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Abstract: A rotation invariant image correlation algorithm is described which measures and 
locates the rotational error of individual spatial frequency components. This information may 
then be interpreted to track signal dependent signatures, analyse spatial frequencies with much 
higher bandwidths and form optimal matched and generalised correlation filters. The technique is 
based on image re-sampling and a non-uniform sampling interval that is adjusted depending on 
its distance from the origin of the polar map. A nearest-neighbour polar interpolated grid scheme, 
comparable to linear interpolation error, achieves accuracies of 0.1% of a degree. Preliminary 
measurements based on images containing natural and rigid structure are presented.  
The algorithm also has potential applications for data-driven image registration and deformation 
analysis with small variations. 
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measurement. 
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1 Introduction 

Digital Image Correlation (DIC) is a non-contact method to 
accurately track and measure deformation between images. 
Important in many science and engineering applications, 
acquiring 2D/3D representations of a samples surface opens 
up DIC to new and complex investigations. In this paper we 
report our initial findings for a novel sampling and 
interpolation technique to obtain high accuracy 2D rotation  
 

displacement measurements and a signal dependent 
matched filter. The technique is demonstrated using the 
structural content of single image frames potentially useful 
for data driven image understanding and analysis. 

A non-uniformly sampled correlation grid samples an 
image frame several times with different sampling densities 
and has distinct advantages over uniformly sampled grids. 
The presented technique locates and measures accurate 
rotation displacement errors, which ordinarily, for  
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uniformly sampled grids diminish the usable spatial 
bandwidth of signals. In addition newly sampled (re-
sampled) functions offer adaptable filtering usages. 
Rotational displacement measurements, which are strongly 
affected by different sampling densities, can be obtained 
using combined feature descriptors and extractors such as 
speeded up robust features (SURF) (Bay et al., 2008), 
binary robust invariant scalable key-points (BRISK) 
(Leutenegger et al., 2011) and orientated brief and rotated 
fast (ORB) (Rublee et al., 2011). These techniques inspect 
for pixel connectivity and local statistics in image regions 
over scales using blob and corner detection. In a Cartesian 
coordinate system, image features may be recovered by 
detecting directional variations in x and y planes. These 
features typically correspond to continuous and 
discontinuous edge transitions and texture (Lowe, 2003). 
However, after the removal or redundancy of pictorial data 
the remaining image information may still contain noise.  
In this paper we are concerned with the constraints  
of additive noise in imaging systems. In terms  
of signal-to-noise (S/N) and image correlation, the 
development of optimal solutions to recover salient image 
content, from noisy signals, may become complex.  
In general application, there is no guarantee that similarities 
between a reference and displaced signal are found from 
critical or discriminate visual features. Furthermore, it is 
implied that such features are located within a narrow or 
broad spatial bandwidth. Therefore, it can be more 
appropriate to adopt techniques that take into account the 
spatial correlation of signal and statistical fluctuation: 
perhaps of texture, edges and corners. 

The proposed method in this work is aimed at 
applications where measurement sensitivity is a key 
parameter of the analysis. Therefore many of the more 
sophisticated algorithms may not be applicable hear. One 
sophisticated approach is deep registration which capitalises 
on the success of convolutional neural networks and deep 
learning paradigms (Xiang et al., 2021; Villena-Martinez  
et al., 2021) to detect key points between sets of images. 
This feature based approach is much like the application of 
SIFT in formulating a combined feature extractor/descriptor 
but with improved speed and identification of salient points 
(Lee et al., 2021). However, it remains the case  
that approaches in image registration following a deep 
learning methodology lack reliability and accuracy  
(Villena-Martinez et al., 2021). Two reasons for this are: 
firstly, the difficulty in acquiring the quantity and quality of 
a training data set required in deep learning to generalise 
variation. Secondly, the development of appropriate 
methods that validates the outcomes of the high level 
abstract processing of deep learning layers. It therefore 
remains desirable to use area based methods as a standalone 
approach and to incorporate as traditional computer vision 
methods into (deep) machine learning models (O’Mahony  
et al., 2019); with the aim of improving accuracy and speed, 
and to help drive innovation. A key advantage of Fourier 
based (area) techniques over feature based methods, such as 
SURF or ORB, are their theoretical accuracy. Of which, 

