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Abstract: The fluidification of stochastic discrete event models is a more 
interesting method to overcome the problem of combinatorial explosion of 
states. It allows to relax the conditions of stochastic Petri nets to continuous 
Petri nets, in order to accelerate the slow convergence of stochastic 
simulations. In our study, we will study an example of a large manufacturing 
workshop, in order to give limitations of the direct fluidification which does 
not always lead to the same behaviour between the two models. Secondly, we 
propose a numerical approach called adaptive that devotes to the adaptation of 
the maximum speeds of crossing the transitions that is considered as functions 
depending on the time. Consequently, this approach shows an excellent 
convergence of the continuous model to the stochastic one whatever the type of 
network and whatever the initial marking. 
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1 Introduction 

The improvement of the reliability of industrial processes, suffers from the improvement 
of the study of the reliability of these processes which is presented in the systems 
manufactures with many interdependent elements. These studies are mainly based on 
stochastic models with discrete events as the Markov Chain (MC) and the Stochastic 
Petri Nets (SPNs) (Silva and Recalde, 2004). The analysis of the reliability is difficult to 
realise with MC in the systems manufactures (Vazquez et al., 2008). In this case the SPN 
allows under certain conditions to build equivalent models. 

The MC allows to determine the probabilities of the state in particular in stationary 
regime and to calculate the usual indicators of the reliability of the systems (Vazquez  
et al., 2008; Navarro-Gutiérrez et al., 2022). This method allows an analytical solution of 
the stationary state of a SPN, which makes it valid only in systems of reduced 
dimensions (Silva and Recalde, 2004; Arzola et al., 2020). When systems become more 
complex, the SPN can be seen as an estimator of the MC. Among the SPNs extensions, 
the SPN with random transition time (Navarro-Gutiérrez et al., 2016). The marking of the 
Petri Net (PN) is then a homogeneous Markov process (Lefebvre, 2014; El-Moumen  
et al., 2022), moreover, the random behaviour of the SPN is identical to that of the MC. 
So for any SPN we can associate a homogeneous MC. 

SPNs present a major difficulty because of the combinatorial state explosion problem 
(Vazquez and Silva, 2009), this difficulty is the speed of convergence of the state 
probabilities in the stationary state of the SPN. To overcome this problem, Continuous 
Petri Nets (CPNs) are developed in order to find continuous approximations of discrete 
PN (Giua and Silva, 2018), i.e., to transform the SPN into a CPN by a method called 
fluidification (Lefebvre, 2011; Silva and Recalde, 2004). The fluidification of SPNs 
gives unlikely results for which the structural and behavioural properties are not identical 
(El Akchioui, 2017). In detail, a PN can be alive as a discrete and non-liveness after 
fluidification and a discretised bounded system can be non-boundary after fluidification 
(Vazquez et al., 2008). The average flow of the CPN is not always an upper bound on 
that of the SPN (Lefebvre, 2011). Some results exist for finding stationary state majors 
for CPN and for SPN by solving linear programming problems (Silva and Recalde, 2004; 
Giua and Silva, 2018). But there is no comparison between the two obtained majors 
(discrete and continuous). For SPN, the equilibrium points cannot be directly 
approximated by those of CPN. Specifically, direct fluidification under the semantics of 
infinite server does not lead to the same behaviour. The average markings and asymptotic 
average flows of SPN and CPN with the similar structure and similar initial marking are 
not identical in the general case. In this context, our work continues to approximate these 
two models, in order to reach the same behaviour. We propose to fluidify the SPN and 
CPN by an adaptive approach, which consists in adopting all the maximum speeds of 
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crossing transitions by a corrective factor considered as a function of time, so that the 
modified CPN converges to the stochastic model whatever the type of network and 
whatever the initial marking. 

