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Abstract: An efficient hierarchical hybrid delivery (EHHD) model is proposed 
by integrating a location-allocation optimisation model with a dynamic data 
envelopment analysis (DEA) model in this paper. The proposed model is 
characterised by having a periodic measurement assessing customer behaviour 
using the dynamic DEA, as well as developing a hierarchical connection among 
home delivery, the pickup point and the locker station options. The developed 
model considers uncertain conditions for transportation costs and customer 
behaviour. To solve this model, a meta-goal programming approach has been 
used. Based on the results of the numerical experiments, the developed model 
has a better performance than other competing models in terms of generating 
feasible and optimal solutions. Moreover, the application of the developed 
model is demonstrated in a case study. To the best of our knowledge, the model 
presented in this paper is the first attempt to simultaneously integrate customer 
behaviour with last-mile logistics. [Received: 23 April 2021; Accepted: 27 
August 2022] 
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1 Introduction 

One of the significant resources of energy consumption and greenhouse gas emission is 
urban transportation (Savelsbergh and Woensel, 2016). Meanwhile, transportation 
activities are known as an important element in the supply chain and logistics 
management (Lambert and Cooper, 2000; Mason and Lalwani, 2006). In this regard, 
some researchers focus on transportation planning in the supply chain as well as logistics 
management with the aim of optimising the transportation problem (Petridis et al., 2017; 
Mehlawat et al., 2019). In the literature, logistics management is defined as “the process 
of planning, implementing, and controlling the efficient, effective flow and storage of 
goods, services, and related information from the point of origin to the point of 
consumption for the purpose of confirming to customer requirements”, where it is a part 
of the supply chain management (Lummus et al., 2001). On the other hand, the last-mile 
logistics, which is generally related to the last stage of the customer demand satisfaction 
process in terms of the delivery of goods to the destination point, is one of the most 
polluted, costly and inefficient parts of the supply chain (Olsson et al., 2019). It is worth 
noting that the flow of goods, as mentioned in Olsson et al. (2019), can be reversed in the 
last-mile logistics. An example of reverse flow is when vehicles transport the flow of 
returned goods to a collection point (Tighazoui et al., 2018). Particularly, due to the rapid 
growth of e-commerce leading to increased online customer demand, last-mile city 
logistics has got a significant role in influencing urban transportation (Viu-Roig and 
Alvarez-Palau, 2020). The COVID-19 pandemic crisis has also led to further growth in  
e-commerce as online demand has increased due to social distance restrictions (Statista, 
2020). In this regard, the labour shortage caused by the pandemic threatens the demand 
satisfaction process (Nagurney, 2021a, 2021b). In addition, the process of satisfying 
demand becomes more and more complex as statistics show that the demand for parcel 
delivery has tripled in less than a decade by 2020, and is expected to nearly double from 
2020 to 2026 (Mazareanu, 2020). Thus, planning and optimisation of the last-mile 
logistics problems for the supply chain and logistics managers is essential, especially 
where there are constraints on supply and transportation (Balcik et al., 2008). 

In case of the lack of effective last-mile solutions, the goods delivery leads to the 
increase of logistic costs, lead time, traffic problems, and decrease of social networking 
activities. Therefore, the conventional delivery networks should be upgraded. For 
example, when the customers are not present in the reception location, delivery is failed 
and it imposes a lot of cost on the delivery system. Hence, an appropriate solution is to  
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deliver the good to a place near the absent customer’s location. This solution is referred 
to as crowdsourced delivery. It should be noted that crowdsourced delivery cannot be 
fully replaced for the traditional parcel delivery system. However, the combination of 
these two delivery approaches leads to the improvement of last-mile logistics (Guo et al., 
2020). Halldórsson and Wehner (2020) proposed and investigated six last-mile fulfilment 
options. In the first option, the end consumer buys the product from a retailer’s store and 
the end consumer is responsible for transportation. The second option is similar to the 
first option, except that the end consumer makes an online order. In the third option, after 
registering an order, the end consumer goes to the points located in a close distance to 
pick up the goods. The fourth option is similar to the third one while in this option, the 
end consumer is faced with no time limitation to pick up the goods. In the fifth option, 
after aligning the sender and receptor’s time, the sender delivers the goods to the 
customer in the reception location. Finally, in the sixth option, the goods are delivered 
when the end consumer’ car is parked in a specific region in the city. When the customer 
is not present in the delivery location, the retailer can temporarily deliver the goods to the 
collection and delivery point (CDP), so that the customer can pick up the goods from 
CDP, later. The CDP location is affected by customer behaviour and depending on the 
shopper’s attendance and service time, CDPs are divided into two categories. The first 
category is attended CDP in which, the logistic provider contracts with supermarkets, so 
that the human workers provide services for the customer at a specific time. The second 
category is unattended CDP in which, the customer picks up the goods from the smart 
locker within 24 hours (Xu et al., 2020). The unattended CDP is useful in high security 
areas (Janjevic and Winkenbach, 2020). 

Based on a thorough review of the literature, few studies have been focused on 
optimisation models for CDP location and demand allocation. Also, the quantitative 
approaches regarding the customer behaviour and mobile CDPs are very limited in the 
literature (Xu et al., 2020; Deutsch and Golany, 2018; Schwerdfeger and Boysen, 2020). 
Due to insufficient planning and lack of focus on optimisation in relation to delivery 
points, some serious challenges arise, such as reduced levels of service, increased traffic 
congestion, higher transportation costs and lack of attention to customer characteristics. 
In this regard, the main research questions are as follows: 

• Which network structure of last-mile fulfilment options can improve the demand 
satisfaction process? 

• How is customer behaviour integrated with the delivery points location-allocation 
optimisation model? 

• How is transportation cost minimised in relation to customer congestion? 

This paper aims to examine the value of customers as an influential factor in locating 
CDPs through the development of a multi-objective mathematical optimisation model. 
On the other hand, the hierarchical connections among different categories of CDPs have 
been considered in this paper in order to improve the level of service. Finally, the 
customer’s desire to reduce the transportation and delivery costs considering congestion 
levels is addressed in this paper as a supply-related objective function. 
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The rest of the paper is organised as follows: The related literature is reviewed in 
Section 2. The problem of efficient hierarchical hybrid delivery (EHHD) is defined in 
Section 3, and the optimisation model is formulated in Section 4. In Section 5, a 
reformulated model is proposed given the linearisation of optimisation model. In  
Section 6, the solution approach is introduced. The numerical experiments are presented 
in Section 7. In Section 8, a sensitivity analysis is performed on some important 
parameters. A real-world case study is provided in Section 9, and finally, the concluding 
remarks are provided in Section 10. 

2 Literature review 

The logistic last-mile problems have created some challenges for the cities, logistic 
careers and retailers. In the research performed by Deutsch and Golany (2018), the parcel 
locker network has been designed for reducing the logistic flows and the number of failed 
deliveries, and increasing the transportation network flexibility. However, this paper has 
some limitations including inconsideration of the dynamic approach and customer 
preferences. In the research performed by Schwerdfeger and Boysen (2020), the mobile 
parcel lockers have been introduced as a solution for last-mile distribution which can 
decrease the traffic congestion, environmental impacts and negative health consequences 
in big cities. The relocation of the lockers can facilitate the access to customers whose 
locations vary during the day. They proved that the fleet size required in the mobile 
parcel lockers is less than the fleet size required in stationary lockers. When the recipient 
provides the sender with the possibility of delivery in more than one delivery location, 
the delivery process becomes flexible; i.e., this process takes place with a lower cost and 
in a shortest time. For this purpose, Orenstein et al. (2019) developed a logistic model for 
delivery of small parcels to the service points. They suggested to perform the future 
studies by regarding multi-period problems to achieve efficient delivery. Zhou et al. 
(2016) proposed a model which considers two kinds of services including the home 
delivery (HD) and customer’s pick-up (CP), simultaneously, in order to reduce the costs 
and pollution, and increase the effectiveness of supply chain. Their findings showed that 
the proposed model has a lot of advantages over the HD-only service. On the other hand, 
distance is an important criterion for the customer to choose the pickup point. However, 
their model decides to provide service for the customer by either HD or customer’s 
pickup. 

There exist a number of factors which affect the location of delivery points. Janjevic 
et al. (2019) developed a last-mile multi-echelon distribution network by formulating a 
nonlinear optimisation model based on CDPs. The ratio of the demands attracted to these 
points is assumed as a function of the distance between the demands and CDPs. The 
results showed that observance of CDPs can reduce the costs. Xu et al. (2020) proposed a 
data-driven method for location of CDPs based on the customer behaviour data. The 
online retailers’ location is determined by integrating the data mining models and facility 
location. The results were analysed based on the trade-off between the consumer service 
level and the total logistic costs. However, they have not considered the traffic congestion 
in their proposed model which is one of the main limitations of their research. It should  
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be noted that the possibility of crimes such as impersonating courier is one of the 
disadvantages of HD. In this regard, Lee et al. (2019) developed a decision model for 
installation of unmanned parcel lockers. The demand and distance have been considered 
in their model while some important factors such as the environment and performance 
components have been ignored. Noyan and Kahvecioglu (2017) proposed a two-stage 
stochastic programming model for designing a last-mile distribution network. This model 
observes the uncertain aspects in a post-disaster environment and it has been concluded 
that observance of the capacity leads to a reduced response time. In this model, customer 
access is only provided by the distribution points. Chauhan et al. (2019) presented a 
facility location model with the aim of maximising the customer coverage. Drones are 
launched from these locations and return to these locations after serving the customers. In 
this model, both the battery capacity of the drones and the capacity of the locations have 
been considered. They showed that considering the battery capacity of drones is critical 
to such delivery systems. 