discrete Fourier transform based techniques (Tong et al., 
2019) remain a highly focused study of research (Reddy and 
Chatterji, 1996; Wolberg  and Zokai, 2000; Sarvaiya et al., 
2012; Casasent and Psaltis, 1976) for their application in 
image registration problems (Rasmy et al., 2021). Optically 
demonstrated in Casasent and Psaltis (1976), one such 
method named the Fourier-Mellin transform seeks to 
recover translation, rotation and scale using a log-polar 
transformation. However, the recoverable rotation and scale 
measurement range of this method are self-limiting. This is 
due to a non-standard coordinate transform, a distortion of 
the signal spectrum due to scale changes and removal of the 
phase spectrum to achieve small translation invariance. 
Furthermore, using the Fourier transform, it is only 
translation and rotational shifts that are mutual since scale is 
isolated using the log-polar transformed 1D Mellin-
transform. In addition, due to sampling issues, the location 
of spatial signal components are often assumed and high 
S/N components may be intentionally or unintentionally 
filtered out. In the Fourier domain, limitations are also 
imposed by including scale invariance and selecting image 
content to estimate a priori. Ultimately, this can restrict the 
measurement and application range of pattern inspection 
techniques. Even so, DIC is heavily adopted in 
measurement science, particularly for applications involving 
non-destructive evaluation (Sousa et al., 2018; Charrett  
and Tatam, 2019). Improvements in algorithm efficiency, 
measurement sensitivity and operating range are key drivers 
in developing DIC techniques. For technologies with 
increased demand for high resolution rotation measurements 
(Schreier et al., 2009), post-process optimisation is as 
equally important as, configuring hardware to measurement 
resolution criteria. Critically, spatial correlations are 
required to be least sensitive to the effect of hardware and 
environmental factors (such as device calibration and image 
recording) that introduce and accumulate measurement 
errors into a system (Titkov and Panin, 2019). 

This study focuses on the implications of under-
sampling to speed up calculations and oversampling to 
improve accuracy. We describe an image correlation 
technique which has the advantage of simultaneously 
providing a high accuracy rotation displacement 
measurement and a signal dependent matched filter. 
Furthermore, a subset or block of spatial frequencies can be 
selected to generalise an optimum filter: such as bandpass or 
bandstop responses and cascaded implementation. Our 
technique combines up-sampling, which decreases the 
sampling interval in the spatial domain, and a non-uniform 
sampling interval that is adjusted depending on its distance 
from the origin (centre) of the polar map. By adopting this 
approach, spatial frequencies can be measured and analysed 
using much higher bandwidths than that can be ordinarily 
and efficiently obtained using uniformly sampled grids. 

In order to achieve this, an image and a rotated copy of 
the image are first re-sampled with a higher sampling 
density. To improve the accuracy of the tracked peak 
location errors that may have been distorted by rotation 
displacements; the correlation peak is modelled using a 



150 N. Wells and C.W. See 

second-order polynomial (Kumar et al., 1992). A second 
order model is adopted since the correlations shape is a 
parabola. 

Firstly, in Sections 2 and 3, the principal behind this 
technique and a description of its implementation are 
presented. Initial results obtained with this method are 
discussed in Section 4 to demonstrate the ability of the 
technique to measure small rotational variation and form 
signal dependent filters. Finally, we will compare these 
measurements with region-based methods in Section 5 and 
discuss briefly alternative implementations to improve 
measurement accuracy. 

2 Non-uniformly sampled rotation displacement 
measurement 

As outlined in the introduction, our technique 
simultaneously obtains high accuracy broad spatial 
bandwidth measurements and a signal dependent matched 
filter. In order to achieve this, an image is copied to form a 
reference and test image. These images are both resampled 
with a higher sampling density to resolve the peak shift of 
the correlated signal. The principle of the correlation 
algorithm can be best described with reference to the 
diagram in Figure 1 and the appendix which derives the 
necessary understanding of the mathematical techniques 
involved. 

For an image h(x, y) it may be desirable due to the 
application to select regions of an image containing  
higher densities of information. On the assumption that  
the data signal is finite and periodic a rectangular window 
can be applied prior to obtaining the images Fourier 
transform ( ),H u v ; to minimise the undesirable effect of 
spectral leakage a Hann window, for example, can be 
applied. To improve the accuracy of the correlation 
measurement at the original image resolution, a sampling 
factor fs  specified by an integer value, up-samples the 
image data in the spatial domain. This is achieved by zero 
padding the image by a constant determined by fs .  
A sampling mechanism is then applied to both ( ),H u v  and 

( )' ,H u v  to determine a non-uniformly sampled polar 
spatial map of the image at the original and resampled 
sampling densities. The theory of operation of this 
mechanism is outlined in Section 3. The Fourier transform 
of the non-uniformly sampled signals, ( )Ĥ rωθ ω  and 

( )'Ĥ rωθ ω , creates a look up table containing re-sampled 
polar spatial frequencies. The polar spatial frequency values 
at the polar grid locations of the original sampling density 
are replaced with those higher sampled values. This 
(reference) signal is input into the correlation function. The 
test signal ( ),g x y  is obtained by copying ( ),h x y   
and prepared in the same way as ( ),h x y . Whereby,  
an image section may be selected and a window function 
subsequently applied. 

Figure 1 Overview of the rotation invariant correlation algorithm 
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The equivalent functions generated from the test image 
( ),g x y  are: the Fourier transforms of the original and up-

sampled image ( ),G u v  and ( )' ,G u v ; the Fourier 
transforms of the non-uniformly sampled original and up-
sampled test signals: ( )Ĝ rωθ ω  and ( )'Ĝ rωθ ω . Finally, the 
modified test signal is input into the correlation function. 
The location of the correlation peak is then resolved to 
determine the amount of rotational shift ( )rθ∆  in each 
radial component. 

