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Abstract: Many metaheuristic algorithms have been developed with genuine inspiration from nature.
Photoreceptors through certain ganglion cells of fovea towards the main cells of said visual cortex,
every physical optical system is modelled in the form of cascading sub-filters. This idea has sparked
research into the biological retina to better understand its information-processing capacities to copy
the architecture to create mechanical visual sensors. Human fovea photoreceptor cones and rods have
a hexagonal rather than a rectangular shape. In that context, we provide a 2-D interpolation lattice
conversion approach for creating hexagonal meshes, which is guaranteed to maintain alignment with
our visual system and has a straightforward implementation and calculation process. This approach
delivers a simulated hexagonal image for visual verification without needing a hexagonal capture or
display device.
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1 Introduction

In the swiftly developing field of image processing and
computer vision, natural computing has come to light as a
potential remedy for up-and-coming researchers. By taking
inspiration from the natural world, nature-inspired computing
(NIC) (Yang and Cui, 2014) has created numerous innovative
algorithms and calculations. Numerous in-depth studies are
being advanced in the hexagonal tessellation lattice to bring
about a breakthrough in digital image processing. ‘nature-
inspired computing’ (NIC) methods are more adaptable,
versatile, reliable, quick to deliver, and simple to understand.
It can therefore be used to solve various mathematical
computations and real-time applications.

Machine vision sensor placement should mimic the dense
cone as well as rod distribution within the human Fovea, to
duplicate the properties of HVS (Ahir et al., 2019). Today,
rectangular meshes are preferred over hexagonal ones because
they are simpler to create in hardware, more readily available,
and more widely understood to work with the cartesian
coordinate system. Given that, as shown in Figure 1, hexagonal
pixels nearly mimic the form of the human The human visual
system and hexagonal geometry have a close relationship,
Fovea. The hexagonal lattice is frequently found in nature,
including in beehives, dragonfly eyes, bubble rafts, and other
structures (Buschbeck et al., 1999). Here’s a basic explanation
of how the human eye captures images. Located mostly in the
backside of the eye, this retina seems to be a thin layer of tissue
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that is extremely sensitive to damage. The retina’s function is
to receive visual information from the eye and transform it all
into neural activity which may be conveyed to the brain further
for analysis. The fovea is a small area of the retina where
rods as well as cones are organised inside a hexagonal grid. A
hexagonal lattice has an added benefit over a square one when
it comes to more accurately distinguishing between straight
and curved edges because of this type of spatial organisation
(Middleton and Sivaswamy, 2006; Sheridan et al., 2000).

Figure 1 Human fovea photoreceptor rods and cons

In many cases, it is pretty challenging to construct a
spatial geometric distribution that mimics HVS from a
2-D image to attain real-time performance Wang et al.
(2005). According to its simplicity in the coordinate system
cartesian as well as its orthogonal alignment, rectilinear
squares mesh is widely employed in sensing devices &
display panels. The square mesh, however, falls short of
requirements that call for symmetric geometric computation
between contiguous close-by pixels. Here, it is necessary
to look into a substitute that would be appropriate for the
challenge (Asharindavida et al.,2012). Mechanical visual
sensors that are readily available come close to matching the
retinal photoreceptor density of primates. Regarding range
and sensor-level processing power, they still fall short of the
human visual system. This spark spurred current research on
biological retinas to learn more about processing methods to
create the best possible visual sensors Constandinou (2005).
According to Jeevan and Krishnakumar (2016), three standard
lattice systems are squares, triangles, and hexagons. With the
help of these tessellation patterns, we can tile a plane with
no overlap and empty areas in between. All other tessellation
spatial arrangements will be based on the inconsistent spacing
among pixels in the neighbourhood and samples will overlap.

