / A f u n c t i o n which choose s t h e number o f a b e s t p a r t i c l e b r ea k i ng

t i e s randomly .

i n t main ( )
{
/ / Parame ter s :

i n t kk = 2 ; / / R i gh t s i d e o f t h e d i o p h a n t i n e e qua t i o n .
i n t l b [ 2 ] = {−pow ( 1 0 , 4 ) , 0} ; / / Lower bounds f o r t h e s ea r ch space .
i n t ub [ 2 ] = {0 ,pow ( 1 0 , 4 ) } ; / / Upper bounds f o r t h e s ea r ch space .
double t h r = pow(10 ,−5) ; / / S o l u t i o n t h r e s h o l d . Used t o d e c i d e when t o check whe ther a s o l u t i o n has

been found .
i n t s = 50 ; / / Number o f p a r t i c l e s .
i n t dp = ( s / 5 ) ; / / Number o f p a r t i c l e s t h a t need t o be a t t h e b e s t swarm b e s t p o s i t i o n i n o rde r t o

d i s p e r s e a l l p a r t i c l e s .

/ / V a r i a b l e s :
t i m e t t 0 = t ime (NULL) ; / / Time used t o seed t h e RNG.
i n t pos [ s ] [ 2 ] ; / / P a r t i c l e p o s i t i o n s .
double f i t f [ s ] ; / / F i t n e s s f u n c t i o n s f o r t h e r e s p e c t i v e p a r t i c l e s .
i n t nb r s [ s ] [ 3 ] ; / / Ne ighbours o f each p a r t i c l e .
i n t sb [ 2 ] , bsb [ 2 ] , nb [ s ] [ 2 ] ; / / P o s i t i o n o f t h e swarm b e s t p a r t i c l e , b e s t swarm b e s t p o s i t i o n and

p o s i t i o n o f t h e ne i ghbou r s b e s t p a r t i c l e s .
double s b f i t f , b s b f i t f , n b f i t f [ s ] ; / / F i t n e s s f u n c t i o n s f o r t h e above .
i n t dc ; / / D i s p e r s i o n c oun t e r t o d e c i d e when t o d i s p e r s e t h e p a r t i c l e s .
double n b r s f i t f [ 3 ] , r ; / / A u x i l i a r y doub l e v a r i a b l e s .
i n t i , j , z t ; / / A u x i l i a r y i n t e g e r v a r i a b l e s .

/ / S eed ing t h e RNG:
s r and48 ( t 0 ) ;

/ / C a l c u l a t i n g t h e ne i ghbou r s o f each p a r t i c l e :
i = 0 ; whi le ( i < s )
{

nb r s [ i ] [ 0 ] = ( s+ i −1)%s ;
nb r s [ i ] [ 1 ] = ( s+ i )%s ;
nb r s [ i ] [ 2 ] = ( s+ i +1)%s ;
i = i +1 ;

}

/ / I n i t i a l i s a t i o n :
i = 0 ; whi le ( i < s )
{

pos [ i ] [ 0 ] = l r o und ( drand48 ( ) ∗ ( ub [0]− l b [ 0 ] ) + l b [ 0 ] ) ;
pos [ i ] [ 1 ] = l r o und ( drand48 ( ) ∗ ( ub [1]− l b [ 1 ] ) + l b [ 1 ] ) ;
f i t f [ i ] = f f ( pos [ i ] [ 0 ] , pos [ i ] [ 1 ] , kk ) ;
i = i +1 ;

}

/ / De t e rm in ing t h e swarm b e s t and b e s t swarm b e s t p a r t i c l e s :
i = s o r t a n d b r e a k ( f i t f , s ) ;
sb [ 0 ] = pos [ i ] [ 0 ] ; sb [ 1 ] = pos [ i ] [ 1 ] ; s b f i t f = f i t f [ i ] ;
bsb [ 0 ] = sb [ 0 ] ; bsb [ 1 ] = sb [ 1 ] ; b s b f i t f = s b f i t f ;

i f ( b s b f i t f <= t h r ) / / S o l u t i o n check .
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{
z t = l r o und ( c b r t ( kk−pow ( bsb [ 0 ] , 3 )−pow ( bsb [ 1 ] , 3 ) ) ) ;
i f ( pow ( bsb [ 0 ] , 3 ) +pow ( bsb [ 1 ] , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , bsb [ 0 ] , bsb [ 1 ] , z t ) ;
goto end ;