The paper is organised in four sections. Section 2 presents the basic definitions of 
PN, SPN and CPN as well as discussions on the limitations of using SPN. Section 3 
provides an example of implementing a complex manufacturing system to deal with the 
SPN bounds according to a CPN through direct fluidification by dealing with different 
cases of initial marking to show that this method is not applicable when the initial 
marking increases and when of the existence of many regions. Moreover, we will 
introduce a new semantics, the adaptive approach, by modifying the timed continuous 
crossing rates of the PNs to have the convergence independently of the initial marking. 
The last Section 4 gives some conclusions. 

2 Stochastic and continuous petri nets 

2.1 Petri nets (PN) 

A PN is a mathematical model used to represent various systems operating on discrete 
variables. It is a bipartite directed graph that has places and transitions as its two types of 
vertices (Vazquez and Silva, 2009). A place is symbolised by a circle and a transition by 
a line. The finite set of n places is represented by  1 2, , ...., iP P P P  and the finite set of 

q transitions, 1 2, , ...., qT T T T    , results in a change in the state of the system (Giua and 

Silva, 2018). Each iP  and jT  is linked by arcs which connect either a iP  to a Tj, or a jT  

to a iP  (Lefebvre, 2011). According to the backward and forward incidence applications. 

We denote the forward incidence application  PR PR n q
ijW w IN    where PR

ijw  is used 

to indicate the weight of the arc directed from iP  to jT , and the backward incidence 

application   PO PO n q
ijW w IN    (El Akchioui, 2017) where PO

ijw  is used to indicate 

the weight of the arc directed from jT  to iP  (Giua and Silva, 2018). 

  PO PR n qW W W Z     denotes the network incidence matrix (Giua and Silva, 

2018). PN is characterised by the marking vector at time 0t   and the marking vector at 

time t represented, respectively by IM  and  M t .  M t  is an application from the set 

of places to the set of natural numbers (Campos et al., 1991),  M t  is a column vector 

that represents the number of marks (or tokens) present in every place. The marking of 
the place iP  will be noted  iM P , or more succinctly im . Every transition jT  is 

triggered depending on its degree of activation   jn M t  which is determined for the 

marking  M t  according to equation (1) (Campos et al., 1991): 

    For all ,  min  PR
i j j i ijP T n M M P w    (1) 

The crossing of a transition jT  can only be done if each place upstream  jT  of this 

transition contains at least several marks equal to the weight of the arc connecting this 
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place to jT . This transition will then be validated (David and Alla, 1992) and can be 

crossed, allowing the evolution of the network towards a new state (Molloy, 1981). 

2.2 Stochastic petri nets (SPN) 

SPNs are tools for analysing the structure and behaviour of stochastic discrete event 
dynamical systems (Vazquez and Silva, 2009). They are timed PNs with transition firing 
times randomly distributed according to an exponential probability distribution with a 

parameter that varies    .j iround n M m  (Lefebvre, 2011). Molloy was the first to 

introduce this model (David and Alla, 1992; Molloy, 1981) and several other expansions 
have been developed for the analysis of the reliability of repairable systems (El Akchioui, 

2017). Fundamentally, a ,SPN PN µ  , with    q

jµ µ R   is a vector of 

crossing rate. The crossing rate jµ  characterises each jT  such that  .µj dt  is the 

estimated probability of crossing jT  at a time (t) and  t dt  when jT  has been crossed, 

with an activation degree equal to 1 at time t. The characteristics of an SPN, such as 
incidence matrices, firing rates, initial marking and policy compliance (firing, servers and 
execution), are all used to describe the process of marking of an SPN (Mahulea et al., 
2008; El Akchioui, 2017). The vector of the average flow and average marking of an 
SPN at time t will be named  sX t  and  sM t  (Campos et al., 1991). The SPNs in this 

work have satisfied the hypotheses (A1) to (A5) (El Akchioui, 2017): 

 (A1) the marked SPNs are bounded. 

 (A2) the marked SPNs can be reset. 