Figure 2 Schemes of standard tessellation: (a) square, (b) triangle
and (c) hexagon (see online version for colours)

The most typical and straightforward tessellation that fits
the cartesian coordinate system is thought to be Figure
2(a). This triangular tessellation in Figure 2(b) is more

densely packed than square tessellations. The most successful
tessellation scheme that complies with the HVS is considered
hexagonal tessellation, as depicted in n Figure 2(c). The
uniform neighbourhood pixels, greater packing density,
equidistant neighbourhood connectedness, and enhanced
angular rectification are only a few of the geometric
advantages. Additionally, from the primate’s perspective,
human anatomy cognition is what gives this geometric
arrangement its added value (Schwartz, 1980). A set of
hexagonal pixels is formed by the image on the 2-D image
frame, and this configuration produces acute eyesight for
information gathering. The number of retinal photoreceptors
in primates’ retinas can be closely matched by mechanical
vision sensors that are widely available. They still lack the
range and sensor-level processing power of the human visual
system. These benefits increase accuracy when detecting
curved and straight edges (Scotney and Coleman, 2007).
According to Tam (2014), traditional square architecture
displays 3X3 matrix units, whereas hexagonal architecture is
structured in sets of 7 hexagons (Figure 3).

Figure 3 Architecture of pixels: (a) hexagon and (b) square
(see online version for colours)

The Cartesian coordinate systems only work with traditional
square lattice images. To address and store data effectively, the
hexagonal grid image system needs an appropriate coordinate
system. Three coordinate symmetrical coordinate frames (Her,
1995), a single indexing scheme (Sheridan et al., 2000),
and a scheme of both oblique coordinate axes addressing
(Luczak and Rosenfeld, 1976) are three prominent addressing
strategies that connect the hexagonal structure in Figure 4.

Each hexagonal pixel is represented by an ordered pair
of vectors in horizontal and vertical directions with the aid
of a two-axes oblique system coordinate (see Figure 4(a)).
The advantages of this system are as follows (Coleman et al.,
2009a, 2009b):

• complete: a point can be efficiently and precisely
portrayed in 2-dimensional space

• unique: a point representation can be given an exact
ordered pair of coordinates

• convertible: the Cartesian coordinate system is
comparable to it and may be changed into and out of it
rapidly.

Her (1992), Her and Yuan (1994) propose the three-axe
coordinate frame, commonly known as the symmetrical
hexagonal coordinate frame.
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As depicted in Figure 4(b), the mentioned coordinate
system utilises x, y and z coordinates. Additionally, a one-to-
one mapping symmetrical hexagonal frame (*R3) and three-
dimensional cartesian frame (R3), shown in Figure 4. Any 3
coordinates will adhere to the mathematical formula shown
in equation (1). The adjacent pixels are separated by a unit
distance.

x+ y + z = 0 (1)

All geometric transformations and theoretical explanations
can be easily transferred to and from *R3 to R3 because of
the symmetrical hexagonal coordinate frame’s proximity to
and interaction with three dimensions. In this method, the
structural symmetry feature is well preserved.

Figure 4 Schematic of hexagonal coordinates a) two-axes oblique
b) three coordinates symmetrical *R3 c) *R3 and R3 d
relationship) single indexing-spiral architecture
(see online version for colours)

Spiral addressing (SA), created by Middleton and Sivaswamy
(2006) and Wu et al. (2002), is another addressing strategy
for hexagonal structures. SA is based on a single addressing
system. Spiral clusters of hexagonal pixels are used. Each pixel
in spiral addressing consistently has six adjacent pixels. As
indicated in Figure 4(d), In SA, the first step is to assign a
destination identifier to each hexagon, starting on the image
centre and increasing as seventh powers.

Figure 5 Cluster of basic seven hexagonal cells (see online
version for colours)

The address is initially put to a row of seven hexagons with
the labels 0, 1, 2, 3, 4, and 6. The framework is widened
to accommodate an extra 6 hexagons, as seen in Figure 5.

Each address in this case is multiplied by 10. As it has been
done for the first seven hexagons, an address is given for each
newly placed hexagon concerning the centre pixel address
(Narayanankutty and Raffi, 2014).