}
}

/ / C a l c u l a t i n g t h e b e s t p a r t i c l e among t h e ne i ghbou r s :
i = 0 ; whi le ( i < s )
{

n b r s f i t f [ 0 ] = f i t f [ nb r s [ i ] [ 0 ] ] ;
n b r s f i t f [ 1 ] = f i t f [ nb r s [ i ] [ 1 ] ] ;
n b r s f i t f [ 2 ] = f i t f [ nb r s [ i ] [ 2 ] ] ;
j = s o r t a n d b r e a k ( n b r s f i t f , 3 ) ;
nb [ i ] [ 0 ] = pos [ ( s+ i + j −1)%s ] [ 0 ] ;
nb [ i ] [ 1 ] = pos [ ( s+ i + j −1)%s ] [ 1 ] ;
n b f i t f [ i ] = f i t f [ ( s+ i + j −1)%s ] ;
i = i +1 ;

}

/ / I t e r a t i o n s :
whi le ( 1 )
{

/ / P o s i t i o n upda t e :
i f ( dc >= dp )
{

i = 0 ; whi le ( i < s )
{

j = 0 ; whi le ( j < 2)
{

r = drand48 ( ) ;
pos [ i ] [ j ] = l r o und ( r ∗ ( ub [ j ]− l b [ j ] ) + l b [ j ] ) ;
j = j +1 ;

}
i = i +1 ;

}
}
e l s e
{

i = 0 ; whi le ( i < s )
{

j = 0 ; whi le ( j < 2)
{

r = drand48 ( ) ;
pos [ i ] [ j ] = l r o und ( nb [ i ] [ j ] + ( r / 2 . 0 ) ∗ ( sb [ j ]+ bsb [ j ]−2.0∗ pos [ i ] [ j ] ) ) ;
j = j +1 ;

}
i = i +1 ;

}
}

/ / Con f inemen t and d i s p e r s i o n c o n d i t i o n check :
i = 0 ; dc = 0 ; whi le ( i < s )
{

i f ( ( pos [ i ] [ 0 ] < l b [ 0 ] ) | | ( pos [ i ] [ 0 ] > ub [ 0 ] ) | | ( pos [ i ] [ 1 ] < l b [ 1 ] ) | | ( pos [ i ] [ 1 ]
> ub [ 1 ] ) )

{
pos [ i ] [ 0 ] = l r o und ( drand48 ( ) ∗ ( ub [0]− l b [ 0 ] ) + l b [ 0 ] ) ;
pos [ i ] [ 1 ] = l r o und ( drand48 ( ) ∗ ( ub [1]− l b [ 1 ] ) + l b [ 1 ] ) ;

}
f i t f [ i ] = f f ( pos [ i ] [ 0 ] , pos [ i ] [ 1 ] , kk ) ;
i f ( ( pos [ i ] [ 0 ] == bsb [ 0 ] ) && ( pos [ i ] [ 1 ] == bsb [ 1 ] ) ) { dc = dc +1; }
i = i +1 ;

}

/ / Swarm bes t , b e s t swarm b e s t and ne i ghbou r s b e s t upda t e s :
i = s o r t a n d b r e a k ( f i t f , s ) ;
sb [ 0 ] = pos [ i ] [ 0 ] ; sb [ 1 ] = pos [ i ] [ 1 ] ; s b f i t f = f i t f [ i ] ;
r = drand48 ( ) ;
i f ( s b f i t f < b s b f i t f )
{

bsb [ 0 ] = sb [ 0 ] ; bsb [ 1 ] = sb [ 1 ] ; b s b f i t f = s b f i t f ;
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i f ( b s b f i t f <= t h r ) / / S o l u t i o n check .
{

z t = l r o und ( c b r t ( kk−pow ( bsb [ 0 ] , 3 )−pow ( bsb [ 1 ] , 3 ) ) ) ;
i f ( pow ( bsb [ 0 ] , 3 ) +pow ( bsb [ 1 ] , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , bsb [ 0 ] , bsb [ 1 ] , z t ) ;
goto end ;