On the other hand, last-mile logistics are effective in routing. The growth of demands 
and customer expectations has made the companies to design a faster last-mile network in 
terms of cost, efficiency and delivery time. In this regard, Salama and Srinivas (2020) 
determined several points as a truck park location by clustering the delivery locations 
where, the other demand points in each cluster are satisfied by drones. The truck park 
location can be either one of the points in which the customer is present or any point in 
the delivery area. In this paper, the objective functions of time and cost have been 
compromised by epsilon-constraint method. Jahangiriesmaili et al. (2017) developed a 
two-echelon delivery structure for last-mile deliveries where, heavy trucks deliver the 
goods to the terminals and then, small trucks transfer the goods from the terminal to the 
customers. This delivery structure can reduce the road congestion and fuel consumption 
and increase accessibility. They concluded that the location of terminals in congested 
regions is not economically justifiable. Sitek et al. (2020) developed a binary integer 
programming model for vehicle routing problem (VRP). This model is distinct from the 
other VRPs due to the fact that it considers the alternative delivery points and parcel 
lockers in the distribution networks. They showed that increase in the number of delivery 
points leads to increase in the travelled distance and the number of service providers. 
Baldi et al. (2019) proposed a model for last-mile logistics by which, the items are 
accommodated in bins. It should be noted that the items have been divided into two 
categories where, a group of items should be accommodated in the bins while there is no 
compulsion for accommodation of the other group. The items are classified before 
modelling and hence, these two groups of items are considered as the inputs of the model. 
Moshref-Javadi et al. (2021) proposed mathematical models in which trucks and drones 
are synchronised in order to minimise the waiting time of customers for the last mile 
delivery problems. The goods can be delivered to the customer via a drone that launches 
from the truck. After meeting the customer demand, the drone returns to the truck 
according to the updated location of the truck. They showed that synchronisation of the 
truck and the drone can significantly reduce the customer’s waiting time compared to a 
truck-only scenario. In this regard, Kuo et al. (2021) synchronised the trucks and drones 
so that the customer’s node is served in a specific time window. Luo et al. (2021) 
investigated customer service with collaboration between drones and trucks, where there 
is a tolerable time for serving, i.e., the time window is flexible. They showed that an  
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increase in the number of drones leads to less transportation costs and higher customer 
satisfaction. Thomas et al. (2022) criticises the body of research related to the delivery 
system that is based on the collaboration of trucks and drones in that it neglects the 
scheduling problem. Deploying multiple drones simultaneously in a delivery network 
regardless of scheduling may lead to drone collisions and this reduces the safety of the 
delivery system. For this purpose, they presented a mixed integer linear programming 
model to consider the truck routing and drone scheduling decisions in an integrated 
manner. Salama and Srinivas (2022) introduced a new variant of drone-truck 
collaboration through a mixed integer linear programming model, in which there is a 
truck and a heterogeneous fleet of drones. This paper simultaneously focuses on three 
types of decisions which include assignment (each customer location to a vehicle), 
routing (truck and drones) and scheduling (drone and truck operator activities) in the last 
mile of the delivery problem. In addition, Salama and Srinivas (2022) considered the 
recovery and launch operations of drones as flexible. In other words, such operations are 
not limited to the location of the customer. Jackson and Srinivas (2021) compared three 
strategies of truck-only, truck-tandem and drone-only through a discrete event simulation 
to better serve customers in the healthcare industry. The results showed that in terms of 
cost and time, the drone-only strategy is the most efficient strategy where a large number 
of drones are available. 

The research papers in the literature of the subject are summarised in Table 1 where, 
five characteristics are specified in this table to represent the differences between these 
papers. The first characteristic determines the objective function in terms of the costs 
(installation, operational, and transportation costs, etc.), the fleet size, delivery in the 
intervals preferred by the customer, delivery time, route length, unsatisfied demand of the 
retailer, greenhouse gas emission rate, customer service level, and customer value. The 
second characteristic is related to the constraints of the mathematical program regarding 
the full or partial service provision for the customers, service provision capacity, 
guarantee of opening the facilities in the case of customer allocation, customer service 
level, dynamic service provision based on the time periods, the limited number of 
candidate locations, and the budget amount. The uncertain data can have an exact 
distribution, a subjective uncertainty, or an approach to control conservatism along with 
computational flexibility. Accordingly, the third characteristic is determined based on the 
stochastic programming, fuzzy programming and robust optimisation. The fourth 
characteristic presents the location based on last-mile fulfilment options. The last column 
of the fourth characteristic presents the combination of the options and their relationships. 
Finally, the fifth characteristic considers the effect of customer behaviour on location. 
The periods in which the customer’s behaviour is observed can be independent or 
dependent in a time horizon. 

In order to develop marketing strategies, companies classify the customers in terms of 
their characteristics. Hence, it is necessary to classify the customers because “as 
companies have limited resources, they have to use their resources effectively by 
selecting the valuable customers and making effort to keep them”. On the other hand, 
“companies should first segment their customers and then determine the special offerings 
and priorities in order fulfilling and required degree of relationship for each segment” 
(Gucdemir and Selim, 2015). Based on a thorough literature of review: 
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Table 1 Summary of the most relevant papers in the literature 
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All the researchers, other than Xu et al. (2020), formulated the location model regardless 
of the customer behaviour data. While Xu et al. (2020) considered the customer 
behaviour data, they have not integrated the customer behaviour model into the location 
model. Hence, all the research efforts investigating the location of last-mile fulfilment 
options have assumed that all the customers are provided with services, while the 
priorities of order fulfilment and valuable customers have been ignored. Considering the 
papers in Table 1, there exist a lack of enough attention to the behaviour and value of 
customers in the location-allocation problems. 

• In addition, Xu et al. (2020) do not mention the reasons for choosing the features 
used for extraction and analysis of the customer behaviour model and therefore, it is 
not specified whether these features have the capacity of describing the customer 
behaviour. Although Gucdemir and Selim (2015) introduced several variables for 
business customer classification, the relationships between these variables have been 
ignored. 

• None of the objective functions of the mathematical programming models proposed 
in Table 1 has simultaneously considered the environment, customer service level, 
and customer value. 

• Customer behaviour data have been studied, in the literature, regardless of the 
uncertain conditions. Meanwhile, the uncertain conditions have not been defined for 
transportation costs in terms of the customer congestion. 

• In the research literature, it has been invariably assumed that the customers are the 
same in terms of value and they are fully served. Both of these assumptions do not 
reflect the real-world situation. In addition, the congestion of customers receiving 
services has not been considered in the research literature. 

• Finally, there has been no distribution network to integrate the last-mile fulfilment 
options and investigate their connections. 

In light of the above-mentioned research gaps in the literature, the main contributions of 
this paper in addressing these gaps, are listed as follows: 

• Due to the importance of customer characteristics, the location-allocation 
optimisation model is integrated with a developed dynamic data envelopment 
analysis (DDEA) model to measure the value of customers periodically. 

• The customer features introduced by Gucdemir and Selim (2015) have been adopted 
in our paper, in which the relationship between the features has been examined based 
on the developed DDEA model. 

• A multi-objective optimisation model is proposed to consider, simultaneously, the 
objective functions related to the environment, the customer service level and 
customer value. 

• The fuzzy and robust approaches have been applied to consider uncertain conditions 
for customer value and transportation costs. 
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• A comprehensive analysis is presented for situations, where service is provided for 
efficient and a fraction of customers. In addition, customer congestion is 
incorporated into the objective function of the optimisation model via the supply 
function presented in this paper. 

• The last-mile fulfilment options have been integrated and the connections among the 
options have been defined hierarchically. 

To the best of our knowledge, it is the first work in the field of delivery options and last-
mile logistics that simultaneously considers all the above-mentioned contributions by 
focusing on the customer behaviour, network of delivery options, uncertain conditions, 
various types of services, and multiple objectives. 

3 Problem statement 

In this paper, it is assumed that the online retailer needs to determine the optimal strategic 
locations to integrate the HD, pickup point and locker station options in the last-mile 
distribution network in every contract period. For choosing the location, the retailer 
should establish a trade-off between: 

1 transportation cost 

2 environmental cost 

3 customer value 

4 customer service level 

5 customer time preference. 

In this regard, 

1 The transportation cost paid by the customer is calculated based on the supply 
function determined by the retailer. According to Khisty and Lall (2002), the supply 
function is presented by pre = α + βnd where, pre represents the price for retailer and 
the cost for customer, α represents the fixed cost, β is variable cost, and nd represents 
the demand. Also, it should be noted that an increase in the number of demands 
results in an increase in the delivery congestion. 

2 In order to determine the environmental impacts, the greenhouse gas emission rate 
for a specific travelled distance is considered as the basis of calculating the 
environmental costs. Also, it is necessary to use some variables for business 
customer segmentation, in order to determine the customer value and the customer 
service level. Hence, the eight variables introduced by Gucdemir and Selim (2015) 
have been used in this paper. The first variable is recency which indicates the live 
relationship between the customer and the company. The second variable is loyalty 
which indicates the customers’ repeated behaviour. The ratio of the total demand to 
the observed period of time constitutes the average annual demand (AAD), and the 
average expenditure of a customer during the observed period of time constitutes the 
average annual sales revenue (AASR). The AAD and AASR are the third and fourth 
variables. The fifth variable is frequency which indicates the average number of 
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transactions conducted during the observed period. The sixth variable considers  
both the loyalty and recency simultaneously, and it is referred to as the long-term 
relationship potential. Finally, the average percentage changes in AAD and AASR 
are considered as the seventh and eighth variables, and they are calculated based on 
two consecutive periods. 

3 The DDEA is used, in this paper, for customer valuation. Data envelopment analysis 
(DEA) measures the relative efficiency of a set of decision-making units (DMUs), 
such that it focuses on the ratio of production of multiple outputs to application of 
multiple inputs. DDEA evaluates the performance of DMUs in interrelated time 
periods. Compared to DEA, DDEA includes quasi-fixed inputs and intermediate 
products in addition to the inputs and outputs, and they present the dependence 
between the consecutive periods (Kao, 2013). In this paper, the first, third, fifth  
and sixth variables are considered as inputs; the second and fourth variables are 
considered as outputs; the seventh variable is considered as quasi-fixed input, and the 
eighth variable is considered as intermediate product. A dynamic system of each 
customer’s behaviour is presented in Figure 1, based on the above-mentioned 
variables. 