 (A3) the firing policy is based on the race: the transition that is assumed to be the one 
that will be triggered next. 

 (A4) the server policy is based on the infinite server type: influence of the degree of 
crossing. 

 (A5) the execution policy is based on memory resampling: influence of the transition 
crossed on the next crossings. 

Therefore, the SPNs considered have an accessibility graph  , IA SPN M  with finite 

states and their marking process is represented in a MC with a state space isomorphic to 

 , IA SPN M  (Lefebvre et al., 2010, 2009). In this situation, the asymptotic behaviour of 

SPN can be computed in terms of the probability of the stationary state of the MC  
(El-Moumen et al., 2022). 

For living SPNs that satisfy the above assumptions and when the state space is finite, 
the SPN has a marking graph that is isomorphic to the state space of a MC (Molloy, 
1982). In this case, the Stationary state of the SPN can be deduced from the state 
probabilities of the MC (Molloy, 1982). The vector of Stationary state probabilities 
which is the solution of equation (2), is given by Lefebvre (2011): 

 П . 0  and   П . 1 1SS SS NA µ     (2) 
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With    1П 0,  1
N

SS ssk    as the vector of stationary state probabilities of the MC 

associated with N states.    N N
A µ R

  as the MC generator associated with the SPN is 

a square matrix of dimension N N , N being the finite number of states of the linked 

MC and    1 1, .,1
NT

N R    represents a vector of dimension N whose all 

components are equal to 1. 

Let    q

s sjX x R   represent the average flow vector and    n

s siM m R   

represent the average SPN markings vector (Bobbio et al., 1998). As a consequence, 
from the vector ПSS , we will deduce the average flows of transitions as well as the 

average markings of places as shown in equations (3) and (4). 

 
1...

. .sj j j k k
k N

x µ n M 


   
 
   (3) 

1...

.si k i k
k N

m m 


    (4) 

    
n

k kiM m R   signifies the vector of marking corresponding to the state k of the 

MC (Bobbio et al., 1998). When it comes to ergodic MC, This method yields an 
analytical solution to the SPN stationary state, but it necessitates the computation of the 
transition matrix  A µ  (Silva and Recalde, 2002), as a result, the SPNs accessibility 

graph  , IA PN M  is isomorphic to the MC (Lefebvre et al., 2010). N As the number of 

states, rises exponentially, for large system dimension the calculation time and memory 
needs to evaluate  , IA PN M  becomes more relevant. In this case, for the MC, SPN can 

be thought of as a stochastic estimator. The benefit of this estimator is that it eliminates 
the need to determine  , IA PN M , but, the stochastic estimator is slow to converge, 

especially for rare events (El-Moumen et al., 2023). 

2.3 SPNs algorithm 

The simulation of stochastic systems allows the determination of estimates of indicators 
related to operational safety, such as reliability, mean time to failure state or availability. 
For large systems, Markov analysis is often unpractical due to the combinatorial 
explosion caused by the state graph (El Akchioui et al., 2020; Rausand and Hoyland, 
2004). The simulation of SPNs does not require the calculation of the state graph and the 
SPNs can be thought of as an estimator of the MC. 

The algorithm of the stochastic estimator, which makes it possible to determine the 
stationary state and compare the random behaviour of the SPN with that of a 
homogeneous MC and has a finite state space, is as follows Figure 1. 

2.4 Complexity of the reachability graph 

As an example, we will consider the example prepared by Navarro-Gutiérrez et al. (2022) 
presented in Figure 2. This network models a manufacturing system with 5 machinery 
( 1T  to 5T ), and 3 resources limited tools ( 1P  to 3P ). In this PN model, the vector of  
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the parameters of the transitions   and the initial marking IM  are given by: 

 1,1,1,1,1
T  ,  6 , 6 4 , 0, 3 , 0, 3 , 0, 0

T

IM k k k k k  where k IN . 