}
}

}

i f ( ( s b f i t f > b s b f i t f ) && ( r <= (1−(( s b f i t f −b s b f i t f ) / 0 . 5 ) ) ) )
{

bsb [ 0 ] = sb [ 0 ] ; bsb [ 1 ] = sb [ 1 ] ; b s b f i t f = s b f i t f ;

i f ( b s b f i t f <= t h r ) / / S o l u t i o n check .
{

z t = l r o und ( c b r t ( kk−pow ( bsb [ 0 ] , 3 )−pow ( bsb [ 1 ] , 3 ) ) ) ;
i f ( pow ( bsb [ 0 ] , 3 ) +pow ( bsb [ 1 ] , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , bsb [ 0 ] , bsb [ 1 ] , z t ) ;
goto end ;

}
}

}

/ / C a l c u l a t i n g t h e b e s t p a r t i c l e among t h e ne i ghbou r s :
i = 0 ; whi le ( i < s )
{

n b r s f i t f [ 0 ] = f i t f [ nb r s [ i ] [ 0 ] ] ;
n b r s f i t f [ 1 ] = f i t f [ nb r s [ i ] [ 1 ] ] ;
n b r s f i t f [ 2 ] = f i t f [ nb r s [ i ] [ 2 ] ] ;
j = s o r t a n d b r e a k ( n b r s f i t f , 3 ) ;
nb [ i ] [ 0 ] = pos [ ( s+ i + j −1)%s ] [ 0 ] ;
nb [ i ] [ 1 ] = pos [ ( s+ i + j −1)%s ] [ 1 ] ;
n b f i t f [ i ] = f i t f [ ( s+ i + j −1)%s ] ;
i = i +1 ;

}
}

end :

re turn 0 ;
}

double f f ( i n t x , i n t y , i n t kk )
{

double z ;

z = f a b s ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) )−l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ) ;

re turn z ;
}

i n t s o r t a n d b r e a k ( double q [ ] , i n t n )
{

i n t k , i ;
i n t c = 0 ;
i n t b [ n ] ;
double gv = q [ 0 ] ;

i = 0 ; whi le ( i < n ) { b [ i ] = 0 ; i = i +1 ; }

i = 1 ; whi le ( i < n )
{

i f ( q [ i ] == gv )
{

c = c +1;
b [ c ] = i ;

}
i f ( q [ i ] < gv )
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{
gv = q [ i ] ;
c = 0 ;
b [ c ] = i ;

}
i = i +1 ;

}

k = l r o und ( drand48 ( ) ∗c ) ;

re turn b [ k ] ;
}

Appendix A2

SA

# inc lude <s t d i o . h>
# inc lude <math . h>
# inc lude < s t d l i b . h>
# inc lude <t ime . h>

double f f ( i n t x , i n t y , i n t kk ) ; / / The energy f u n c t i o n .
double temp ( i n t m) ; / / The c o o l i n g s c h e du l e ( t empe r a t u r e ) .

i n t main ( )
{
/ / Parame ter s :

i n t kk = 2 ; / / R i gh t s i d e o f t h e d i o p h a n t i n e e qua t i o n .
i n t l bx = −pow ( 1 0 , 4 ) ; / / Lower bound f o r t h e x c o o r d i n a t e o f a s t a t e .
i n t ubx = 0 ; / / Upper bound f o r t h e x c o o r d i n a t e .
i n t l by = 0 ; / / Lower bound f o r t h e y c o o r d i n a t e o f a s t a t e .
i n t uby = pow ( 10 , 4 ) ; / / Upper bound f o r t h e y c o o r d i n a t e .
double t h r = pow(10 ,−5) ; / / S o l u t i o n t h r e s h o l d . Used t o d e c i d e when t o check whe ther a s o l u t i o n has

been found .