The cluster of size 7n comprises the numbered hexagons
(n = 1, 2, 3, ...). The hexagons tile the plane along the spiral
rotation in a recursive spiral-modular pattern. 49 pixels are
presented in a one-dimensional addressing method as seen in
Figure 4(d). Many computer vision applications benefit from
this architecture’s extra feature of establishing the image’s
centre at its origin and maintaining connectivity throughout
its six neighbourhoods. In this study, we employ a two-axes
oblique coordinate system because it can successfully recreate
a hexagonal grid using hardware already in use.

The research work is prepared with the following
organisational structure. The literature review of hexagonal
image processing is summarised in Section 2. The
representation, processing, and hexagonal picture lattice are
all covered in Section 3. The suggested 2-D interpolation
lattice conversion pseudo hexagonal simulation algorithm,
known as the "PA" algorithm, is described in Section 4 (Where
P represents the first author’s first letter and A represents the
second author’s first letter). Section 5 contains the findings and
discussions. Our conclusion will be presented in Section 6,
along with details on any possible subsequent works in the
future.

2 Literature review

Although using hexagonal images has several advantages, the
limitation of its utilisation is primarily a result of outdated
technology, featuring hexagonal image sensors, as well as
hexagonal picture displays. Building a successful resampling
method will allow us to use the benefits that hexagonal
lattice offers for image processing while continuing research
developments in this technology employing the currently
available hardware. We must use a resampling technique
to carry out tasks for display and processing with the
hardware we currently have (Gardiner et al., 2016). The
pixels are not grouped in a spiral pattern in a true hexagonal
configuration. Instead, numerous coordinate systems and
addressing algorithms are created to mimic hexagonal grids
(Luczak and Rosenfeld, 1976; Her, 1995).

Here, we go over the specifics of hexagonal sampling
and the numerous resampling techniques developed in the
literature to make it possible to switch from one lattice to
another lattice grid.

2.1 Hexagonal sampling

Mersereau (1979) state that there are several problems with
rectangular space sampling, including the fact that the spatial
resolution changes depending on the direction of the sample.
Since this is the case, the best example pattern is a regular
hexagonal arrangement. As can be shown in Figure 15, if a
signal is bandlimited during a circular region of the Fourier
planes, the most effective sampling method is a hexagonal one.
When evaluating signals of the same kind, Huck et al. (1990)
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found that hexagonal sampling required 13.4% points fewer
repetitions over rectangular selection.

x(n1, n2) = xa(n1T1, n2T2) (2)

where xa (T1, T2) is analogue images, and T1 and T2 denote
sampling intervals in horizontal as well as vertical directions.
The rectangular sampling sequence was represented by x(n1,
n2).

Let xa (Ω1, Ω2) represents Fourier transformation of
xa (T1, T2).under condition: xa (Ω1, Ω2)=0, (Ω1, Ω2) ACR,
then we can say the image is bandlimited as shown in
Figure 15(a). Additionally, the image can be precisely rebuilt
with equation (3).

T1 <
π

w1
and T2

π

w2
(3)

where w1 and w2 represent the horizontal and vertical
bandwidth expressed in radians.

Similar to rectangular sampling, hexagonal sampling can
be shown. It can be represented in equation (4).

x(n1, n2) = xa

(
2n1 − n2

2
T1, n2T2

)
(4)

where x(n1, n2) displays the image that was hexagonally
sampled in Figure 15(b). It needs to be band-restricted using a
hexagonal band region to precisely recover the original image
with equation (5).

T1 ≤ 4π

2w1 + w2
and T2 ≤ π

w2
(5)

which may not have the same horizontal and vertical sampling
intervals (Gardiner et al.,2007).

Figure 6 (a) Rectangular sampling, (b) hexagonal sampling
(see online version for colours)

3 Resampling methodology

3.1 Alternate pixel suppressant method

According to Sankar et al. (2004), a hexagonal grid can be
created over a rectangular grid by alternately eliminating the
rectangular grid’s horizontal rows and vertical columns. The

equation for the subsampling is given in equation (2). The
equation for subsampling is given in equation (6).

pixel_valhex(i,j) =

{
pixelval(2∗i,2∗j), if is even

pixelval(2∗i,2∗j+1) if i is odd
(6)

Since part of the pixels in the rectangular grid and the
hexagonal grid are suppressed, this method has no one-to-
one correspondence. The pixels that are silenced are given
zero values. The suppressed pixels are not considered while
performing computations with the sub-sampled pictures. As
shown in Figure 7, compared to a rectangular grid, newly
sampled parts include a pixel quarter.