Figure 1  Steady state by SPNs algorithm 

Else 

Else 

t : Calculate the set of transitions 

Randomly draw a duration dj of rate μj 

Transition with the shortest that dm = min (Tj) 

Replace t by t + dm 

Transition with the shortest time and update the marking 

Go to randomly draw a duration dj of rate 

Start t=0: Initialisation of markings nj(m)>=1 

End dm=0 

 

Figure 2 Manufacturing system (Silva and Recalde, 2004) 
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Table 1 illustrates the evolution of the number of states N and of the computation time as 
a function of the parameter k. the computational time required to compute the 

 , IA PN M  increases exponentially and makes Markov analysis difficult if not 

impossible (El-Moumen et al., 2022; Bobbio et al., 1998). 

Table 1 Number of states and calculation time of the reachability graph depending on k 

Coefficient k 1 2 3 4 5 

Number of states (N) 205 1885 7796 22187 50801 

Calculation time (s) 0.113 8.304 164.665 1321.804 6959.09 

We have seen that for large-dimensional systems, the Markov analysis is often 
unpractical because of the combinatorial explosion due to the passage through the state 
graph (Silva and Recalde, 2002; El Akchioui et al., 2020). The simulation of the SPNs 
does not require the computation of the state graph and the SPNs can be considered as an 
estimator of the MC (Rausand and Hoyland, 2004; Júlvez et al., 2005). The advantage of 
this estimator is that the determination of  , IA PN M  is no more necessary, the 

drawback is the slow convergence of the stochastic estimator, particularly in the case of 
rare events (Rausand and Hoyland, 2004). 

To work around this problem, we will use the link between SPNs and CPNs to 
estimate the main markings and average flows from the simulation. 

2.5 Continuous petri nets and regions in the reachability space 

Timed Continuous Petri Net (TCPN) is an expansion of a discrete timed PN on the 
transitions (Benaya et al., 2018). TCPNs have been used to approach the average 
behaviour of SPNs (Navarro-Gutiérrez et al., 2016; Lefebvre and Hadjicostis, 2022). 

max,CPNs PNs X   Where     *

max max

q q

jX diag x R   the matrix diagonal of 

maximum speeds. Let be    n

cM t R  the vector of continuous markings  cim t  of 

places iP . Let be    q

cX t R  the vector of continuous speeds of transitions jT . 

   n

cM t R  the evolution of the marking is provided by equation (5) (El-Moumen  

et al., 2022): 

     . , 0c c c IdM t dt W X t M M    (5) 

The equation governing the instantaneous velocity of the transition is given by  
El-Moumen et al. (2022). 

    max .cj j j cx t x n M t   (6) 

The notion of region appears because of the ‘  min . ’ function in the activation degree 

expression. The marking area is separated into k regions kA  (Vazquez and Silva, 2009) 

(some regions may remain empty). Every kA  is characterised by its combination 

(configuration) (Silva and Recalde, 2002), also referred     ,k i jPT sum A P T   
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(Lefebvre et al., 2015; Benaya et al., 2019). In this way iP  is the critical place of jT  in 

kA  (Júlvez et al., 2005). The number of configurations is related to the number of 

synchronisations as well as the number of places upstream of the synchronisation 

transitions:  1   ...  . q kK T x x T PT sum A    is defined as the sum of all 

combinations  , ,  1, ..,i jP T j q , defined by equation (7). 

              , . .[ , . ] PR
k i j c k cj maxj ci ijPT sum A P T s m M t A x t x t m t w      (7) 

Each kA  region is identified by a matrix constraint    q nk
k ijA a R

 , 1, ...,i q , 

1, ,k K   and 1, ...,j n : 

 for all jT T ,    ,, 1k PR
ji i k j ja k j w , 

 Otherwise, 0k
jia  . 

