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Abstract: Pixel level matching of multi-spectral images is an important
precursor to a wide range of applications. An efficient feature representation
which can address the inherent dissimilar characteristics of acquisition by
the respective sensors is essential for finding similarity between visual
and thermal image regions. Lack of sufficient benchmark datasets of
corresponding visual and LWIR images hinders the training of supervised
learning approaches, such as CNN. To address both the issues of nonlinear
variations and unavailability of huge data, we propose a novel two
channel non-weight sharing convolutional autoencoder architecture, which
computes similarity using encodings of the image regions. One channel
is used to generate an efficient representation of the visible image patch,
whereas the second channel is used to transform an infrared patch to a
corresponding visual region using encoded representation. Results are shown
by computing patch similarity using representations generated from various
encoder architectures, evaluated on two datasets.
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1 Introduction

Infrared and visual image matching is challenging due to inherent difference in the way
images are acquired by the multi-sensors. Conventional approaches of patch matching
fail to capture nonlinear variations between the images and hence cannot be adopted
for pixel level matching of IR and visible (VS) images. Convolution neural network’s
(CNN’s) have fast emerged as an efficient approach for image feature extraction, to
be used across wide range of applications including matching. Several publications
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have shown the superiority of features extracted from pre-trained CNN’s, such as
Krizhevsky et al. (2012), Simonyan and Zisserman (2014) and Szegedy et al. (2015),
when compared to handcrafted features. To better address the challenges in image
matching such as the wide range of photometric variations and lack of datasets with
balanced class distrbution, siamese and triplet CNN’s have been proposed (Zagoruyko
and Komodakis, 2015; Wang et al., 2014; Balntas et al., 2016; Hani Altwaijry and
Belongie, 2016). Networks trained for computing the similarity between patches with
similar modality cannot be directly adapted for multi-spectral IR and VS patch matching.
Inorder to adapt a transfer learning approach using pretrained CNN networks for image
matching, a benchmark dataset of corresponding multi-spectral patches is mandatory.
This has motivated us towards adapting an unspervised learning-based autoencoder
architectures.

Autoencoders are built using encoder and decoder networks, the functional objective
being reconstruction of the compressed feature vector. Such features are superior in
comparison with features extracted using traditional approaches (Jaques et al., 2017).
Taxonomy of encoders is based on latent space learning and arrangement of layers as
shown in Figure 1. In deterministic learning the flow/ communication through the kernel
maps is static, whereas in probabilistic approach these maps are randomly propagated
across the layers. Other way of differentiating encoders is based on positioning array of
layers and connections among them; In symmetric architecture both encoder and decoder
networks have identical structure of arranging layers, whereas in asymmetric networks,
structure differs between encoder and decoder.

Generally, autoencoders are designed based on the type of data, arrangement of
layers and the encoding required. Some of the variants of encoder acting as a baseline
for the advanced encoding schemes are denoising autoencoder (DAE), convolutional
autoencoder (CAE), contrastive autoencoder (Bank et al., 2020), variational autoencoder
(VAE) (Baldi, 2012), stacked autoencoder (SAE) (Benbakreti et al., 2021) and
combination can be any of the above. For example DCVA (Zilvan et al., 2019) is
denoising convolutional VAE, generative autoencoders (Meng et al., 2017), LSTM
encoder (Song et al., 2018), stacked convolutional DAE (Du et al., 2016), etc.

Figure 1 Classification of autoencoders
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Table 1 Survey of CAEs highlighting network parameters, evaluation metrics methods across
applications
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Žǐ
za
kí
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Table 1 Survey of CAEs highlighting network parameters, evaluation metrics methods across
applications (continued)
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Despite the main goal, i.e., compression and reconstruction, encoders are being modelled
to fill the gap of efficient image representation across applications. Zhang (2018) proved
that convolutional encoding (CAE) is better in capturing and preserving the spatial
information of images because of convolution layers. In Kerner et al. (2019), the results
presented for image classification show that detecting and selecting novel features
by using CAE out-perform the various classical supervised training methodologies in
spectrally diverse images. When the CAE model weights are loaded/initialised to CNN
kernels, the classification results surpass those obtained with pretrained CNN (Masci
et al., 2011).