/ / V a r i a b l e s :
t i m e t t 0 = t ime (NULL) ; / / Time used t o seed t h e RNG.
i n t x , y , xn , yn ; / / Coo rd i na t e s o f t h e c u r r e n t and new s t a t e s .
double z , zn ; / / Energy v a l u e s f o r t h e above .
i n t m; / / Time .
i n t a , b , c , d ; / / V a r i a b l e s used i n t h e g e n e r a t i o n o f a new s t a t e .
double prob ; / / P r o b a b i l i t y f o r a c c e p t i n g a t r a n s i t i o n t o t h e a l r e ad y g en e r a t e d s t a t e .
i n t z t ; / / A u x i l i a r y i n t e g e r v a r i a l b e .
double r ; / / A u x i l i a r y doub l e v a r i a b l e .

/ / S e ed ing t h e RNG:
s r and48 ( t 0 ) ;

/ / Random i n i t i a l s t a t e and i t s ene rgy :
x = l r o und ( drand48 ( ) ∗ ( ubx−l bx ) + lbx ) ; y = l r o und ( drand48 ( ) ∗ ( uby−l by ) + lby ) ;
z = f f ( x , y , kk ) ;

i f ( z <= t h r ) / / S o l u t i o n check .
{

z t = l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ;
i f ( pow ( x , 3 ) +pow ( y , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , x , y , z t ) ;
goto end ;

}
}

/ / I t e r a t i o n s :
m = 1 ; whi le ( 1 )
{

/ / Con f inemen t :
a = −10; b = 10 ; c = −10; d = 10 ;
i f ( x+a <= lbx ) { a = lbx−x ; }
i f ( x+b >= ubx ) { b = ubx−x ; }
i f ( y+c <= lby ) { c = lby−y ; }
i f ( y+d >= uby ) { d = uby−y ; }

/ / S t a t e g e n e r a t i o n :
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r o l l :
xn = x+ l r o und ( drand48 ( ) ∗ ( b−a ) +a ) ;
yn = y+ l r o und ( drand48 ( ) ∗ ( d−c ) +c ) ;
i f ( ( xn == x ) && ( yn == y ) ) { goto r o l l ; }
zn = f f ( xn , yn , kk ) ;

/ / S t a t e t r a n s i t i o n :
i f ( zn <= z )
{

x = xn ;
y = yn ;
z = zn ;

}
e l s e
{

prob = exp ( ( z−zn ) / temp (m) ) ;
r = drand48 ( ) ;
i f ( r <= prob )
{

x = xn ;
y = yn ;
z = zn ;

}
}

i f ( z <= t h r ) / / S o l u t i o n check .
{

z t = l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ;
i f ( pow ( x , 3 ) +pow ( y , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , x , y , z t ) ;
goto end ;

}
}
m = m+1;

}

end :

re turn 0 ;
}

double f f ( i n t x , i n t y , i n t kk )
{

double z ;

z = f a b s ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) )−l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ) ;

re turn z ;
}

double temp ( i n t m)
{

double z ;

z = 1 . 0 / ( l og (m) +0 . 01 ) ;

re turn z ;
}
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Appendix A3

rSA

# inc lude <s t d i o . h>
# inc lude <math . h>
# inc lude < s t d l i b . h>
# inc lude <t ime . h>

double f f ( i n t x , i n t y , i n t kk ) ; / / The energy f u n c t i o n .
double temp ( i n t m) ; / / The c o o l i n g s c h e du l e ( t empe r a t u r e ) .

i n t main ( )
{
/ / Parame ter s :

i n t kk = 2 ; / / R i gh t s i d e o f t h e d i o p h a n t i n e e qua t i o n .
i n t l bx = −pow ( 1 0 , 4 ) ; / / Lower bound f o r t h e x c o o r d i n a t e o f a s t a t e .
i n t ubx = 0 ; / / Upper bound f o r t h e x c o o r d i n a t e .
i n t l by = 0 ; / / Lower bound f o r t h e y c o o r d i n a t e o f a s t a t e .
i n t uby = pow ( 10 , 4 ) ; / / Upper bound f o r t h e y c o o r d i n a t e .
double t h r = pow(10 ,−5) ; / / S o l u t i o n t h r e s h o l d . Used t o d e c i d e when t o check whe ther a s o l u t i o n has

been found .
i n t r tm = 30 ; / / Number o f c o n s e c u t i v e s t a t e s w i t h equa l e n e r g i e s needed f o r a r e s t a r t .