3 Theory 
Measurements are fundamentally limited by the technical 
parameters of an imaging system. For example, in X-ray 
systems, the penumbra is determined by imaging geometry 
and X-ray source focal spot diameter. However, 
improvements in accuracy can be approximated by 
interpolating between discretely sampled points. As 
mentioned in the previous section a sampling mechanism is 
applied to the Fourier transformed image. The purpose of 
this step is to accurately map between angular and Cartesian 
grid points. Before we explore the theory of this 
transformation, it is important to consider the effects of 
uniform sampling in image correlation. Variations in x  and 
y  at low and high image spatial frequencies may 

correspond to shape and edge transitions in the spatial 
domain. If edge features are focused on, a large proportion 
of the spatial bandwidth will be removed from the analysis 
of the image. Conversely, if shape or slower variations are 
focused on other and potentially interesting spatial 
components will be removed. The implication of this on 
correlation performance is that a correlation signal is bound 
to a broad or narrow range of spatial frequencies that a 
chosen image feature occupies. Furthermore, it may be 
necessary for applications to consider all spatial 
frequencies, in particular, features distorted by low 
frequency variation. To measure a shift in translation, the 
sampling condition of the Fourier transform is trivially met. 
This is because the spacing between all spatial frequencies 
is distributed uniformly over a Cartesian grid. Therefore, a 
broad or narrow range of spatial frequencies can be 
accurately sampled by the correlation. 

If a data set is arranged on a polar coordinate grid, 
uniform sampling will restrict the measurement range, 
accuracy and precision of the correlation. If image features 
are carefully chosen, sampling on a polar grid can be 
adjusted to adequately sample the spatial bandwidth 
occupied by that feature. However, this may restrict the 
signal content chosen for the correlation since measurement 
accuracy will be set by the location of a sampled point. The 
precision and accuracy of a correlation signal will be 
affected by under-sampling and oversampling in the polar 
domain. Therefore, recovery of the correlation peak location 
will determine the precision of a correlation measurement. 
Moreover, correct alignment between angular and Cartesian 
grid point’s in-between / 4π  intervals will improve 
correlation measurement precision. 

When dealing with grid alignment error using a set of 
sampled data, the resolution in determining a shift of a 
function is limited to / 2±∆  with ∆  being the sampling 
interval. The quantity / 2∆  can therefore be regarded as the 
upper limit of error. Assuming the original set of data 
satisfies the sampling criterion; this error can be removed by 
convolving the correlation signal with a sinc function.  
A non-favourable consequence of sinc interpolation is that 
every discrete point of the signal is operated on to 
reconstruct the signal. Hence, computation time increases 
proportionally. Approximations to the sinc convolution are 
made by determining the nearest neighbour value and 
calculating linear and cubic polynomials. Except for 
nearest-neighbour, the S/N of the signal interpolator 
increases as the neighbourhood sample size increases. In 
many applications, nearest-neighbour interpolation does not 
provide sufficient accuracy but can be improved by utilising 
properties of non-uniformly sampled polar grid intervals.  
In Section 4 we present examples of this sampling 
mechanism at work. 

In a polar coordinate system, satisfying the sampling 
condition becomes non-trivial since the sampling density 
over any area will be dependent on its distance from the 
origin of the polar map. An additional point to consider is 
that using higher-order polynomials may increase the  
S/N but not measurement accuracy. As previously stated, 
under-sampling on the polar grid can lead to aliasing and 
poor precision in locating the correlation peak; whereas 
oversampling will improve the precision. To ensure  
that the sampling condition is met for each radial 
component, the correlation is reduced to a series of 1D 
correlations’ between ( )G rθ and ( )H rθ . This coordinate 
transformation is best described with reference to Figure 2. 
The radial interval r∆  is fixed over the entire polar map 
and the angular interval θ∆  decreases as the sampling 
point moves further away from the center (origin). The 
lower and upper bound conditions are redefined as 

( ) 11 2 / 1rater r sθ π∆ = ≤
 

and ( ) max maxmax 2 / 1rater r s rθ π∆ = ≤ , 
where rates  denotes the sampling rate. The aim of this 1D 
non-uniform coordinate transformation is to maintain the 
same arc length, r θ∆ , on the whole grid by linearly 
increasing rates . 