Figure 1 The dynamic system of a customer’s behaviour (see online version for colours) 

Period 1 Period 2 Period n...7

8

3 51 6

42

1 3 5 6

7

8

2 4

7

8

1 3 5 6

2 4

7

8

 

4 The customer value is determined based on the customer behaviour’s data in 
different periods of time and the variables related to the business customer 
segmentation and, the retailer can optimise the last-mile distribution network, based 
on the customer value. Accordingly, the patterns should be detected which are both 
optimal and efficient. Therefore, in this paper, the location-allocation decisions are 
combined with DDEA (Klimberg and Ratick, 2008). 

5 Finally, unlike the pickup point, the reception of service by the customer in the 
locker station point does not depend on the opening hours of the service provider 
facility. On the other hand, in the HD, the delivery time should be aligned by 
customer and the service provider. Therefore, it is necessary to consider the  
customer preferences about the time interval of receiving the service. 

The structure of the delivery system proposed in this paper is presented in Figure 2. In 
this structure, there are two assumed levels for delivery of the parcels to the customers. In 
the first level, there are three groups of customers. The first group chooses the HD option 
and hence, the parcels are sent from the retailer location to the customer location. The 
second group chooses the pickup point option and hence, they go to the attended 
locations to receive the goods. The third group chooses the locker station option and 
accordingly, they go to the unattended locations to receive the goods. In the second level, 
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there are two groups of customers. These two groups include the customers who have 
chosen the HD option but, they were not present in their location at the delivery time. 
Therefore, they go to the attended or unattended locations to receive their parcels. The 
structure proposed in this paper considers the transportation costs, environmental costs, 
customer service level, customer value and the customer’s time preference for parcel 
delivery and at the same time, it integrates and connects the delivery options to each 
other. In this regard, this structure is referred to as the EHHD structure. 

Figure 2 The EHHD structure (see online version for colours) 

Customer
Location

Retailer 
Location

Unattended
Location

Attended
Location Customers

First and 
Second Level 
Connectors  

In the following, the assumptions of the mathematical model, proposed in this paper, are 
explained. 

• Since customer behaviour varies according to their needs at different time periods, 
the online retailers develop their plans based on the customers’ dynamic demands. 

• The conditions in the real world are uncertain. In particular, transportation and 
customer behaviour, which depend on several uncontrollable factors, are among the 
parameters that should be considered under uncertainty. That said, the customer 
behaviour data and the transportation costs are uncertain. 
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• Due to space constraints in cities, the locations are selected among a set of known 
potential points. 

• In order to improve customer convenience and enhance the level of service, failed 
deliveries due to the absence of the customer are rescheduled through other delivery 
points. Therefore, if those customers who choose the HD option are not present in 
the delivery location, they should receive their goods from either the pickup point or 
the locker station, depending on the information provided for the online retailer. 

• Budget, space and facilities, etc. are among factors that naturally lead to limitations 
in the provision of services. As a result, the service provision locations have a 
limited capacity. 

4 Problem formulation 

In this section, the formulation of the EHHD problem based on a multi-objective 
programming model is presented. In this regard, Table 2 describes the indices, parameters 
and the decision variables of the model. 
Table 2 Notations 

Symbol Description 
Indices  

i ∈ I ={1, 2, …, rh} The set of customers choosing the home delivery option. 

a ∈ A = {1, 2, …, rp} The set of customers choosing the pickup point option. 

u ∈ U = {1, 2, …, rl} The set of customers choosing the locker station option. 

f ∈ F = {1, 2, …, mh} The potential set of the locations providing service for home 
delivery option. 

j ∈ J = {1, 2, …, mp} The potential set of the locations providing service for pickup 
point option. 

k ∈ K = {1, 2, …, ml} The potential set of the locations providing service for locker 
station option. 

t ∈ T = {1, 2, …, n} The time horizon considered by the retailer for locating and 
providing services to the customer. 

t′ ∈ T′ = {1, 2, …, n′} The set of periods in which, the retailer can provide the service, 
based to the customer preferences. 

g ∈ G = {1, 2, …, sin} Inputs 

q ∈ Q = {1, 2, …, sou} Outputs 

z ∈ Z = {1, 2, …, sio} Intermediate inputs and outputs 
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Table 2 Notations (continued) 

Symbol Description 
Parameters  

h
fc  The fixed cost of activation of the location providing home 

delivery service 
p
jc  The fixed cost of activation of the location providing pickup 

point service 
l
kc  The fixed cost of activation of the location providing locker 

station service 
eh The greenhouse gas emission rate for home delivery option 
ep The greenhouse gas emission rate for pickup point option 
el The greenhouse gas emission rate for locker station option 
ehp The greenhouse gas emission rate for hybrid home delivery and 

pickup point options 
ehl The greenhouse gas emission rate for hybrid home delivery and 

locker station options 
h
ifd  The distance between the customer i and the location of the 

service provider f 
hp
ijd  The distance between the customer i and the location of the 

service provider j 
hl
ikd  The distance between the customer i and the location of the 

service provider k 
p

ajd  The distance between the customer a and the location of the 
service provider j 

l
ukd  The distance between the customer u and the location of the 

service provider k 
r
ktc  The cost of relocating the service provider to the locker station 

option in each period 
αh, αp, αl The fixed transportation cost of home delivery (h), pickup point 

(p), and locker station (l) options in the first level 
αhp, αhl The fixed transportation cost of the hybrid home delivery-pickup 

point (hp) and home delivery-locker station (hl) options in the 
second level 

βh, βp, βl The variable transportation cost of home delivery (h), pickup 
point (p), and locker station (l) options in the first level 

βhp, βhl The variable transportation cost of the hybrid home delivery-
pickup point (hp) and home delivery-locker station (hl) options 
in the second level 

h
ftc  The maximum capacity of the location of the home delivery 

service provider 
p
jtc  The maximum capacity of the location of the pickup point 

service provider 
l
ktc  The maximum capacity of the location of the locker station 

service provider 
h
gitI  The amount of the gth input for ith customer in period t 
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Table 2 Notations (continued) 

Symbol Description 
Parameters  

p
gatI  The amount of the gth input for ath customer in period t 

l
gutI  The amount of the gth input for uth customer in period t 

h
qitO  The amount of the qth output for ith customer in period t 

p
qatO  The amount of the qth output for ath customer in period t 

l
qutO  The amount of the qth output for uth customer in period t 

h
zitR  The amount of the zth quasi-fixed input or the intermediate 

product for ith customer in period t 
p
zatR  The amount of the zth quasi-fixed input or the intermediate 

product for ath customer in period t 
l
zutR  The amount of the zth quasi-fixed input or the intermediate 

product for uth customer in period t 
p
iγ  The customer i who needs the service provided by the pickup 

point option in the second level 
l
iγ  The customer i who needs the service provided by the locker 

station option in the second level 
u
tc ′  Unwillingness of the customer i to receive the service in period 

ct 
B The available budget 
ε small non-Archimedean number 
Γh The uncertainty budget for the customer choosing the home 

delivery option 
Γp The uncertainty budget for the customer choosing the pickup 

point option 
Γl The uncertainty budget for the customer choosing the locker 

station option 

51 2 3 4( , , , , )M M M M Mt t t t t  The target value for each objective function 

Qb Certain bound 
δ1, δ2, δ3, δ4, δ5 Preferential weight for each goal 
∆ A small positive number 
Mbn A large number 
Decision variables  

h
ftx  1,h

ftx =  if a home delivery service provider is located at location 

f in period t; 0,h
ftx =  otherwise 

p
jtx  1,p

jtx =  if a pickup point service provider is located at location j 
in period t; 0,p

jtx =  otherwise 

l
ktx  1,l

ktx =  if a locker station service provider is located at location 
k in period t; 0,l

ktx =  otherwise 
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Table 2 Notations (continued) 

Symbol Description 
Decision variables  

h
ifty  1,h

ifty =  if demand point i is covered by location f in period t; 

0,h
ifty =  otherwise 

p
ajty  1,p

ajty =  if demand point a is covered by location j in period t; 
0,p

ajty =  otherwise 

l
ukty  1,l

ukty =  if demand point u is covered by location k in period t; 
0,l

ukty =  otherwise 
hp
ijty  1,hp

ijty =  if demand point i is covered by location j in period t; 
0,hp

ijty =  otherwise 

hl
ikty  1,hl

ikty =  if demand point i is covered by location k in period t; 
0,hl

ikty =  otherwise 
pr
ity ′  1,pr

ity ′ =  if the demand point i is covered in period t′;  
0,pr

ity ′ =  otherwise 

Lh
iftx  The linearisation variable for customer i which is covered by 

location f in period t 
Lp
ajtx  The linearisation variable for customer a which is covered by 

location j in period t 
Ll
uktx  The linearisation variable for customer u which is covered by 

location k in period t 
Lhp
ijtx  The linearisation variable for customer i which is covered by 

location j in period t 
Lhl
iktx  The linearisation variable for customer i which is covered by 

location k in period t 
Lh
ifty  The linearisation variable indicating the efficiency of customer i 

covered by location f in period t 
Lp
ajty  The linearisation variable indicating the efficiency of customer a 

covered by location j in period t 
Ll
ukty  The linearisation variable indicating the efficiency of customer u 

covered by location k in period t 
Lhp
ijty  The linearisation variable indicating the efficiency of customer i 

covered by location j in period t 
Lhl
ikty  The linearisation variable indicating the efficiency of customer i 

covered by location k in period t 
θkt The slack variable of linearisation 

,Rh Rh
ifz b  The decision variables related to the robust programming for 

customer i receiving service from location f 

, RpRp
ajz b  The decision variables related to the robust programming for 

customer a receiving service from location j 
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Table 2 Notations (continued) 

Symbol Description 
Decision variables  

,Rl Rl
ukz b  The decision variables related to the robust programming for 

customer u receiving service from location k 

, ,RpRh Rl
ajif ukd d d  Deviations from the nominal values are related to home delivery, 

pickup points and locker stations, respectively, in the robust 
approach 

h
giv  The weight assigned to the gth input for customer i 

p
gav  The weight assigned to the gth input for customer a 

l
guv  The weight assigned to the gth input for customer u 

h
qiu  The weight assigned to the qth output for customer i 

p
qau  The weight assigned to the qth output for customer a 

l
quu  The weight assigned to the qth output for customer u 

h
ziw  The weight assigned to zth quasi-fixed input or intermediate 

product for customer i 
p
zaw  The weight assigned to zth quasi-fixed input or intermediate 

product for customer a 
l
zuw  The weight assigned to zth quasi-fixed input or intermediate 

product for customer u 
eh
id  The inefficiency level of customer i 

ep
ad  The inefficiency level of customer a 

el
ud  The inefficiency level of customer u 

eh
iw  The efficiency level of customer i 

ep
aw  The efficiency level of customer a 

el
uw  The efficiency level of customer u 

51 2 3 4, , , ,M M M M Md d d d d− − − − −  The negative deviation variables 

51 2 3 4, , , ,M M M M Md d d d d+ + + + +  The positive deviation variables 

αD, βD The positive and negative deviation variables for meta-goal 
programming 

, , , ,FRp FRhpFRh FRl FRhl
ajt ijtift ukt ikty y y y y  The binary variables assigning the customer to the service 

provider location. 