Figure 7 Pixel arrangement (a) rectangular and (b) sub-sampled
hexagonal mesh (see online version for colours)

3.2 Half-pixel shift method

For hexagonal mapping from a square, Periaswamy (1996)
suggested a half-pixel shift method in which the midpoint of
each odd line is calculated with a simple step (i.e., midpoint =
1/2(left pixel + right pixel)), with these extreme right, as well as
left measurements, discarded and the midpoint values retained
as shown in Figure 8. The hexagonal mapping equation is
given in equations (7) and (8) (Gardiner et al., 2011).

pnew(x, 2y) = pold(x, 2y) (7)

pnew(x, 2y + 1) =
pold(x, 2y + 1) + pold(x+ 1, 2y + 1)

2
(8)

4 Features of hexagonal sampling scheme

4.1 More efficient sampling scheme

An inadequate sampling rate is referred to as aliasing,
and it causes undesired consequences in the recovered signal
(Burton et al., 1993). On such a hexagonal grid, regenerating
an input signal with a low wave number takes fewer samples,
according to a study by Petersen and Middleton (1962). The
main conclusion is that the square lattice sampling strategy
is ineffective. As a result, the rhombic hexagon (120◦) is
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regarded as an efficient sampling lattice when utilising a two-
dimensional isotropic function, as shown in Figure 9. In this
figure, the spectrum is circumscribed by circles with a radius
of 2B. The distance between the sample sites is determined by
1/(3*B). The resulting sample efficiency is 90.8% as opposed
to the typical square lattice’s 78.5%.

Figure 8 Hexagonal mapping using half-pixel shift method: (a)
square mapping and (b) hexagonal mapping (see online
version for colours)

Figure 9 Sampling lattice of (a) circular and (b) isotropic function
(see online version for colours)

4.2 Smaller quantisation error

In the most modern digital technology, the quantisation of
an image into spatial units with finite dimensions known
as pixels is crucial. The quantisation error is a crucial
factor in determining the value of the layout of the many
accessible sensors. Petersen and Middleton (1962), Kamgar-
Parsi and Kamgar-Parsi (1993), Kamgar-Parsi and Sander
(1989), Kamgar-Parsi (1992) created an equation to calculate
hexagonal lattice quantisation error and which is lesser than
with a square.

4.3 Consistent connectivity

The interconnectivity between the pixels is the core idea
in digital image processing. According to Richard and

Figure 10 Spectral packaging for (a) square (b) hexagonal
(see online version for colours)

Gonzalez (2001), two pixels are connected if they are
neighbours and meet the required similarity standard. There
is a two-pixel neighbourhood in a square grid. If two
pixels have the same corner or share an edge, we consider
them to be linked. As shown in Figure 11(a) and (b),
a square grid has four neighbourhood pixels and eight
neighbourhood pixels, respectively. However, there is no
option for connectedness in the case of a hexagonal grid
(Mylopoulos and Pavlidis, 1971; Golay, 1969). We can
only define a 6-neighbourhood connection, as shown in
Figure 11c. Numerous image processing algorithms can be
implemented quickly and effectively because there is a lack of
communication options. The hexagonal grid’s neighbourhood
connectedness is constant and limited to six directions.

Figure 11 Neighbouring pixels in (a) square and (b) hexagonal
lattices (see online version for colours)

4.3.1 Equidistance

The standard square lattice image considers two separate
categories of distance measurements. As shown in
Figure 12(a), the computed distance between neighbouring
pixels in diagonal orientations is approximately two times
that of the corresponding horizontal direction. As illustrated
in Figure 12(b), each hexagon in a hexagonal grid has a
consistent number of six neighbours, all of whom are evenly
spaced from the centre pixel along its six edges (He et al.,
2007).