Figure 2 Non-uniform polar sampling 

 

Whereas, additional grid point locations are linearly 
proportional to the re-sampling factor fs . The interpolation 
accuracy relies on the number of points to sample a grid  
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location. To obtain a higher sampled source image each 
radial component at locations jr , over the entire original 
signal boundary are re-sampled according to /j j fr v s= , for 

( )0 : / 2 1j v= − . Finally, the polar spatial frequency 
components are input to the correlation. Since we are 
interested in the full spatial bandwidth of the image, the 
correlation can be written as 

( ) ( ) ( )
( ) ( ),

H r G r
C r

H r G r
θ θ

θ
θ θ

∗

= . (1) 

We have replaced ( )Ĝ rθ  and ( )Ĥ rθ  notation in  
Equation (1) with the mean adjusted functions ( )G rθ  and 

( )H rθ . In addition to the broad spatial bandwidth range of 
the correlation in equation (1), shape features particular to 
the image input to the correlation can also be parameterised. 
In contrast to phase correlation, to determine a rotational 
(and translational) shift, low frequency information is lost. 
Furthermore only narrow spatial bandwidths can be 
correlated. 

The computational complexity of the proposed 
technique is bound by the geometric term 1

0

r
j ratej

r s−

=∑  
whose asymptotic value is determined based on the number 
of sampling points in each 1D correlation between a 
reference and target. Using big 0 notation, first consider that 
for an M × N image transformed to a polar grid, the 
sampling density Nωθ  at each radial component linearly 
increases as the radial index increments away from the 
centre of the polar grid. The increase of each radii sampling 
density is proportional to the sampling rate ( )rates . Based on 
this understanding, the complexities of the dominant terms 
in the proposed method are 

( ) ( )( ) ( ) ( )( )( )
( )( )( )( )2

 
.

2

max

max

max

MN log M log N MN log M log N

r N log N Nωθ ωθ ωθ

θ
φ

⎡ ⎤+ + +
⎢ ⎥
⎢ ⎥+ +⎢ ⎥⎣ ⎦

 

For one correlation between a rotating reference and 
rotating target, where the respective rotation in φ and θ are 
set to 1, the complexity reduces to 

( ) ( )( )( ) ( )( )( )( )22   2 .maxMN log M log N r N log N Nωθ ωθ ωθ+ + +  

The fastest growing function in the algorithms complexity is 
2Nωθ , this is proportional to the asymptotic value of the 

geometric sum 1

0

r
j ratej

r s−

=∑ . This complexity then scales  

linearly according to the number of rotations or scans in φ  
and θ . One method to reduce the complexities scale is to 
incorporate data driven procedures to identify apriori of 
rotational patterns to restrict the range of φ  and θ .  
The time at which a computers cpu can perform this 
calculation is determined by computer hardware, 
programming language and compiler. Hardware 
acceleration may also be considered by using a gpu. 

4 Results 
In this section we describe the preliminary results obtained 
from the correlation technique. We compare five images, 
three containing typical natural structures and two 
containing typical rigid structures. The purpose of testing 
the technique on different image content is to see how 
image patterns may influence overall measurement 
accuracies. In each presented test sample in Figure 3,  
the images are 470 470×  pixels and the constant  
sampling interval, ,θ∆  determined from the non-uniform 
sampling transformation, is 0.785° . Finally, the 
measurement accuracy of each correlation rotation map are 
compared with SURF, BRISK and ORB feature based 
methods. 

In this discussion we are concerned with a reference and 
a rotated image. A rotation map is obtained by rotating 

( ), ;g x y θ  through 180°  with 1°  increments. These 
rotations are compared with ( ), ;h x y ϕ  rotated through 
180°  with 5° increments. We refer to the rotated test and 
reference images as ( )( )0:, ;G u v πθ  and ( )( )0:, ;H u v πϕ . 
Figure 4 demonstrates how the rotation error (with no  
up-sampling), for the test image Figure 3(a), propagates 
through ( )( )0:, ;G u v πθ  and ( )( )0, ;H u v ϕ . We show one 
rotation of ( )( )0:, ;H u v πϕ  to demonstrate the impact of 
nearest-neighbour interpolation error. Figure 4(a)–(d) 
presents the tracked errors ( )rθσ , for a subset of radial cut-
off points: whereby, ; 50, 75, 125, 150jr j = . There may also 
be initial transient errors in the sampling transformation 
even though the sampling condition has been met. On this 
basis and for further simulation we set 50j =  as the initial 
position. In practice, this value is determined by assessing 
the error variation across the entire images spatial 
bandwidth on an image-by-image basis. 

Figure 3 Test images (Deng et al., 2009), (a)–(c) contain typical natural structure and (d)–(e) contain typical rigid structure 

 
 (a) (b) (c) (d) (e) 
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Figure 4 Correlation error propagation processes (a)–(d) standard deviation of rotation error θσ  (y-axis) at test signal rotation angle θ  
(x-axis), for 50 75 125 150jr ; j , , ,=  

 
 (a) (b) 

 
 (c) (d) 
 
Clearly the measurement error, demonstrated in Figure 4(a), 
increases as the rotation approaches 90° . This error is 
systematic and due to nearest-neighbour interpolation 
values not discretely defined on a polar grid. When the 
index of the lower radial cut off point is increased the 
tracked error signal reduces. However, the number of 
samples to determine the error measurement decreases and 
the statistical fluctuations begin to dominate the error 
measurement. The random variation may mask potential 
signals of interest that are present in ( )( )0:, ;G u v πθ . Hence, 

it is important to differentiate systematic errors and random 
variation. Furthermore it is vital to differentiate systematic 
errors due to the image and the adapted signal processing 
techniques. In Figure 5, we show how the sources of error in 
the correlation signal are mitigated using our technique. To 
test this, we increment the image re-sampling factor and 
compare the measurement accuracy of nearest-neighbour 
and linear interpolation for rotations of ( )( )0:, ;H u v πϕ . 
Whereby, the random errors are expected to remain constant 
across the rotation map. 