The formulation of the EHHD problem based on a multi-objective programming model is 
presented in equations (1)–(37). In this model, there are three customer sets I, A, and U, 
who chose the HD option, delivery points, and locker stations to receive service, 
respectively. Similarly, there are three sets of service locations F, J, and K, where the 
demand of each of these customers is fulfilled in the time horizon T with respect to the 
customer preferred periods T′. G, Q, and Z represent the sets of criteria for DDEA that 
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measures the value of the customer in accordance with the Figure 1. Equations (1)–(5) 
represent the objective functions of the model where: 

1 the first objective function minimises the transportation cost to reduce the congestion 
level and minimise the relocation cost 

2 the second objective function maximises the customer service level 

3 the third objective function minimises the greenhouse gas emission 

4 the fourth objective function maximises the efficiency to determine the customer 
value 

5 the fifth objective function minimises the customers’ unwillingness to receive 
service in non-preferred periods. 

( )
( )
( )

( )
( )

1

1 ,

h h h h
ift fti I f F t T

p pp p
ajt jta A j J t T

l l l l
ukt ktu U k K t T

hp php hp
ijt jti I j J t T

hl hl hl l
ikt kti I k K t T

r l l
kt kt ktk K t T

Min OF y x

y x

y x

y x

y x

c x x

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈
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−∈ ∈

= +

+ +

+ +

+ +

+ +

+ −

  
  
  
  
  
 

α β

α β

α β

α β

α β
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2

,
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hpel l eh
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eh hl
i ikti I k K t T

Max OF w y w y

w y w y

w y

∈ ∈ ∈ ∈ ∈ ∈
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∈ ∈ ∈

= +

+ +

+

     
     
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 (2) 

3

,

p ph h h p
aj ajtif ifti I f F t T a A j J t T

hp hpl l l hp
ij ijtuk uktu U k K t T i I j J t T

hl hl hl
ik ikti I k K t T

Min OF e d y e d y

e d y e d y

e d y

∈ ∈ ∈ ∈ ∈ ∈
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∈ ∈ ∈

= +
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     
     
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 (3) 

4 ,epeh el
a uii I a A u U

Max OF w w w
∈ ∈ ∈

= + +    (4) 

5 ,pru
t iti I t T

Min OF c y′ ′′ ′∈ ∈
=   (5) 

s.t. 

, , .h h h
ift ft fti I

y c x f F t T
∈

≤ ∀ ∈ ∈  (6) 

, , .p hp p p
ajt ijt jt jta A i I

y y c x j J t T
∈ ∈

+ ≤ ∀ ∈ ∈   (7) 

, , .l hl l l
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y y c x k K t T
∈ ∈

+ ≤ ∀ ∈ ∈   (8) 
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, , .hp p h
ijt i iftj J f F

y γ y i I t T
∈ ∈

= ∀ ∈ ∈   (9) 

, , .hl l h
iikt iftk K f F

y γ y i I t T
∈ ∈

= ∀ ∈ ∈   (10) 

, , .h h
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≥ ∀ ∈ ∈  (11) 

, , .p hp p
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y y x j J t T
∈ ∈

+ ≥ ∀ ∈ ∈   (12) 

, , .l hl l
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y y x k K t T
∈ ∈

+ ≥ ∀ ∈ ∈   (13) 

1, , .h
iftf F

y i I t T
∈
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1, , .p
ajtj J
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∈
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, , , .prh
ift itct CT

y y i I f F t T′∈
≤ ∀ ∈ ∈ ∈  (19) 

1, .pr
itct CT
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( ) ( )( 1) 0,
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, , , .

l l l l l l l l
gu zu qu zugu t zu t zu t zu tg G z Z q Q z Z

v I w R u R w R

u U u U u u t T

′ ′ ′ ′−∈ ∈ ∈ ∈
+ − + ≥

′ ′∀ ∈ ∈ ≠ ∈

     (30) 

1 , .eh eh
i iw d i I= − ∀ ∈  (31) 

1 , .ep el
a uw d a A= − ∀ ∈  (32) 

1 , .el el
u uw d u U= − ∀ ∈  (33) 

, , , , , , , , {0, 1},
, , , , , .

p p hp prh l h l hl
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 (34) 

, , , , , , , , ,
, , , , , .

p p ph l h l h l
ga gu qa qu za zugi qi ziv v v u u u w w w ε

g G i I a A q Q u U z Z
≥
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 (35) 

, , 0, , , .epeh el
a uid d d i I a A u U≥ ∀ ∈ ∈ ∈  (36) 

, , , , , .epeh el
a uiw w w free variables i I a A u U∀ ∈ ∈ ∈  (37) 

In addition, the constraints of the model are represented in equations (6)–(37). In this 
regard, equations (6)–(8) consider the capacity limitation at each location providing  
the HD service, pickup point service and locker station service, respectively, equations 
(9)–(10) represent the referral of a number of the first-level demands to the second level 
in order to use the pickup point option and locker station option, respectively, equation 
(11) specifies that if the service provider location is established for providing services 
through HD option, at least one customer is supplied by it, equation (12) specifies that if 
the service provider location is established for providing services through pickup point 
option, at least one customer is supplied by its first or second level, equation (13) 
specifies that if the service provider location is established for providing services through 
locker station option, at least one customer is supplied by its first or second level, 
equations (14)–(18) indicate that the customer choosing, respectively, the HD option, 
pickup point option, locker station option, HD and pickup point options, and HD and 
locker station options, is covered at most once in each period, equation (19) indicates the 
customers having chosen the HD option receive their parcel in their preferred time 
period, equation (20) indicates that the customers receive their parcel at most in one of 
their preferred periods, equation (21) consider the budget limitation for activation of the 
service provider locations, equations (22)–(24) indicate the weighted sum of the inputs 
and quasi-fixed inputs for the customers choosing, respectively, the HD option, pickup 
point option and locker station option is arbitrarily set equal to 1, equations (25)–(27) 
represent the inefficiency level for the customer choosing the HD option, pickup point 
option and locker station option, respectively, equations (28)–(30) indicate the ratio of the 
weighted sum of the outputs and intermediate products to the weighted sum of the inputs 
and quasi-fixed inputs for the customers choosing, respectively, the home delivery 
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option, pickup point option and locker station option, is not more than 1, equations  
(31)–(33) consider the efficiency level for the customers choosing the HD option, pickup 
point option and locker station option, respectively, equation (34) represents the binary 
decision variables, equation (35) represents the non-negative continuous decision 
variables to avoid ignoring any factor in calculating efficiency, equation (36) 
demonstrates the non-negative continuous decision variables, and finally, equation (37) 
represents the decision variables unconstrained in sign. 

5 Problem re-formulation 

In this section, the linearisation process of the model is described to produce a 
formulation which simplifies the problem solving. In the first objective function (1), 
multiplication of the location decision variable and the covering decision variable makes 
the model nonlinear. Hence, equations (38)–(58) are used for transforming the nonlinear 
model to an equivalent linear representation (Orsun et al., 1999). In this regard, equations 
(38)–(41) indicate the linear transformation of the term ,h h

ft iftx y  equations (42)–(45) 

indicate the linear transformation of the term ,p p
jt ajtx y  equations (46)–(49) indicate the 

linear transformation of the term ,l l
kt uktx y  equations (50)–(53) indicate the linear 

transformation of the term ,p hp
jt ijtx y  equations (54)–(57) indicate the linear transformation 

of the term ,l hl
kt iktx y  and finally, equation (58) indicates the binary decision variables for 

linearisation process. 

, , , .Lh h h
ift ft iftx x y i I f F t T= ∀ ∈ ∈ ∈  (38) 

, , , .Lh h
ift ftx x i I f F t T≤ ∀ ∈ ∈ ∈  (39) 

, , , .Lh h
ift iftx x i I f F t T≤ ∀ ∈ ∈ ∈  (40) 

1, , , .Lh h h
ift ft iftx x y i I f F t T≥ + − ∀ ∈ ∈ ∈  (41) 

, , , .Lp p p
ajt jt ajtx x y a A j J t T= ∀ ∈ ∈ ∈  (42) 

, , , .Lp p
ajt jtx x a A j J t T≤ ∀ ∈ ∈ ∈  (43) 

, , , .Lp p
ajt ajtx y a A j J t T≤ ∀ ∈ ∈ ∈  (44) 

1, , , .Lp p p
ajt jt ajtx x y a A j J t T≥ + − ∀ ∈ ∈ ∈  (45) 

, , , .Ll l l
ukt kt uktx x y u U k K t T= ∀ ∈ ∈ ∈  (46) 

, , , .Ll l
ukt ktx x u U k K t T≤ ∀ ∈ ∈ ∈  (47) 

, , , .Ll l
ukt uktx y u U k K t T≤ ∀ ∈ ∈ ∈  (48) 

1, , , .Ll l l
ukt kt uktx x y u U k K t T≥ + − ∀ ∈ ∈ ∈  (49) 
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, , , .Lhp p hp
ijt jt ijtx x y i I j J t T= ∀ ∈ ∈ ∈  (50) 

, , , .Lhp p
ijt jtx x i I j J t T≤ ∀ ∈ ∈ ∈  (51) 

, , , .Lhp hp
ijt ijtx y i I j J t T≤ ∀ ∈ ∈ ∈  (52) 

1, , , .Lhp p hp
ijt jt ijtx x y i I j J t T≥ + − ∀ ∈ ∈ ∈  (53) 

, , , .Lhl l hl
ikt kt iktx x y i I k K t T= ∀ ∈ ∈ ∈  (54) 

, , , .Lhl l
ikt ktx x i I k K t T≤ ∀ ∈ ∈ ∈  (55) 

, , , .Lhl hl
ikt iktx y i I k K t T≤ ∀ ∈ ∈ ∈  (56) 

1, , , .Lhl l hl
ikt kt iktx x y i I k K t T≥ + − ∀ ∈ ∈ ∈  (57) 

, , , , {0, 1} , , , , , , .Lp LhpLh Ll Lhl
ajt ijtift ukt iktx x x x x i I f F t T a A j J u U k K∈ ∀ ∈ ∈ ∈ ∈ ∈ ∈ ∈  (58) 

In addition, there exist an absolute term in the objective function (1) that is used for 
calculation of the relocation cost. The linear equivalent of this term is presented in 
equations (59)–(61) (Yu and Li, 2000). 