/ / V a r i a b l e s :
t i m e t t 0 = t ime (NULL) ; / / Time used t o seed t h e RNG.
i n t xo , yo , x , y , xn , yn ; / / Coo rd i na t e s o f t h e old , c u r r e n t and new s t a t e s .
double zo , z , zn ; / / Energy v a l u e s f o r t h e above .
i n t m; / / Time .
i n t a , b , c , d ; / / V a r i a b l e s used i n t h e g e n e r a t i o n o f a new s t a t e .
double prob ; / / P r o b a b i l i t y f o r a c c e p t i n g a t r a n s i t i o n t o t h e a l r e ad y g en e r a t e d s t a t e .
i n t r t ; / / Cur r en t number o f c o n s e c u t i v e s t a t e s w i t h equa l e n e r g i e s .
i n t z t ; / / A u x i l i a r y i n t e g e r v a r i a b l e .
double r ; / / A u x i l i a r y doub l e v a r i a b l e .

/ / S e ed ing t h e RNG:
s r and48 ( t 0 ) ;

r e s t a r t :

/ / Random i n i t i a l s t a t e and i t s ene rgy :
r t = 1 ;
x = l r o und ( drand48 ( ) ∗ ( ubx−l bx ) + lbx ) ; y = l r o und ( drand48 ( ) ∗ ( uby−l by ) + lby ) ;
z = f f ( x , y , kk ) ;

i f ( z <= t h r ) / / S o l u t i o n check .
{

z t = l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ;
i f ( pow ( x , 3 ) +pow ( y , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , x , y , z t ) ;
goto end ;

}
}

/ / I t e r a t i o n s :
m = 1 ; whi le ( 1 )
{

/ / Con f inemen t :
a = −10; b = 10 ; c = −10; d = 10 ;
i f ( x+a <= lbx ) { a = lbx−x ; }
i f ( x+b >= ubx ) { b = ubx−x ; }
i f ( y+c <= lby ) { c = lby−y ; }
i f ( y+d >= uby ) { d = uby−y ; }

/ / S t a t e g e n e r a t i o n :
r o l l :
xn = x+ l r o und ( drand48 ( ) ∗ ( b−a ) +a ) ;
yn = y+ l r o und ( drand48 ( ) ∗ ( d−c ) +c ) ;
i f ( ( xn == x ) && ( yn == y ) ) { goto r o l l ; }
zn = f f ( xn , yn , kk ) ;
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/ / S t a t e t r a n s i t i o n :
xo = x ;
yo = y ;
zo = z ;
i f ( zn <= z )
{

x = xn ;
y = yn ;
z = zn ;

}
e l s e
{

prob = exp ( ( z−zn ) / temp (m) ) ;
r = drand48 ( ) ;
i f ( r <= prob )
{

x = xn ;
y = yn ;
z = zn ;

}
}

/ / R e s t a r t c o n d i t i o n check :
i f ( zo == z )
{

r t = r t +1 ;
i f ( r t == rtm ) { goto r e s t a r t ; }

}
e l s e
{

r t = 1 ;
}

i f ( z <= t h r ) / / S o l u t i o n check .
{

z t = l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ;
i f ( pow ( x , 3 ) +pow ( y , 3 ) +pow ( z t , 3 ) == kk )
{

p r i n t f ( ”{%d,%d,%d}\n” , x , y , z t ) ;
goto end ;

}
}
m = m+1;

}

end :

re turn 0 ;
}

double f f ( i n t x , i n t y , i n t kk )
{

double z ;

z = f a b s ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) )−l r o und ( c b r t ( kk−pow ( x , 3 )−pow ( y , 3 ) ) ) ) ;

re turn z ;
}

double temp ( i n t m)
{

double z ;

z = 1 . 0 / ( l og (m) +0 . 01 ) ;

re turn z ;
}