Figure 5 Average error tracking θσ  (y-axis) at reference signal rotation angle ϕ (x-axis), for increases in 1 2 4 8fs , , ,= . (a)–(d) nearest-
neighbor interpolation, (e)–(h) linear interpolation for 50jr ; j =  

 
 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 
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Firstly, for both nearest-neighbour (Figure 5(a)–(d)) and 
linear interpolation (Figure 5(e)–(h)) the visual similarities 
between the correlation maps increase as the sampling 
factor, applied to the test image, increases; The visual 
similarity described is clearly observed for 1, 2fs = . There 
is symmetry in the tracked error signal at 90°  and the same 
spurious signals remain. Therefore theses spurious signals 
can be considered independent of the interpolation method. 
A comparison between the interpolation methods is 
summarised in Table 1. The error is characterised by a 
baseline error bσ , this is equal to the average of θσ for each 
discrete rotation computed between the correlation of 

( )( )0:, ;G u v πθ  and ( )( )0:, ; .H u v πϕ  It is important to note that 
each bσ  takes into account the amplitude of the spurious 

signals which may be relatively large compared to the 
statistical fluctuation. 

Table 1 Comparison of re-sampled interpolation methods 

 

Nearest-
neighbour bσ  

Linear 
bσ  

Relative 
difference 

Improvement-
factor 

1fs =  0.1239 0.1084 0.0155 – 

2fs =  0.0394 0.0369 0.0025 6.2 

4fs =  0.0332 0.0324 0.0008 3.125 

8fs =  0.0324 0.0321 0.0003 2.6 

 
Figure 6 Average error tracking θσ  (y-axis) at reference signal rotation angle ϕ (x-axis), for 1 2 4 8fs , , ,= . From left to right: nearest-

neighbor interpolation for 50jr ; j = . (a)–(d), (e)–(h), (i)–(l) and (m)–(p) correspond to Figure 3(b)–(e) 

 
 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 

 
 (i) (i) (k) (l) 

 
 (m) (n) (o) (p) 
 



 Image correlation, non-uniformly sampled rotation displacement measurement estimation 155 
 

There are significant improvements for the nearest-
neighbour interpolator by increasing the sampling factor  
to 2. For the test image in Figure 3(a), the improvement  
is 6.2: improvement factor denotes the decreasing relative 
difference, or effective gain, of using nearest neighbour 
interpolation in comparison to linear interpolation. For the 
nearest-neighbour method, the relative difference to linear 
interpolation approaches 1% and for further increases in 
sampling this reduces to 0.1%. 

The comparison between the effects of re-sampling and 
the two interpolation strategies demonstrates the key steps 
and advantages of this rotation independent correlation 
algorithm. The simplicity of using a nearest-neighbour 
interpolator whilst enhancing rotational displacement 
measurement, that is comparable to linear interpolation, are 
the stand out features of this technique. Additional examples 
of the technique are now presented to reinforce the claims 
that have been made. With reference to the images in  
Figure 3(b)–(e), Figure 6 describes their respective 
correlation maps. 

Improvement in the baseline error, bσ , as compared to 
linear interpolation, due to increases in the sampling factor 
are presented in Table 2. We have demonstrated our 
correlation technique to meet a consistent improvement 
between interpolation methods for 2.fs =  Figure 3(d) 
contains a high coverage of symmetrical rigid structure and 
is the exception. The higher proportion of distortion shown 
in Figure 6(i)–(l) evidently demonstrates systematic errors 
significantly biasing the baseline error against the random 
variation across the entire rotational correlation maps. 
However, the error reduces as the sampling factor increases. 
This pattern of behaviour is observed in each example. 

The proposed technique decomposes the spatial 
frequency information of the image to form a series of 1D 
correlation signals. Each correlation’s spatial frequency 
components may also be considered potential key-points. 
However, these key-points may not be salient or 
discriminate. Similarly, as discussed in Section 1, region 
based methods can be thought as operating in the same 
manor. To compare the achieved measurement accuracy of 
our technique, we apply SURF, BRISK and ORB detectors 
to the example images in Figure 3. The error maps of each 
region based technique quantify the absolute rotational error 

A Rθε θ θ= − , where Aθ  and Rθ  are the actual and 
recovered rotation values. Caveat to this comparison is the 
following condition: region based descriptors are indirectly 
related to the spatial frequency distribution of the image; 
this is because search based rules are usually applied to  
key-point detection and quantification in the spatial domain. 
Critical features include edges, corners and region statistics. 
Unless each key-point is inspected individually we take 
advantage of the fact that these approaches output a 
cumulative rotation measurement. Using MATLAB, the 
selected region based algorithms are initialised using 
defaulted parameters. Critically, the rotation maps obtained 
from SURF, BRISK and ORB do not produce comparable 
error signature. This is simply because the key descriptors 

of each method are different and larger errors at possibly 
particular and different rotations may occur. Therefore, the 
cumulative absolute errors, collated in Table 3, are the 
discriminant comparable feature of each rotation map. 