( )1 1 2 ,r l l r l l
ktkt kt kt kt kt ktk K t T k K t T

c x x c x x θ− −∈ ∈ ∈ ∈
− = − +     (59) 

1 0, , .l l
ktkt ktx x θ k k t T−− + ≥ ∀ ∈ ∈  (60) 

0, , .ktθ k K t T≥ ∀ ∈ ∈  (61) 

In the objective function (2), multiplication of the continuous efficiency decision variable 
and the covering decision variable makes the model nonlinear. Equations (62)–(82) 
represent the equivalent linear model (Tan and Khoshnevis, 2004). 

, , , .Lh eh h
iift ifty w y i I f F t T= ∀ ∈ ∈ ∈  (62) 

, , , .Lh bn h
ift ifty M y i I f F t T≤ ∀ ∈ ∈ ∈  (63) 

, , , .Lh eh
iifty w i I f F t T≤ ∀ ∈ ∈ ∈  (64) 

( )1 , , , .Lh eh h
iift ifty w M y i I f F t T≥ − − ∀ ∈ ∈ ∈  (65) 

, , , .Lp ep p
aajt ajty w y a A j J t T= ∀ ∈ ∈ ∈  (66) 

, , , .Lp pbn
ajt ajty M y a A j J t T≤ ∀ ∈ ∈ ∈  (67) 

, , , .Lp ep
aajty w a A j J t T≤ ∀ ∈ ∈ ∈  (68) 

( )1 , , , .Lp ep p
aajt ajty w M y a A j J t T≥ − − ∀ ∈ ∈ ∈  (69) 

, , , .Ll el l
uukt ukty w y u U k K t T= ∀ ∈ ∈ ∈  (70) 
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, , , .Ll bn l
ukt ukty M y u U k K t T≤ ∀ ∈ ∈ ∈  (71) 

, , , .Ll el
uukty w u U k K t T≤ ∀ ∈ ∈ ∈  (72) 

( )1 , , , .Ll el l
uukt ukty w M y u U k K t T≥ − − ∀ ∈ ∈ ∈  (73) 

, , , .Lhp hpeh
ijt i ijty w y i I j J t T= ∀ ∈ ∈ ∈  (74) 

, , , .Lhp hpbn
ijt ijty M y i I j J t T≤ ∀ ∈ ∈ ∈  (75) 

, , , .Lhp ep
ijt iy w i I j J t T≤ ∀ ∈ ∈ ∈  (76) 

( )1 , , , .Lhp hpeh
ijt i ijty w M y i I j J t T≥ − − ∀ ∈ ∈ ∈  (77) 

, , , .Lhl eh hl
iikt ikty w y i I k K t T= ∀ ∈ ∈ ∈  (78) 

, , , .Lhl bn hl
ikt ikty M y i I k K t T≤ ∀ ∈ ∈ ∈  (79) 

, , , .Lhl eh
iikty w i I k K t T≤ ∀ ∈ ∈ ∈  (80) 

( )1 , , , .Lhl eh hl
iikt ikty w M y i I k K t T≥ − − ∀ ∈ ∈ ∈  (81) 

, , , , 0, , , , , , , .Lp LhpLh Ll Lhl
ajt ijtift ukt ikty y y y y i I f F t T a A j J u U k K≥ ∀ ∈ ∈ ∈ ∈ ∈ ∈ ∈  (82) 

In this linearisation, equations (62)–(65) indicate the linear transformation of the term 
,eh h

i iftw y  equations (66)–(69) indicate the linear transformation of the term ,ep p
a ajtw y  

equations (70)–(73) indicate the linear transformation of the term ,el l
u uktw y  equations 

(74)–(77) indicate the linear transformation of the term ,hpeh
i ijtw y  equations (78)–(81) 

indicate the linear transformation of the term ,eh hl
i iktw y  and equation (82) indicates the 

continuous decision variables for linearisation process. 

6 The solution methodology 

In this section, the transportation cost under uncertain conditions, the multi-objective 
programming solution approach, and the imprecise data of customer behaviour are 
discussed. 

6.1 Uncertain transportation costs 

In this paper, it is assumed that the variable transportation costs of the first level are 
uncertain parameters. The uncertain costs can be resulted from the customer congestion, 
the traffic in the retailer’s area, and different transportation vehicles used in each service 
provider location. Bertsimas and Sim (2003) proposed a model for solving the binary 
robust optimisation problems with uncertain cost coefficients. In these problems, the 
uncertain parameters related to the objective function have a specific range. Hence, the 
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decision maker can control the problem conservatism rate by transportation costs. The 
robust counterpart of the model is obtained by adding equations (83)–(87) to the model in 
which, equation (83) indicates the robust programming terms that are added to the first 
objective function, equations (84)–(86) represent the robust programming constraints and 
equation (87) represent the non-negative continuous decision variables related to the 
robust programming. 

,RpRh Rh h Rp p Rl Rl l
ajif uki I f F a A j J u U k K

b z b z b z
∈ ∈ ∈ ∈ ∈ ∈

+ Γ + + Γ + + Γ       (83) 

, , , .Rh Rh Rh Lh
if if iftz b d x i I f F t T+ ≥ ∀ ∈ ∈ ∈  (84) 

, , , .Rp Rp LpRp
aj aj ajtz b d x a A j J t T+ ≥ ∀ ∈ ∈ ∈  (85) 

, , , .Rl Rl Rl Ll
uk uk uktz b d x u U k K t T+ ≥ ∀ ∈ ∈ ∈  (86) 

, , , , , 0,
, , , , , , .

RpRh Rp Rl Rh Rl
ajif ukz z z b b b

i I f F t T a A j J u U k K

≥

∀ ∈ ∈ ∈ ∈ ∈ ∈ ∈
 (87) 

6.2 Goal programming 

Goal programming is a multi-criteria decision making (MCDM) approach for solving 
multi-objective problems. This approach minimises the deviations of the goals from 
achieving their targets. In fact, it seeks to find the feasible solutions that can satisfy the 
decision maker. Since goal programming can observe various criteria, it has become a 
popular approach which is used widely in different areas (Rodriguez Uria et al., 2002; 
Benítez-Fernández and Ruiz, 2019). Furthermore, the decision maker can set new goals 
on the original goals where, meta-goal programming has been developed for this purpose. 
The model proposed in this paper considers the meta-goal programming based on 
equations (88)–(95). 

,DMin β  (88) 

s.t. 

1 1 1 1 ,M M MOF d d t− ++ − =  (89) 

2 2 2 2 ,M M MOF d d t− ++ − =  (90) 

3 3 3 3 ,M M MOF d d t− ++ − =  (91) 

4 4 4 4 ,M M MOF d d t− ++ − =  (92) 

5 5 5 5 ,M M MOF d d t− ++ − =  (93) 

3 51 2 4
1 2 3 4 5

51 2 3 4
,

MM M M M
D D b

M M M M M

dd d d dδ δ δ δ δ Q
t t t t t

++ − − +
+ + + + + − =α β  (94) 

5 51 2 3 4 1 2 3 4, , , , , , , , , , , 0.M M M M M M M M M M D Dd d d d d d d d d d− − − − − + + + + + ≥α β  (95) 
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In this model, equation (88) indicates the achievement function, equations (89)–(93) 
indicate the goals structure, equation (94) represents the meta-goal constraint and 
equation (95) represents the non-negative continuous decision variables related to  
meta-goal programming. 

Theorem 1: If Qb, and 51 2 3 4( , , , , )M M M M Mt t t t t  are the certain bound and the target 
values of each objective function, respectively, the solution produced by equations  
(88)–(95) is a Pareto efficient solution for equations (1)–(37). 

Proof: Let Sf* is the optimal solution of equations (88)–(95), where Sf* represents the 
optimal decision variables. If Sf* is not an efficient solution for equations (1)–(37), there 
exist another feasible solution (Sf**) such that it has lower deviation from each goal. Since 
the preferential weight to each goal is positive, the weighted sum of deviations in Sf** is 
less than that of Sf*, and it is in contradiction with optimality of Sf*. 

6.3 Fuzzy approach 

Due to the existence of uncertainty, the customer behaviour data is imprecise. In the 
interval data envelopment analysis (IDEA) model proposed by Wang et al. (2005), the 
interval input and output data have been considered as the alternatives of the crisp input 
and output data. Accordingly, the best upper and lower bounds of efficiency are 
determined for each DMU. In this regard, the constraints in equations (28)–(30) are 
converted into the constraints in equations (96)–(98) to achieve both the upper bound and 
the lower bound of efficiency. Equations (96)–(98) indicate the joint constraints of the 
upper and lower bounds of efficiency. In equations (96)–(110), the upper and lower 
bounds of the data are shown with overbar and underbar, respectively. 