Consequently, in every kA , the maximal crossing speeds vector may be given by 

   . . c max k cX t X A M t , equation (8) is verified: 

      . . . ,c max k c c kdM t dt W X A M t M t A    (8) 

3 Approximation of SPN by TCPNs 

In this section, we will present an example of manufacturing system, in order to study the 
direct total fluidification of SPNs, we will show that this last method does not always 
lead to a continuous behaviour identical to that of the stochastic. Furthermore, we will 
introduce and apply the procedure of the adaptive approach, which will allow us to obtain 
a continuous asymptotic regime converging to the stochastic one. 

3.1 Case study: production system 

Let us consider the system sketched in Figure 3, which models a complex manufacturing 
system. The final products is composed of two different parts consisting of two ranges of 
tool products, any range includes two machines M1, M2 and a stock (at finite capacity). 
The first range processes the products by the M1, and then by the M2, on the other hand 
the parts are treated in the first stage in the second range by the M2, then in the second 
stage by the M1. Each product has a single operation at each machine and pallets, which 
will be reused at each end of the production cycle, transport the products. This process is 
characterised by the presence of at least one assembly module (a convergence of flows) 
which requires two input components. For example, in Figure 3, product A B  is 
assembled from A and B via M3. 
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Figure 3 Assembly workshop for two product lines 
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3.2 Modelling the production system 

After having described the production system from a structural point of view, we are 
interested in obtaining a model representing it. The latter is essential for the analysis of 
behaviour and performance in the simulation. The system is modelled by a SPN of  
Figure 4 whose crossing rates of all the transitions are supposed equal to 1  
(the average duration of each elementary operation is 1) and of initial marking 

 35 0 0 0 10 1 1 25 0 0 0 10 1 1 1 0 25 0
T

IM  . 

The system in Figure 4 is composed of two different parts A and B. Part A is 
processed in M1 and then M2, respectively, while part B is processed in M2 and then in 
M1. The intermediate products are stored in places 1 _B A  and 1 _B B  and the final 

products, respectively in places _ 2B A  and _ 2B B . The M3 brings together the parts A 

and the parts B producing final parts. In this system, we have three sequential machines, 
four intermediate depots and a terminal depot. Initially, there are 35 type A pallets  
(MI (Pallets_A)= 35), 25 type B pallets (MI (Pallets_B) = 25), one machine of each type 
from which the first two are initially at rest, while the third is the working state 

      1 2 3_ _ _ 1I I IM M Iddle M M Iddle M M Work   , only one type A final 

product and another type B product     _ 2 _ 2 1I IM B A M B B  . The maximum A 

and B type coins that can be produced each time is 10 

    Max _ Max _ 10I IM A M B  . The final product is stored in place B_3 and the 

parts are moved on the two pallets. Finally, the memory capacity to store the finished 

products just before recycling the pallets is equal to 25   _ 3 _ 25IM B Empty  . 
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Figure 4 Model of complex manufacturing system 
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3.3 Direct fluidification of SPN 

The SPN presents a major problem of combinatorial explosion of the number of states 
which is inherent in high-dimensional discrete event systems. Increasing the size of the 
reachability graph of discrete systems is a complex problem. It is therefore important to 
simplify the study of systems for their analysis and verification. One possible approach is 
the transition from a discrete event system to a continuous system. This is called 
fluidification. It is considered as an approximation technique allowing to analyse a 
system at a lower cost, i.e., with a significant decrease of the computing resources (El 
Akchioui, 2017; Lefebvre, 2004; Silva and Recalde, 2002). 

Consider the SPN model of the stochastic production system described  
in Figure 4 (Silva and Recalde, 2002), with initial marking 

 35 0 0 0 10 1 1 25 0 0 0 10 1 1 1 0 25 0
T

IM   and of crossing rate  1 1 1 1 1 1 1 1 1 1
T

µ  . 

This system is defined by a single firing invariant T-semi flow  1 1 1 1 1 1 1 1 1 1 1 1
T

z   

and eight marking invariants defined by the P-semi flows  1 2 3 4 5 6 7 8

T
Y Y Y Y Y Y Y Y .  