Table 2 Measurement consistency: re-sampled  
nearest-neighbour interpolation 

Natural structured image Figure 3(b) 

 Nearest-neighbour bσ  Improvement-factor 

1fs =  0.1435 – 

2fs =  0.0299 4.8 

4fs =  0.023 1.3 

8fs =  0.0221 1.04 

Natural structured image Figure 3(c) 

1fs =  0.214 – 

2fs =  0.0654 3.27 

4fs =  0.023 1.12 

8fs =  0.0221 1.07 

Rigid structured image Figure 3(d) 

1fs =  0.2912 – 

2fs =  0.1977 1.47 

4fs =  0.1854 1.07 

8fs =  0.1807 1.03 

Rigid structured image Figure 3(e) 

1fs =  0.2307 – 

2fs =  0.0771 3 

4fs =  0.0618 1.25 

8fs =  0.0601 1.03 

Table 3 Measurement error: selected region based methods: 
SURF, ORB, BRISK 

 
Figure 

3(a) 
Figure 

3(b) 
Figure 

3(c) 
Figure 

3(d) 
Figure 

3(e) 

SURF θε  1.559 0.0530 0.0791 0.0347 0.0719 

ORB θε  0.0966 0.0267 0.0346 2.0572 2.0816 

BRISK θε  0.293 2.0695 2.1153 0.0502 0.1012 

With reference to the example images Figure 3(a)–(e), the 
average absolute error of ORB over the rotational range is 
consistently less than that of SURF and BRISK for the 
example natural scenes. For the varying image content 
between natural and rigid structure, our proposed algorithm 
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consistently provides an error range with ~0.1% of a degree 
for a sampling factor equal to 2. An exception to the 
consistency of the error measurement, which may be due to 
much rigid symmetry, is Figure 3(d). Whereby, the error 
range variation is 0.1–10% of a degree. 

In our preliminary analysis of we have demonstrated 
that the measurement difference between a nearest 
neighbour interpolator and a linear interpolator is 
significantly reduced when the re-sampling factor equals 2. 
We draw example from the observed baseline errors to 
specify that small rotation variations towards ~0.1% of a 
degree can be reliably measured. However, this figure of 
merit is demonstrated to be dependent on image structure. 
The authors in Fujisawa and Ikehara (2019) propose a 
technique based on the Radon transform (Harrison, 1984) 
and have recorded rotation measurements from popular test 
images, for example ‘Lena’, and compared with phase 
correlation and SIFT (Lowe, 2003). The image dependent 
accuracies are 10% of a degree over a range of 45°  and are 
demonstrated to outperform both phase correlation and 
SIFT (a similar technique to SURF). In Acciaioli et al. 
(2018), a small magnitude, <0.1%, DIC technique for in-
plane strain measurements is investigated. In Sousa et al. 
(2018), the authors propose a point cloud data technique to 
recover rotation measurements, the experimental observed 
errors of that study are approximately 3% of a degree. 

Neglecting contributions to the overall error due to 
focusing (blur), the error limits of our technique due to 
optimised sampling and interpolation are comparable to 
typical DIC system errors that utilise cross correlation 
methods. A drawback of the technique is that the rotational 
ambiguity is 90± °  due to the 180°  viewing angle range of 
the autocorrelation and the two-fold symmetry of the polar 
spatial frequency space. Two points to consider that may 
improve the measurement sensitivity are taking the edge 
image and approximating sinc convolution with higher-
order interpolators: such as cubic and spline interpolation. 
However, if features of interest are not at high spatial 
frequencies the edge image may not adequately represent 
the signal. In addition the correlation peak may be 
unnecessarily over sampled since the shape of the 
correlations curve is parabolic. This may not improve the 
situation. 