( ) ( )( 1) 0,

, , , .

h h h h h h h h
gi zi qi zigi t zi t qi t zi tg G z Z q Q z Z

v I w R u O w R

i I i I i i t T

′ ′ ′ ′−∈ ∈ ∈ ∈
+ − + ≥

′ ′∀ ∈ ∈ ≠ ∈

     (96) 

( ) ( )( 1) 0,

, , , .

p p p p p p p p
ga za qa zaga t za t qa t za tg G z Z q Q z Z

v I w R u O w R

a A a A a a t T

′ ′ ′ ′−∈ ∈ ∈ ∈
+ − + ≥

′ ′∀ ∈ ∈ ≠ ∈

     (97) 

( ) ( )( 1) 0,

, , , .

l l l l l l l l
gu zu qu zugu t zu t qu t zu tg G z Z q Q z Z

v I w R u O w R

u U u U u u t T

′ ′ ′ ′−∈ ∈ ∈ ∈
+ − + ≥

′ ′∀ ∈ ∈ ≠ ∈

     (98) 

Moreover, the constraints in equations (22)–(27) are converted into the constraints in 
equations (99)–(104) to achieve the upper bound of efficiency. 

1
1, .h h h h

gi git zi zitg G t T z Z
v I w R i I

∈ ∈ ∈
+ = ∀ ∈    (99) 

1
1, .p p p p

ga zagat zatg G t T z Z
v I w R a A

∈ ∈ ∈
+ = ∀ ∈    (100) 

1
1, .l l l l

gu zugut zutg G t T z Z
v I w R u U

∈ ∈ ∈
+ = ∀ ∈    (101) 
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1, .
n

h h h h eh
qi qit zi izitq Q t T z Z

u O w R d i I
∈ ∈ ∈

+ + = ∀ ∈    (102) 

1, .
n

p p p p ep
qa za aqat zatq Q t T z Z

u O w R d a A
∈ ∈ ∈

+ + = ∀ ∈    (103) 

1, .
n

l l l l el
qu zu uqut zutq Q t T z Z

u O w R d u U
∈ ∈ ∈

+ + = ∀ ∈    (104) 

And finally, the constraints in equations (22)–(27) are converted into the constraints in 
equations (105)–(110) to achieve the lower bound of efficiency. 

1
1, .h h h h

gi git zi zitg G t T z Z
v I w R i I

∈ ∈ ∈
+ = ∀ ∈    (105) 

1
1, .p p p p

ga zagat zatg G t T z Z
v I w R a A

∈ ∈ ∈
+ = ∀ ∈    (106) 

1
1, .l l l l

gu zugut zutg G t T z Z
v I w R u U

∈ ∈ ∈
+ = ∀ ∈    (107) 

1, .
n

h h h h eh
qi qit zi izitq Q t T z Z

u O w R d i I
∈ ∈ ∈

+ + = ∀ ∈    (108) 

1, .
n

p p p eph
qa za aqat zatq Q t T z Z

u O w R d a A
∈ ∈ ∈

+ + = ∀ ∈    (109) 

1, .
n

l l l l el
qu zu uqut zutq Q t T z Z

u O w R d u U
∈ ∈ ∈

+ + = ∀ ∈    (110) 

7 Numerical experiments 

In this section, the performance of the proposed model is evaluated based on some 
numerical experiments and the results are compared to the competing models. A 
significant point mentioned by Xu et al. (2020) is that “because of the privacy concerns 
of online customers and potential business competitive advantages gained by the analysis 
of online customers’ private information, online retailers hesitate to share their e-store’s 
user private information, which makes it difficult for researchers and practitioners to 
collect the customer’s location data”. In this paper, the analysis of customer behaviour 
data has been performed based on the real data introduced by Gucdemir and Selim 
(2015). The range of the parameters in the proposed model is set according to Table 3. 

As mentioned previously, the performance of the proposed model is evaluated and 
compared to two competing methods including a traditional location approach entitled 
the set covering problem technique, and the model proposed by Xu et al. (2020). The 
EHHD problem considering the HD (type1), pickup point (type2), locker station (type3) 
options and the hybrid of the three mentioned options (type4) based on the set covering 
problem technique and the model proposed by Xu et al. (2020) is adjusted. After solving 
the problem, the sum of the deviation variables is presented in Table 4. Based on the 
results, the method proposed in this paper can effectively produce both a feasible solution 
and a solution closer to the decision maker’s opinion, compared to the solutions produced 
by competing methods. Accordingly, the proposed method outperforms the competing 
ones. 



   

 

   

   
 

   

   

 

   

   900 A. Babaei et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

It should be noted that there exist some significant drawbacks in the method proposed 
by Xu et al. (2020). The first drawback is that it has compared the optimisation model 
with an approach which provides no guarantee for production of an optimal solution. This 
comparison is unfair; because before solving the problem, the optimisation model is 
expected to produce a better solution. The second drawback is that the method proposed 
by Xu et al. (2020) is evaluated in two independent periods. Therefore, the sum of the 
periods of their method should be compared by a benchmark approach; because the 
benchmark approach is planned for both periods. Applying these modifications, the 
method proposed by Xu et al. (2020) loses its absolute priority. 
Table 3 Range of the parameters 

Parameters Values Parameters Values 
i {1, 2, 3, 4, 5} βi, βp, βl, βhp, βhl 1 
a {1, 2, 3, 4, 5} h

ftc  [2, 5] 

u {1, 2, 3, 4, 5} p
jtc  [1, 5] 

f {1, 2, 3} l
ktc  [1, 4] 

j {1, 2, 3} h
gitI  [0.02, 0.999] 

k {1, 2} p
gatI  [0, 0.996] 

t {1, 2} h
gutI  [0.167, 1] 

t′ {1, 2} h
qitO  [0.001, 0.935] 

g {1, 2, 3, 4} p
qatO  [0.007, 1] 

q {1, 2} l
qutO  [0, 0.547] 

z {1, 2} h
zitR  [0.008, 0.967] 

h
fc  [100, 200] p

zatR  [0, 1] 

p
jc  [100, 200] l

zutR  [0, 1] 

l
kc  [50, 100] p

iγ  (1, 0, 0, 0, 0) 

eh, ep, el, ehp, ehl 1 l
iγ  (0, 0, 0, 0, 1) 

h
ifd  [10, 80] u

tc ′  [1, 9] 

hp
ijd  [2, 90] B 1,800 

hl
ikd  [2, 12] ε 10–5 

p
ajd  [6, 10] 

51 2 3 4, , , ,M M M M Mt t t t t  (20, 19, 128, 8.9, 2) 

l
ukd  [3,4] Qb 0.63 

r
ktc  [0.25, 0.5] δ1, δ2, δ3, δ4, δ5 (1, 0.95, 0.98, 1, 1) 

αh, αp, αl, αhp, αhl 0.1   
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Table 4 Comparison of the methods 

Method Option type Sum of the deviation variables 
Set covering technique Type 1 159.396 
 Type 2 17.299 
 Type 3 Infeasible 
 Type 4 Infeasible 
Xu et al. (2020) Type 1 Infeasible 
 Type 2 18.106 
 Type 3 Infeasible 
 Type 4 Infeasible 
This paper  16.288 

8 Sensitivity analysis 

In this section, the effects of service level changes, transportation under uncertain 
conditions, customer ranking under uncertain conditions and regarding the customer’s 
imprecise behaviour data, environmental impacts, efficient service provision, and 
fractional service provision are investigated. 

8.1 Service level changes 

In this subsection, a sensitivity analysis is performed to investigate the effect of service 
level changes on the target value of the second objective function. Based on Figure 3, the 
retailers intuitively observe the conflicts between the objective functions and create a 
trade-off between the service level and other goals. In Figure 3, the target value is 
represented in x-axis and the value of the corresponding objective function or the budget 
value is represented in y-axis. Based on the results, under 2

Mt  = 1, 2, …, 8, 10, 11, 13, 
the transportation cost is less than the average transportation cost, under 2

Mt  = 11, 12, 14, 
15, …, 21, the customer service level is higher than the average customer service level, 
under 2

Mt  = 7, 8, …, 13, 15, 16, …, 21, the greenhouse gas emission rate is lower than 
the average rate of greenhouse gas emission, and under 2

Mt  = 4, 5, 6, 13, 14, …, 21, the 
customer value is higher than the average customer value. The customer’s preferred 
period to receive the service is not sensitive to 2 .Mt  Finally, under 2

Mt  = 1, 2, …, 8, 11, 
16, the budget value is lower than the average budget. 

8.2 Transportation under uncertain conditions 

In this subsection, the robust counterpart of the proposed model is studied to determine 
the changes that occur in the objective and budget functions due to inconsideration of the 
uncertain conditions. For this purpose, it is assumed that Γh, Γp and Γl are the integer 
values ranging in the intervals [0, 3], [0, 3] and [0, 2], respectively, and as a result, there 
exist 48 scenarios. Table 5 shows the maximum (Max), arithmetic mean (Ave), minimum 
(Min) and coefficient of variation (CV) of the results obtained from solving all the  
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48 scenarios. Based on the results, the uncertain conditions have the strongest effect on B, 
OF2, OF1, OF3, and OF4, respectively. In addition, OF5 indicating the customer 
preference in receiving the services, is not sensitive to the uncertain transportation 
conditions. The uncertain condition results in the maximum increase and decrease in OF2 
and B, respectively. 

Figure 3 Sensitivity analysis on service level, (a) OF1 (b) OF2 (c) OF3 (d) OF4 (e) OF5 (f) B  
(see online version for colours) 
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Table 5 The effect of uncertain conditions on transportation 

 OF1 OF2 OF3 OF4 OF5 B 
Max 22.250 11.833 132.000 7.332 1 1,100.100 
Ave 20.224 9.976 128.344 7.279 1 944.986 
Min 20.000 9.575 125.000 7.107 1 600.100 
CV 1.753 3.993 0.965 0.515 0 15.390 
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Table 6 Uncertain conditions in customer behaviour data 
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8.3 Imprecise customer behaviour data 

Gucdemir and Selim (2015) segmented the customers in five classes including the best, 
valuable, average, potentially valuable, and potentially invaluable customers. Gucdemir 
and Selim (2015) calculated three values for each group of the customers in each 
segmentation variable while, they performed ranking on, only, one of the values as a 
representative of other values. Instead, in this paper, each of those three values has been 
assigned to each group of the customers of every option. In this regard, all the customers 
using the options are scored based on the solution of the model proposed in this paper and 
then, the customer behaviour data is changed by 30%. In Table 6, the upper bound 
represents the score of each customer under deterministic conditions, while the lower 
bound 1, lower bound 2 and lower bound 3 represent, respectively, 10%, 20% and 30% 
of uncertainty in data. According to the results, uncertain condition has no effect on the 
efficient customers. On the other hand, for inefficient customers, the score under 
deterministic condition is always larger than the score under uncertain condition. The 
results show that increasing the uncertainty interval leads to decrease in the lower bound 
of efficiency, except for the second customer choosing the pickup point option. 