We will study the direct fluidification of the stochastic model of Figure 4 for different 
values of the initial marking in order to compare. This approximation turns out to be the 
best solution for this large system and its rather large initial marking. To illustrate the 
results, we present the evolution of the stochastic and continuous marking of the 2B A  
place, as well as the stochastic and continuous flow of the Out transition for different 
initial markings. 

Figures 5 and 6 present, respectively, the evolution of the continuous and stochastic 
flow of the Out transition and the continuous and stochastic marking of the 2B A  place 

for an initial marking  3 0 0 0 1 1 1 2 0 0 0 1 1 1 1 0 2 0
T

IM  . 
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Figure 5 Flow evolution of CPN and SPN for transition Out in function of time of Figure 4 
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Flow of the transition out, (Red=CPN and Black=SPN)

 

Figure 6 Marking evolution of CPN and SPN for place 2B A  in function of time of Figure 4 
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Marking of the place B-2A, (Red=CPN and Black=SPN) 

Times (s)  

Table 2 gathers the results obtained by the direct fluidification of the stochastic system of 
Figure 4 of the continuous and stochastic marking of the place 2B A  and of the 
continuous and stochastic flow of the Out transition. 

Table 2 Average flows and average markings of CPN and SPN from Figure 4 

MI= (3 0 0 0 1 1 1 2 0 0 0 1 1 1 1 0 2 0)T SPN CPN Error 

Flows 0.193 0.25 0.29 

Average markings 1.1585 0.25 0.78 

From the simulation, presented in Figures 5 and 6, we can see that the behaviour of 
TCPN obtained by the direct fluidification of the SPN with the same initial marking 
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 3 0 0 0 1 1 1 2 0 0 0 1 1 1 1 0 2 0
T

IM   does not converge to stochastic behaviour. In 

the second case, we will increase the number of marks circulating in the system. For this, 

we chose the initial marking  7 0 0 0 2 1 1 5 0 0 0 2 1 1 1 0 5 0
T

IM  . The results of 

the total direct fluidification of the system are shown in Figures 7 and 8, where Figure 7 
represents the evolution of the CPN and SPN marking of the place 2B A  and Figure 8 
illustrates the CPN and SPN Evolution of the flow of the Out transition as a function of 
time. 

Figure 7 Marking evolution of CPN and SPN for place 2B A  in function of time of Figure 4 
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Marking of the place B-2A, (Red=CPN and Black=SPN) 
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Figure 8 Flow evolution of CPN and SPN for transition Out in function of time of Figure 4 
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Flow of the transition out, (Red=CPN and Black=SPN) 

 

The results of the direct fluidification of the SPN of Figure 4 with maxj jx µ  of the place 

2B A  and the transition Out are grouped in the following table: 
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Table 3 Average flows and average markings of CPN and SPN from Figure 4 for 

  7 0 0 0 2 1 1 5 0 0 0 2 1 1 1 0 5 0
T

IM    

MI= (7 0 0 0 5 1 1 5 0 0 0 2 1 1 1 0 5 0)T SPN CPN Error 

Flows 0.2539 0.3333 0.31 

Average markings 3.2083 0.3333 0.896 

Finally, we illustrate the fluidification results of the SPN in Figure 4 with the initial 

labelling  35 0 0 0 10 1 1 25 0 0 0 10 1 1 1 0 25 0
T

IM   and the same parameter. 

Figures 9 and 10 present, respectively the evolution of the marking of the place 2B A  
and the flow of the transition Out. 