5 Conclusions 
In this paper, we have presented a series of results that 
emphasise the rotational measurement accuracy of a  
non-uniformly sampled correlation technique. This 
technique incorporates a modified coordinate transform and 
the simple nearest-neighbour interpolator. Our example data 
set consistently demonstrates an overall rotation error of 
0.1%. Systematic errors imposed by the interpolation 
method and initial image quality are reduced, such that 
spurious signal peaks may be analysed with a higher degree 
of confidence and localised to individual spatial frequency 
components. In turn, each image autocorrelation identifies 
polar spatial frequency components with high S/N. It is 

shown that error locations across a correlation rotation map 
are symmetrical about 90°. Consequently, this increases the 
rotational ambiguity to ±90°. An important drawback of the 
technique is a requirement to meet the sampling condition 
per radial unit. At the expense of image width or height, this 
is achieved by linearly increasing the radial sampling rate as 
the distance from the origin of the polar grid increases. 
Hence, the computational complexity is dominated by 
satisfying the sampling condition at each radii on the polar 
grid. This complexity increases due to scaling from rotating 
the reference and target images. Furthermore, the 
correlations spatial bandwidth may be limited by additive 
noise (photon shot noise, read out noise, flicker noise), low 
contrast images and the imaging devices’ aperture. 
Whereby, the lower radial cut off point ( jr ) of a correlation 
signal varies with noise power and location of interesting 
polar spatial frequency components. 

We believe that due to a broad correlation spatial 
bandwidth and high rotation measurement sensitivity, this 
technique would be of great value in surface deformation 
analysis. In particularly, when applications are data-driven 
and distorted by small scale variation and when surface 
texture patterns are discontinuous. Work is currently 
underway to investigate shape deformation measurement 
tracking. Further research could include developing 
modifications to the technique and integrating the 
application methodology to form hybrid machine learned 
registration models. For applications driven by high 
measurement sensitivity, this may potentially reduce the 
searchable regions in image frames to register rotations and 
provide post process accurate rotation measurement 
estimates. 

Disclosures 
There are no conflicts of interest. 

Acknowledgements 
This work was supported by the Engineering and Physical 
Sciences Research Council, award number: 1510476. When 
the work was carried out, both authors were with Faculty of 
Engineering, University of Nottingham, UK. 

References 
Acciaioli, A., Lionello, G. and Baleani, M. (2018) ‘Experimentally 

achievable accuracy using a digital image correlation 
technique in measuring small-magnitude (<0.1%)’, 
Homogeneous Strain Fields. Materials, Vol. 11, p.751 
[doi:10.3390/ma11050751]. 

Bay, H. et al. (2008) ‘Speeded-Up Robust Features (SURF)’, 
Comput. Vis. Image Underst., Vol. 110, pp.346–359 
[doi:10.1016/j.cviu.2007.09.014]. 

Casasent, D. and Psaltis, D. (1976) ‘Position, rotation , and scale 
invariant optical correlation’, Applied Optics, Vol. 15, No. 7, 
pp.1795–1799 [doi:10.1364/AO.15.001795]. 



 Image correlation, non-uniformly sampled rotation displacement measurement estimation 157 

Charrett, T. and Tatam, R. (2019) ‘Performance and analysis of 
feature tracking approaches in laser speckle instrumentation’, 
Sensors, Basel, Switzerland, p.19 [doi:10.3390/s19102389]. 

Deng, J. et al. (2009) ‘ImageNet: A large-scale hierarchical  
image database’, 2009 IEEE Conference on Computer  
Vision and Pattern Recognition, Miami, FL, pp.248–255 
[doi:10.1109/CVPR.2009.5206848]. 

Fujisawa, T. and Ikehara, M. (2019) ‘High-accuracy image 
rotation and scale estimation using radon transform  
and sub-pixel shift estimation’, in IEEE Access, Vol. 7, 
pp.22719–22728 [doi:10.1109/ICASSP.2019.8682679]. 

Harrison, B.H. (1984) ‘III the radon transform and its 
applications’, In Prog. Opt, Vol. 21, No. C, pp.217–286. 

Kumar, B.V., Dickey, F.M. and DeLaurentis, J.M. (1992) 
‘Correlation filters minimizing peak location errors’,  
J. Optical. Soc. America A, Vol. 9, pp.678–682 
[doi:10.1364/JOSAA.9.000678]. 

Lee, W., Sim, D. and Oh, S-J. (2021) ‘A CNN-based high-
accuracy registration for remote sensing images’, Remote 
Sens, Vol. 13, No. 1482 [doi.org/10.3390/rs13081482] 

Leutenegger, S. et al. (2011) ‘BRISK: Binary Robust invariant 
scalable keypoints’, 2011 International Conference on 
Computer Vision, pp.2548–555 [doi:10.1109/ICCV.2011. 
6126542]. 

Lowe, D.G. (2003) ‘Distinctive image features from scale-
invariant keypoints’, Int. J. Computer Vision, Vol. 20, No. 01, 
pp.91–110. 

O’Mahony, N. et al. (2019) ‘Deep learning vs. traditional 
computer vision’, in Advances in Computer Vision 
Proceedings of the 2019 Computer Vision Conference  
(CVC), Springer Nature Switzerland AG, pp.128–144 
[doi.org/10.48550/arXiv.1910.13796]. 

Rasmy, L., Sebari, I. and Ettarid, M. (2021) ‘Automatic sub-pixel 
co-registration of remote sensing images using phase 
correlation and Harris detector’, Remote Sens’, Vol. 13,  
No. 2314, pp.1–19 [doi.org/10.3390/rs13122314]. 