The results show that the customer cluster 5 belongs to the ‘best’ cluster, based on 
both the approaches proposed in this paper and by Gusdemir and Selim (2015). In 
addition, the customers are segmented, in this paper, as ‘potential valuable’ and ‘potential 
invaluable’, similar to Gusdemir and Selim (2015). The customer 1 that has selected the 
HD option, is segmented as ‘valuable’ in deterministic condition and as ‘average’ in 
uncertain condition. Moreover, the customers 1, 3 and 5 that selected the pickup points 
option, are segmented all as ‘best’. 

Figure 4 The effect of the emission rate on OF3 (see online version for colours) 
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8.4 Environmental impacts 

The environmental objective function depends on the emission rate of delivery options. 
Figure 4 presents the effect the emission rate, changing in the interval [0.1, 1], on the 
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environmental objective function. The highest decrease of pollution has occurred in the 
HD option under eh = 0.1, in the pickup point option under ep = 0.2, in the locker station 
option under el = 0.7, in the hybrid HD -pickup point option under ehp = 0.3, and in the 
hybrid HD and locker station option under ehl = 0.1. For the emission rate of 0.9, the HD, 
locker station and hybrid HD-pickup point options resulted in the highest pollution. 
Based on the results, ep and el play a significant role in the increase/decrease of pollution. 
The changes in ep leads to the highest level of changes in the environment objective 
function while, the changes in ehl leads to the lowest level of changes in the objective 
function. 

8.5 Efficient service provision 

The most of the supply chain networks are designed without extraction of efficient 
solutions while, the optimal structure results from the efficient solutions (Grigoroudis  
et al., 2014). In this subsection, the solutions are filtered so that their efficiency is 
guaranteed. For this purpose, equations (14)–(18) are transformed to equations  
(111)–(115). Based on this transformation, only those solutions are studied which belong 
to the efficient customers. 

, , .h eh
iiftf F

y w i I t T
∈

≤ ∀ ∈ ∈  (111) 

, , .p ep
aajtj J

y w a A t T
∈

≤ ∀ ∈ ∈  (112) 

, , .l el
uuktk K

y w u E t T
∈

≤ ∀ ∈ ∈  (113) 

, , .hp eh
ijt ij J

y w i I t T
∈

≤ ∀ ∈ ∈  (114) 

, , .hl eh
iiktk K

y w i I t T
∈

≤ ∀ ∈ ∈  (115) 

In order to determine the effect of equations (111)–(115) on the first and third objective 
functions, the proposed model is solved based on the second objective function and then, 
a sensitivity analysis is performed on the changes in the first and third objective 
functions. The x-axis in Figure 5, presents the value of 2

Mt  and the y-axis presents the 
change percentages between the first and third objective functions of the models solved 
based on equations (14)–(18) and equations (111)–(115), respectively. Based on this 
figure, the changes in OF1 have a descending trend while the changes in OF3 have an 
ascending trend. In general, the model solved based on equations (111)–(115) resulted in 
lower transportation cost and environmental impacts compared to the model solved based 
on equations (14)–(18). 

Theorem 2: Let the Ppr be the proposed model solved based on equations (14)–(18) and 
the Psu be the proposed model solved based on equations (111)–(115). If Spr is the set of 
Ppr solutions and Ssu is the set of Psu solutions, then, 1 1

prsuOF OF≤  and 3 3
prsuOF OF≤  

where, 1
prOF  and 1

suOF  are the objective functions of the transportation cost 

minimisation belonging to Ppr and Psu, respectively, and 3
prOF  and 3

suOF  are the 
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objective functions of the greenhouse gas emission minimisation belonging to Ppr and 
Psu, respectively. 

Proof: The binary solutions obtained by the model solved based on equations (14)–(18) 
and the model solved based on equations (111)–(115) are represented by Bpr* and Bsu*, 
respectively. Since, at most, all the customers are efficient, Bsu* ≤ Bpr* is concluded based 
on the constraints in equations (111)–(115). It is obvious that the customers who are 
inefficient in Ppr will be inefficient in Psu, too, and they will not be provided with service. 
In other words, in Psu, only valuable customers receive the service. Hence, it is concluded 
that Ssu ⊆ Spr and accordingly, the following equations are concluded: 1 1

prsuOF OF≤  and 

3 3 .prsuOF OF≤  

Corollary: When the number of customers increases, the problem becomes large scale. In 
other words, cardinality leads to computational complexity. According to Barr and 
Durchholz (1997), the model proposed in this paper is run for the customer blocks to 
identify the efficient customers. Based on Theorem 2, the inefficient customers are 
removed from each block. On the other hand, in each iteration, the customers who are the 
most inefficient are removed and accordingly, the problem is optimised only for efficient 
customers. Therefore, based on Theorem 2, the proposed model can deal with and solve 
the problems with big data. 

Figure 5 The changes in OF1 and OF3 regarding the efficient solutions (see online version  
for colours) 
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8.6 Fractional service provision 

In this subsection, it is assumed that the service can be provided only for a fraction of the 
customers. This assumption is so practical when each demand point represents for a 
group of the customers. Equations (116)–(127) are used for this purpose where, equations 
(116)–(125) indicate the constraints guaranteeing that when the customer is assigned to 
the service provider location, a fraction of the customer receive the service, equation 
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(126) represent the non-negative continuous decision variables and equation (127) 
represent the binary decision variables. 

, , , .h FRh
ift ifty y i I f F t T≤ ∀ ∈ ∈ ∈  (116) 

2 (2 ), , , .h FRh
ift ifty y i I f F t T≤ − − Δ ∀ ∈ ∈ ∈  (117) 

, , , .p FRp
ajt ajty y a A j J t T≤ ∀ ∈ ∈ ∈  (118) 

2 (2 ), , , .p FRp
ajt ajty y a A j J t T≥ − − Δ ∀ ∈ ∈ ∈  (119) 

, , , .l FRl
ukt ukty y u U k K t T≤ ∀ ∈ ∈ ∈  (120) 

2 (2 ), , , .l FRl
ukt ukty y u U k K t T≥ − − Δ ∀ ∈ ∈ ∈  (121) 

, , , .hp FRhp
ijt ijty y i I j J t T≤ ∀ ∈ ∈ ∈  (122) 

2 (2 ), , , .hp FRhp
ijt ijty y i I j J t T≥ − − Δ ∀ ∈ ∈ ∈  (123) 

, , , .hl FRhl
ikt ikty y i I k K t T≤ ∀ ∈ ∈ ∈  (124) 

2 (2 ), , , .hl FRhl
ikt ikty y i I k K t T≥ − − Δ ∀ ∈ ∈ ∈  (125) 

, , , , 0, , , , , .p hph l hl
ajt ijtift ukt ikty y y y y f F j J k K i I t T≥ ∀ ∈ ∈ ∈ ∈ ∈  (126) 

, , , , {0, 1}, , , , , .FRp FRhpFRh FRl FRhl
ajt ijtift ukt ikty y y y y f F j J k K i I t T∈ ∀ ∈ ∈ ∈ ∈ ∈  (127) 

Figure 6 presents the effect of fractional service provision on delivery options regarding 
the achievement of the target values in terms of percentage changes. Based on the results, 
the fractional service provision leads to improvement in the achievement of target values 
compared to the non-fractional service provision under pickup point option, the hybrid of 
first level options, and HD option. However, the fractional service provision leads to a 
decrease in the achievement of the target values in case of locker station option, the 
hybrid of second level options, and the hybrid of total options. 
Table 7 Comparison of the results of the two methods based on fractional service provision 

Option 
type 

The sum of the deviation variables Improvement 
percentage Deutsch & Golany (2018) This paper 

Type 1 159.396 15.387 90.347 
Type 2 14.395 11.200 22.195 
Type 3 infeasible 18.829 - 
Type 4 infeasible 21.422 - 

Deutsch and Golany (2018) formulated the fractional service provision for a parcel locker 
network. The model proposed in this paper has been compared to the method proposed 
by Deutsch and Golany (2018) based on the type 1, type 2, type 3 and type 4 option 
types, and the results are reported in Table 7. The results show that the model proposed in 
this paper provides more satisfactory solutions for the decision maker, under type 1 and 
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type 2 options. Furthermore, the proposed model provided the solution for type 3 and 
type 4 options while, the model developed by Deutsch and Golany (2018) resulted in 
infeasible solution and is not able to produce the solution for type 3 and type 4 options. 
Therefore, the model proposed in this paper provides effectively better solutions and 
outperforms the competing model proposed by Deutsch and Golany (2018). 

Figure 6 The effect of fractional service provision on achievement of the target values  
(see online version for colours) 
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9 A case study 

In this section, the application of the proposed model is demonstrated through a case 
study introduced by Petridis et al. (2016). In this case study, a network of supply chain is 
considered that includes 20 warehouses and five customers and it is intended to design a 
supply chain based on efficiency. It is assumed that the services are delivered to the 
customers by ten warehouses (1–10) through the HD, five warehouses (11–15) through 
the pickup point, and five warehouses (16–20) through the locker station option. In 
addition, it is assumed that the customers who receive service through the pickup point 
and locker station options pay the transportation cost in accordance with the 
transportation cost paid by the customers who receive their service through the HD 
option. The transportation and warehouses activation cost and the capacity of the 
warehouses are considered based on the values considered by Petridis et al. (2016). In 
order to highlight the role of efficiency, it is assumed that (δ1, δ2, δ3, δ4, 5) = (0.001, 1, 
0.001, 0.001, 0.001) and (δ1, δ2, δ3, δ4, δ5) = (0.0001, 1, 0.0001, 0.0001, 0.0001). In this 
case study, it is assumed that there are five customers for each option with the features 
mentioned in the previous section, so that among the customers who choose the HD 
option, customer 1 can use both the HD and the pickup point options, and customer 5 can 
use both the HD and the locker station options. 