Figure 9 Marking evolution of CPN and SPN for place 2B A  in function of time of Figure 4 
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Marking of the place B-2A, (Red=CPN and Black=SPN) 

 

Figure 10 Flow evolution of CPN and SPN for transition Out in function of time of Figure 4 

Times (s) 

F
lo

w
 

Flow of the transition out, (Red=CPN and Black=SPN) 
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From Figures 9 and 10, we can see that the behaviour of the CPN obtained by the direct 
fluidification of the SPN with the same initial labelling does not converge towards the 
stochastic behaviour. Table 4 gathers the results obtained from the continuous and 
stochastic average marking of the place 2B A  and from the continuous and stochastic 
average flow of the transition Out. 

Table 4  Average flows and average markings of CPN and SPN from Figure 4 for 

 35 0 0 0 10 1 1 25 0 0 0 10 1 1 1 0 25 0
T

IM   

MI= (35 0 0 0 10 1 1 25 0 0 0 10 1 1 1 0 25 0)T SPN CPN Error 

Flows 0.32 0.33 0.039 

Average markings 0.81 0.33 0.59 

For different values of the initial marking, we can see that the trivial fluidification of the 
stochastic model described in Figure 4 under the infinite server semantics with the same 
structure and the same parameters of the PN leads to a CPN behaviour different from that 
of SPN. This difference is related to the presence of many synchronisations in the 
marking space of CPN, which induce many regions and in particular critical regions 
(Lefebvre et al., 2010) and the behaviour of the CPN depends on the critical place of 
each transition presenting a synchronisation. The behaviour of the CPN is non-linear due 
to the presence of the ‘min’ function (Lefebvre et al., 2010), this means that according to 
the markings of the places linked to a synchronisation, the CPN will not follow the same 
behaviour. 

3.4 Regions in the reachability space 

The system of Figure 4 contains 6 synchronisations at the level of the transitions S-M1-A, 
S-M2-A, S-M2-B, S-M1-B, S-M3 and E-M3. The several critical places of transitions 
presenting the several synchronisations. The marking space of the studied system is 
divided into 216 regions, of which 91 regions are reachable and 125 regions are empty, 
the different projections in the plane (Pallets-B, Max-B) of all the regions are represented 
in the following figure. 

Figure 11 Reachability space of Figure 4 
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We will evaluate by simulation the distribution of the average asymptotic markings 
reachable by the SPN and CPN, for the same structure and the same parameters. The 
vector of the stochastic crossing rate and the maximum speeds of the continuous 
transitions are considered as random variables during the simulations, they are drawn 
according to a uniform probability distribution function (the simulation is carried out 
with 3000 random draws of the vector  ). 

Figures 12 and 13 represent the distribution of average marking stochastic asymptotic 
and the continuous markings in the plane (Pallets-B, Max-B). 

Figure 12 Asymptotic average markings with several firing rates of Figure 4 

A91 

A73 

 

Figure 13 Asymptotic average markings with several crossing rates from Figure 4 

A91 

A73 

 

Given the values of SPN, initial marking and transition crossing rate. We find that the 
stochastic and continuous reachable regions are different in the same plane (Pallets-B, 
Max-B). To overcome the non-equivalence problem, we propose an adaptive approach 
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that adapts the maximum crossing rates of the continuous CPN by a corrective factor that 
is considered as a function of time, so that the modified CPN converges to the asymptotic 
stochastic marking. 

3.5 Adaptive approach 

In this part, we are interested in the approximation of SPN by CPN, whatever the initial 
marking. The notion of synchronisation is a key element of this approximation. More 
precisely, the presence of several regions and more particularly the existence of critical 
regions complicate the total direct fluidification of the SPN. In order to overcome this 
problem we will apply an approach called ‘adaptive approach’ is devoted to the 
adaptation of all the maximum crossing speeds of the CPNs by an adaptive corrector, 
these speeds considered as time dependent functions, so that the modified CPN 
converges to the SPN. 