4.3.2 Greater angular resolution

Because hexagonal lattice has better angular resolution than
square lattice, it has become more advantageous.



Computational simulation of human fovea 163

According to Serra (1986), consecutive pixels in a
hexagonal lattice are separated by 60 rather than 90 pixels.
Curved features can be expressed more effectively in
hexagonal shapes than square ones, as seen in Figure 13(a).
In hexagonal lattices, the consistent connection has resulted
in improved angular resolution.

Figure 12 Distance measure for (a) square (b) hexagon (see online
version for colours)

Figure 13 Curved feature representation in (a) hexagonal and
(b) square (see online version for colours)

Figure 14 Symmetries in structure (a) square symmetry and
(b) hexagon symmetry (see online version for colours)

4.4 Higher symmetry

The symmetry of a hexagonal grid is the same at all angles
(0, 60, and 120). Numerous image processing applications
get more value due to this added benefit. For instance, a
hexagonal grid will retain more image information than a
square grid when we rotate the photographs on it. Jeevan
and Krishnakumar (2016) created a variety of morphological
operators. Due to the continuous connection and more
excellent symmetry of the hexagonal grid, as depicted in
Figure 14, he favours it above the square grid.

5 Flow diagram of psuedo hexagonal processing

To further study the subject of hexagonal image processing,
square latticed images must now be resampled or converted
to hexagonal latticed images. According to Middleton and
Sivaswamy (2001), each pixel is represented by a block of
nxn pixels in this novel method. The processing of images
in a virtual hexagonal environment uses subpixel hexagonal
images. This technique for transforming square grid images
into hexagonal grid images, as illustrated in Figure 17, uses
hexagonal image processing, which is employed immediately
for modern life since hexagonal image sensors are not readily
available.

Figure 15 Processing of hexagonal images (see online version
for colours)

Resampling results in a sub-pixel clustering effect, which
reduces the impact of resolution loss. Each hexagonal pixel is
represented as a block of 66 pixels.

The selection of the hexagonal pixel’s associative, which
is independently gathered, is influenced by two policy
considerations:

• There should be no gaps between pixels that are
neighbours in six dimensions.

• The arrangement of the pixels must resemble a
hexagon. A hexagonal pixel lattice, for example, should
follow the geometry’s rules (Gardiner et al., 2011).

5.1 Simulation of hexagonal pixel

Currently, pseudo software implementation is used to
resample rectilinear square pixel-centered images to simulate
hexagonal images. With this suggested approach, hexagonal
square-shaped ‘sub-pixels’ are combined to form a ‘pixel’,
which is the final product. Every pixel is embodied using
an nXn block of pixels throughout to facilitate sub-pixel
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clustering as well as realise the correct resolution. As seen in
Figure 16, the hexagonal picture is constructed by mapping
every pixel of said input image onto a 6x6 pixel block. This
section matches the brightness of the picture’s square grid
exactly. If the scaling was successful, the output picture will
have the same pixel density as the source. Square pixels
are used to produce six pixels with the number 1, and the
remaining pixels with the number 0 are eliminated.

Figure 16 Square pixels are arranged into hexagons (see online
version for colours)

Using this technique, it is possible to transform any input
picture with square pixels into one with hexagonal ones. We
then set up each cluster of hexagonal pixels on the grid in
the manner depicted in Figure 19. First row, first column A
is displayed in pixel-shaded yellow (1,1) and pixel-shaded
green (1,2). Similar to how the pixels above are numbered, the
hexagonally constructed image is displayed in Figure 17.

Figure 17 Collection of hexagonal pixels (see online version
for colours)

5.2 Proposed algorithm

The 2-D interpolation proposed algorithm for getting a cluster
of hexagonal pixels steps are detailed below.

1. 1. To start.