After solving the model, the results of the proposed method and the technique of set 
covering is shown in Figure 7. The standard deviation of the efficiency values in  
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Figures 7(a) and 7(b) is 0.0087 and 0.0006, respectively. In Figure 7(a), the efficiency of 
the proposed method is more than the values of type 1, type 2, type 3 and type 4. The 
difference between the efficiency values of the proposed method and type 1, type 2,  
type 3 and type 4 in Figure 7(b) is, respectively, 0.0004, 0.0002, 0.0004, 0.0018. It should 
be noted that the higher efficiency of the proposed method is obtained under lower 
budget consumption compared to other methods. Therefore, it is concluded that the 
proposed method resulted in more efficient solutions and much less budget consumption. 
All the values in Figure 7 are normalised for better comparison. 

Figure 7 The results of the case study under (a) (δ1, δ2, δ3, δ4, δ5) = (0.001, 1, 0.001, 0.001, 
0.001) and (b) (δ1, δ2, δ3, δ4, δ5) = (0.0001, 1, 0.0001, 0.0001, 0.0001) (see online 
version for colours) 
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Figure 8 Cost changes vs. uncertainty budgets changes (see online version for colours) 
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In the following, the robustness and environmental friendliness of the proposed models 
are analysed as two important decision factors for supply chain managers. Figure 8 shows 
the cost changes based on the supply function versus changes in the uncertainty budgets 
(Γh, Γp, Γl) for each of the delivery options. Based on the results, the pickup point option 
is more robust than other options because it requires a further increase in its uncertainty 
budget to change costs. For this reason, this option is more appropriate when the strategy 
of supply chain managers is focused on preserving the level of costs in uncertain 
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conditions. On the other hand, the HD option is less robust than other options, where 
increasing the uncertainty budget leads to the largest change in cost. Therefore, managers 
choose such an option, where a sudden increase in cost does not lead to the loss of 
customers. With the locker station option, increasing the uncertainty budget first leads to 
increased costs and then to reduced costs. It is worth noting that such a decrease in the 
costs is due to a decrease in the level of service. Therefore, managers should be aware 
that increasing uncertainty in this option can lead to loss of customers. Considering the 
different behaviours of each of these options under uncertainty, a combination of these 
options can provide more confidence for supply chain managers. 
Figure 9 Standard deviations caused by increased uncertainty budgets (see online version  

for colours) 
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Figure 10 Environmental issues vs. the cost and level of service (see online version for colours) 
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On the other hand, sometimes owing to obligations that arise from the environmental 
laws and customer-centric strategies, it is important for supply chain managers that the 
delivery options structure in conditions of uncertainty generally provide good robustness 
for environmental and customer-related aspects. In other words, it is crucial that 
fluctuations in solutions due to uncertain conditions do not greatly jeopardise the 
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robustness of managers’ planning. Figure 9 shows the standard deviations of solutions 
extracted from each of objective functions related to the service level, customer value, 
and emissions where uncertainty budgets has increased according to Figure 8. As shown 
in Figure 9, the smallest area belongs to the pickup point option. In other words, 
uncertainty in this option generally leads to less dispersion of solutions than other 
options. Therefore, there is good robustness in this option. It is worth noting that 
uncertain conditions have different effects on each objective function across  
different delivery options. For example, the pickup point option is more robust from a 
customer-centric perspective than the locker station option. This is while the locker 
station option is more robust from an environmental perspective than the pickup point 
option. Hence, supply chain managers can gain more benefits by combining these options 
in accordance to their goals, especially where high dispersion of solutions leads to 
weakness in the supply chain planning. 

Figure 11 Instances of optimal decisions for case study, (a) partial service provision  
(b) full service for HD option (a) full service for pickup point option  
(d) full service for locker station option (see online version for colours) 

A5

R5

C5

C3

C1

A3

C1C3

C5

U2

C5

R1 R2

C5

C4

C2

C1 C3

A1

A3
C3

C5 U5

C5

C3

 
(a)     (b) 

R1

C1

C5

A1

A2

A3

C2

C1

C4

C3
U4

C5

A4

C5

R2

C1
C5

A4A3

C1
C3

C5

U1

U2

U3

U4

U5
C1

C2

C3

C4

C5

 
(c)     (d) 

R U A

Pickup
Point

Locker
Station

Retail
Location  

C1C1 C1

Pickup 
Point Option

Locker Station 
Option

Home
Delivery   

As mentioned above, the environment is another important factor which could affect the 
decisions of supply chain managers. Although, based on the laws that may be in place, 
the supply chains have to comply with environmental considerations, there are other 
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important factors that could affect the customer service, such as the cost and level of 
service. Thus, supply chain managers cannot focus on just one factor. Figure 10 shows 
the effect of increasing the importance of the environmental objective function on the 
cost and service level. Based on this figure, as the weight of the environmental objective 
function increases, the amount of emission decreases, while the other two factors, 
increase initially and then decrease. It should be noted that greater focus on 
environmental issues could mean making customer service uneconomical for supply 
chain managers. When the weights are set to 0.003 and 0.009, there is a slight increase in 
cost, whereby the level of service is improved and greenhouse gas emissions are reduced. 
Weights set greater than 0.027 are justified for supply chain managers when there are 
strict rules on environmental issues. 

Finally, the optimal decisions regarding locations and allocations are evaluated in 
four instances. In Figure 11, the locations and customers are represented by triangles and 
circles, respectively. In Figure 11(a), there is no limit on the satisfaction of all demands, 
while in Figures 11(b), 11(c), and 11(d) the applicants of the HD option, the pickup point 
option and the locker station option need to be completely satisfied. In other words, |I| is 
set to 5 in Figure 11(b), |A| is set to 5 in Figure 11(c), and |U| is set to 5 in Figure 11(d). 
Based on the results, although partial service provides fewer connections between service 
locations and service recipients, it covers effective customers, who are also valuable in 
other instances. It is concluded that if customers did not have the same value, partial 
service would be more effective in the supply chain network design. This way, most of 
the supply chain resources are used for attending to valuable customers, and unnecessary 
focus on low value customers is avoided, thus reducing resource waste. 

10 Conclusions 

Last-mile logistics serves as a milestone in the supply chain domain, so much so that a 
lack of sufficient attention on the part of supply chain managers and decision makers to 
this issue could lead to various challenges in cities, namely, increased logistic costs, 
environmental impacts and traffic congestion. Hence, it is necessary to find an effective 
solution for last-mile logistics problem. For this purpose, the EHHD model is developed 
in this paper. This model is a data-driven method which integrates the location-allocation 
optimisation model with DDEA model. This integration is done considering the 
significant effect of the customer behaviour data, which is periodically investigated by 
the dynamic DEA in the developed model, on the optimal location-allocation decisions. 
On the other hand, the proposed model considers different delivery options including HD, 
the pickup point and the locker station options, simultaneously, where these options are 
hierarchically connected to each other. 

Based on the EHHD model, the online retailers can create a trade-off between the 
transportation costs, environmental impacts, customer value, customer preferences and 
the service level. Since some of the terms in the proposed model are nonlinear, the 
linearisation process was implemented on the model. Then, robust and fuzzy approaches 
are employed to examine uncertain conditions for transportation costs and the customer 
behaviour data. Since EHHD is a multi-objective optimisation model, meta-goal 
programming was used as a solution approach for the proposed model. The numerical 
experiments showed that the proposed model has a higher performance compared to other 
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methods in terms of both producing a feasible solution and a solution which is closer to 
the decision maker’s opinion. In addition, a sensitivity analysis was applied on the 
service level, uncertain conditions, efficient service provision, environmental impacts and 
fractional service provision. Based on this analysis, OF1, OF2, and B have a similar trend 
in terms of the service level. Based on the results, the uncertain condition has the 
strongest effect on OF2 and B; however, it has no effect on the efficient customers. The 
two elements that are effective in increasing and decreasing pollution are ep and el. 
Efficient service provision can decrease the allocation costs, and fractional service 
provision has the strongest improving effect on the pickup point option. Finally, an 
application of the developed model on the supply chain network is demonstrated in a case 
study. The results showed that the developed model is able to provide a high level of 
service while spending less budget compared to other competing models. On the other 
hand, the pickup point option was shown to be more robust than other options. A 
sensitivity analysis on the importance of emissions in the proposed model indicated that 
higher focus on controlling environmental impacts can lead to a drastic reduction in 
service level. Finally, the partial service strategy can cover valuable customers and help 
design the supply chain efficiently. In other words, supply chain resources are planned 
for more important customers rather than for all customers. 

Since this paper is the first attempt to adopt a hierarchical structure for delivery 
options in accordance with customer behaviours, this has resulted in some limitations in 
this research. The most important limitation was limited access to private information. 
Such information is required for location-allocation decisions and evaluation of customer 
behaviour, while dissemination of such information by institutions and organisations is 
illegal due to privacy policies and considerations. Important innovations are presented in 
this research, including the development of a hierarchical structure of delivery options, 
attention to environmental issues and types of services, measuring the customer value, 
considering uncertainty conditions for transportation costs and customer behaviour, and 
addressing customer congestion. Accordingly, this paper provides many research 
opportunities for future studies. In this regard, it should be noted that the proposed model 
can be extended to a two-phase approach in which, the first phase optimises the location-
allocation model, and the second phase optimises the VRP, regarding the fixed location 
of the retailers and customers. In addition, the effects of combining the other DEA 
models with the location-allocation model can be studied. On the other hand, since the 
optimisation model presented in this paper is general in scope, it can have a wide range of 
applications in other case studies, where researchers can focus on implementing the 
proposed model in other studies. Finally, other objective functions and other types of 
uncertain conditions are the contributions which can be included in the proposed model 
and are suggested for future researches. 
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