Equation (9) presents the adaptation law of the maximum speeds of crossing which is 
defined by the system of differential equations under the constraint max 0X  : 

     max . .( .) T
s c s cX diag W M M X X       (9) 

where ( )diag   is the diagonal matrix SPN firing rates,   is the adaptation parameter, 

 s cX X  represents the error related to the continuous and stochastic mean flows, and 

the vector  s cM M  the error due to variations in the stochastic and continuous mean 

markings. 
Consider, for example the SPN described in Figure 4. This PN with initial marking 

   35 0 0 0 10 1 1 25 0 0 0 10 1 1 1 0 25 0 and of firing rate µ 1 1 1 1 1 1 1 1 1 1
T T

IM     

and of firing rate  1 1 1 1 1 1 1 1 1 1
T

µ   has a single firing invariant T-semi flow  

z1 = (1 1 1 1 1 1 1 1 1 1 1)T and eight marking invariants. Therefore, only the flow of 
transition Out and the marking of the place 2B A  will be considered. In order to have a 
continuous asymptotic regime converging towards that of the stochastic. We are going to 
apply the adaptation law defined by equation (9). Each crossing speed will be corrected 
by a multiplicative factor, and only the marking of the place 2B A  and the flow of the 
Out transition will be represented.  

Figure 14 represents the evolution of the average marking stochastic asymptotic and 
the modified continuous marking of the place 2B A .   

We can see in Figure 14 that the minimisation of the error due to the variations of 
markings over time allows the continuous average marking of the place 2B A  to reach 
that of the average marking stochastic asymptotic of the same place. 

Figure 15 represents the average continuous flow converges towards the stochastic 
flow of the Out transition, after the modification of the maximum speeds of the crossing 
of the continuous system. 
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Figure 14 Marking evolution of CPN and SPN place 2B A  in function of time of Figure 4 
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Marking of the place B-2A (Red=CPN and Black=SPN) 

 

Figure 15 Flow evolution of CPN and SPN for transition Out in function of time of Figure 4 
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Flow of the transition out, (Red=CPN and Black=SPN) 

 

We modified the maximum speed of the Out transition using a multiplicative coefficient 
associated with each maximum speed of transition of the CPN, which depends on time, 
thus we note that the continuous average flow of the Out transition converges towards 
that of the system stochastic. The evolution of the correction coefficient associated with 
the maximum crossing speed of the Out transition as a function of time is represented in 
Figure 16. 
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Figure 16 Adaptation parameter evolution for transition Out in function of time of Figure 4 
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The modification of the maximum speeds using the correction coefficients applied to all 
the transitions of the CPN makes it possible to ensure the asymptotic convergence of the 
markings and the continuous average flows towards those of the stochastic. This 
approach requires knowledge of the mean marking stochastic asymptotic that one wishes 
to converge. 

4 Conclusions 

In this article, we have first presented the basic concepts of the different extensions of 
Petri nets, such as the SPN and the CPN. We exposed the limitations of the SPN, which 
is the slow convergence towards the stationary regime. We have shown that the CPN is a 
more interesting solution for estimating the average marking and flow of the SPN. 
Secondly, we have presented an example of a manufacturing workshop, in order to study 
the direct fluidification. This method preserves the structure of the network, the initial 
marking and the parameters of the transitions crossing. The CPN does not converge to 
the average marking and flow of the SPN in the long run. This is due to the existence of 
weighted edges and synchronisation. The presence of synchronisations leads to the 
division of the marking space into several regions, in particular the presence of the 
critical region. These two elements play an important role and limit the use of direct 
fluidification. This problem has been surmounted by using a numerical approach, which 
is characterised by maximum speeds of crossing adapted by an adaptive corrector. This 
corrector eliminates the errors due to the variations of the markings. Finally, we found 
that this approach gives better convergence to the stationary regime of the SPN. 

The continuous model will be used to perform reliability studies as well as fault 
detection and diagnosis. In our future work, we will continue our research on the 
approximation of the steady state of the SPN by the faults of the continuous approaches 
directly related to the SPN and to the transition crossing speeds in order to obtain optimal 
alternative models. 
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