Reddy, B.S. and Chatterji, B.N. (1996) ‘An FFT-based technique 
for translation, rotation, and scale-invariant image 
registration’, IEEE Trans. Imag. Process, Vol. 5,  
pp.1266–1271 [doi: 10.1109/83.506761]. 

Rublee, E. et al. (2011) ‘ORB: An efficient alternative to SIFT or 
SURF’, 2011 International Conference on Computer Vision, 
pp.2564–2571 [doi:10.1109/ICCV.2011.6126544]. 

Sarvaiya, J.N., Patnaik, S. and Kothari, K. (2012) ‘Image 
registration using log polar transform and phase correlation to 
recover higher scale’, J. Pattern. Recog. Res, Vol. 7,  
pp.90–105 [doi:10.13176/11.355]. 

Schreier, H., Orteu, J.J. and Sutton, M.A. (2009) ‘Image 
correlation for shape, motion and deformation measurements: 
basic concepts, theory and applications’, Digital Image 
Correlation (DIC), Springer, pp.81–108 [doi:10.1007/978-0-
387-78747-3]. 

Sousa, P.J., Barros, F., Tavares, P.J. and Moreira, P.M.G.P. (2018) 
‘Digital image correlation displacement measurement of a 
rotating RC helicopter blade’, Engineering Failure Analysis, 
Vol. 90, pp.371–379 [doi:10.1016/j.engfailanal.2018.04.005]. 

Sousa, P.J., Tavares, J.M.R., Tavares, P.J. and Moreira, P.M. 
(2018) ‘Correction of rigid body motion in deformation 
measurement of rotating objects’, Measurement, Vol. 129, 
pp.436–444 [doi:10.1016/J.MEASUREMENT.2018.07.049]. 

Titkov, V.V. and Panin, S.V. (2019) ‘Measurement affecting  
errors in digital image correlation’, IOP Conf. Ser.: Mater. 
Sci. Eng., Vol. 511, p.012018 [doi.org/10.1088/1757-
899X/511/1/012018]. 

Tong, X. et al. (2019) ‘Image registration with fourier-based image 
correlation: a comprehensive review of developments and 
applications’, in IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, Vol. 12, No. 10, 
pp.4062–4081 [doi: 10.1109/JSTARS.2019.2937690]. 

Villena-Martinez et al. (2021) ‘When deep learning meets data 
alignment: a review on deep registration networks (DRNs)’, 
Appl. Sci, Vol. 10, p.7524 [doi.org/10.3390/app10217524 

Wolberg, G. and Zokai, S. (2000) ‘Robust image registration using 
log-polar transform’, Proceedings 2000 Int. Conf. Image 
Process (Cat. No.00CH37101), Vancouver, BC, Canada,  
Vol. 1, pp.493–496 [doi:10.1109/ICIP.2000.901003]. 

Xiang, C. et al. (2021) ‘Deep learning in medical image 
registration’, Prog. Biomed. Eng, Vol. 3, No. 1, pp.1–29 
[doi.org/10.1088/2516-1091/abd37c]. 

 

Appendix  
The 2D Fourier transform 

( ) ( ) ( )2, , j ux vyH u v h x y e dxdyπ
∞ ∞

− +

−∞−∞

= ∫ ∫  (A1) 

can be viewed as two successive 1D transforms. Hence we 
can re-write Equation (A1) as 

( ) ( )2 2, ,j vy j uxH u v e h x y e dx dyπ π
∞ ∞

− −

−∞ −∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫  . (A2) 

Consider two functions where one is a rotated and translated 
replica of the other 

( ) ( )0 0 0 0 0 0, cos sin , sin cos .h x y g x y x x y yθ θ θ θ= + − − + −  (A3) 

From the Fourier translation and rotation property  
Equation (A3) becomes  

( ) ( )
( )0 0

0 0 0 0

2

, cos sin , sin c

,

os
j ux vy

H u v G u v u v

e π

θ θ θ θ
− +

= + − +
 (A4) 

whereby all points in frequency space are first rotated and 
then shifted in phase by the translation. An examination of 
Equation (A4) reveals that the magnitude of ( ),H u v  is 
invariant to phase displacement. For 0 0û ucos vsinθ θ= +  
and 0 0v̂ usin vcosθ θ= − + , the polar coordinate conversion 
of û  and v̂  is 

( ) ( )0, , .H r G rθ θ θ= ±  (A5) 
Hence, each radial component jr , sampled by ( )0:2i πθ , 
returns a series of 1D polar frequency coordinates.  
A rotation about the origin on a polar grid transformed back 
to a Cartesian grid corresponds to a linear horizontal 
translation. The Fourier transform in Equation (A5) reveals 
a phase relationship that is deduced by applying a 
correlation to reveal a peak location at ( ), ∆rδ θ θ± . 
Increasing the radial or the angular increment changes the 
grid space of the annular region. This adjusts the sampling 
rate and therefore yields a degree of freedom to manipulate 
nonlinear grid spacing. 