2. Accept the selected dataset and type that is supported
(*jpg, *png, *bmp).

3. Resize pictures into a single standard dataset size.

4. A null matrix is created with a 6 x6 size.

5. Find pixels coordinates indicated by the number 1,
then fill them with the corresponding image pixel
intensities.

6. Increase the size of the zero matrices to six times
larger than the original images.

7. Put representing pixel image intensity values in the
respective places.

8. Step 8: Calculate the values of the pixels that need to
be shifted without overlapping, then perform the
shifting operations as necessary.

9. Step 9: Adjust the pixels until they precisely line up
with the neighbouring pixels.

10. Step 10: Obtain the image with the hexagonal
structure.

11. Step 11: End.

Using the method outlined above, the square dataset can
be changed to the hexagonal dataset. It uses a row-column
addressing scheme based on an oblique two-axis reference
frame, allowing us to process the picture with current
hardware. The row-column addressing used in our suggested
technique is modelled after the well-known Cartesian
coordinate system. Using the ‘PA’ method, you may simulate
hexagonal pixels on a colour image. Given that a colour image
has three channels, an algorithm should be executed to each
RGB channel separately, and the results superimposed.

6 Results and discussions

The system specification and simulation outcomes for the
proposed project were demonstrated using Python and are
given below:

Tool used : Python 3.8
OS : Windows 7
Processor : Intel
RAM : 8GB RAM
Dataset : CINIC-10, COIL-100, D-COIL-100

(Luo et al., 2019)

The ‘PA’ Algorithm produced several outstanding benefits for
hexagonal picture representation, including:

• no interpolation filters are required for image
enhancement

• all the adjacent pixels are similar

• unused pixels in the algorithm are less than 5

• image resolution is retained

• the hexagonal structure pixel formed is symmetric

• equal distances between the neighbourhood pixels and
reliable communication to the centre pixel.

Figures 18–20 display the CINIC-10 image having hexagonal
pixels imitation by employing the ‘PA’ algorithm. The
hexagonal pixels can be visualised in the enlarged view.
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Here images used are (cameraman.jpg,flower.jpg) of
different sizes 32×32, 64×64, 128×128, 225×225, 512×512.
As may be seen in Figure 21, a plot of the time it takes to
complete the computation of the proposed method is very
faster even for high-resolution images.

Figure 18 Simulation results of the CINIC-10 dataset using the
PA algorithms (see online version for colours)

Figure 19 Simulation results of COIL-100 dataset using the PA
algorithms (see online version for colours)

Figure 20 Simulation results of the D-COIL-100 dataset using the
PA algorithms (see online version for colours)

Figure 21 Computational run time of images of various sizes:
(a) grey-scale and (b) colour images (see online version
for colours)

To compute the memory complexity, images
(cameraman.jpg,flower.jpg) of various sizes are chosen.
The memory complexity graph as shown in Figure 22
demonstrates that pseudo hexagonal images maintain clarity
both in greyscale and colour images. From the perspective
of space complexity, the proposed algorithm will take more
space by increasing the image size.

Figure 22 Memory complexity constraint in square and hexagonal
lattice comparison: (a) greyscale image and (b) colour
image (see online version for colours)

7 Conclusion

This study presents the implementation of a novel and efficient
2-D lattice interpolation hexagonal pixel simulation technique.
The hexagonal pixels are produced using all the geometric
advantages the structure has. Simulated hexagonal pixel
geometry allows for geometrical symmetry between adjacent
cells of higher order and contiguous neighbours. Although the
‘PA’ algorithm does not employ any interpolation filters to
improve images, image resolution is kept, and the proportion
of unused pixels is tiny. Additionally, this technique displays
a greater representation of symmetric hexagonal pixels. The
newly proposed algorithm’s model of hexagonal images fits
the human visual system well (HVS). The PA method’s
performance evaluation graph makes it abundantly evident
that the suggested technique will function correctly even for
high-quality photos. Although the simulation findings are
promising, there is still room for improvement. This novel
tessellation technique will undoubtedly open up new avenues
for investigating the useful aspects of images that may aid in
developing engineering, medical science, and other fields of
technology that will benefit humanity. The researchers in this
field are inspired by this work to use the proposed algorithm
in real-world applications and calculations.
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