We propose unsupervised 2-channel CAEs trained with different spectral images to
overcome the illuminational variance. Our major contributions are the following:

1 Use of unsupervised learning-based CAE for matching long wave IR and VS
images.

2 Use of transformation CAE in a siamese architecture for image matching
application.

The paper is organised as follows. In Section 2 survey about CAE’s across various
applications is presented, Section 3 the image similarity between multi-spectral images
with need of colour transformation and 2-channel network is described. In Section 4
preparation of data, architectural design and fine-tuning with various parameters is
provided while results are presented in Section 5. The paper is concluded in Section 6.

2 Background

The survey focuses on use of CAE across applications with varying architectures and
loss functions. Dong et al. (2018) review generic autoencoder model exploring kinds of
autoencoders against the hyperparameters of the models. The study demonstrated that
CAEs are relatively more stable than CNNs in recognition-based applications.

Survey by Georgiou et al. (2020), explores various methodologies ranging from
conventional non-deep to contemporary deep learning using datasets with varying
dimensionality and modality. Among all the invariant features, CAE model is found
effective for object classification and anamoly detection by Pawar and Attar (2020).

In a CAE the encoder performs convolution, while the decoder is responsible for
deconvolution and up-sampling. The key idea is to apply the up-sampling decoder
network, which maps the low-resolution encoder feature maps. This architecture
substantially reduces the number of trainable parameters and reuses the encoder’s
pooling indices to up-sample. Table 1 lists the papers in which CAE is used for various
applications with focus on architecture, hyperparameters and evaluation metrics.

2.1 Architecture of CAE: layers and hyperparameters

In Masci et al. (2011), a ladder is built with CAE kernels, to extract unsupervised
features. CAE kernel maps/features points which are preserved consistently without
applying any regularisation, are assigned for classification. This approach proved
superior in comparison with both the basic autoencoder and CNN. Similar idea is used
by Tharani et al. (2018) in classifying remote sensing images, where in a deep residual
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encoder-decoder network is trained for feature extratction along with a discrimination
network. Shahriari (2016) added Fisher linear discriminant as a functional layer for
improvement in retrieving texture feature identification.

Volodymyr et al. adopted a CAE and experimented with presence of pool and unpool
layers for classification application. Results prove that the architecture with pool and
unpool layers is capturing and storing the boundary information in the encoder feature
maps (Turchenko et al., 2017).

Yasrab et al. (2017) designed encoder layers similar to VGG16 for driver assistance
system. The authors conducted tests to identify the best possible architecture and set of
hyperparameters. It is found that by using dropout in encoder, the model is less sensitive
to the trained images and generalised better. Among the activation functions, with ELU
the pixel values reach zero mean which helps in learning good representatives. Addition
of normalisation layer reduces the complexity range of pixel values in feature maps with
increased accuracy.

Clevert et al. (2015) experimented various activation functions for CAEs in
classifying CIFAR-10 and 100. Results reported that ELU outperforms other activation
functions such as ReLU, LeakyReLU, PReLU and RReLU. Van Tulder and de Bruijne
(2018) used CAE for cross modal classification.

To address differences between modalities, an axial neural network architecture with
CNNs is used with a separate network path for each input source (Van Tulder and
de Bruijne, 2018).

Masanori et al. used evolutionary algorithm to find the best CAE that fits for the
inpainting and restoration problems. The algorithm upon successive search, identified a
simple CAE with ADAM and L2 loss best. Results as prove that this CAE is good in
comparison with complex generative models (Suganuma et al., 2018).

2.2 Training loss and data augmentation

Sadegh et al. adopted SegNet-based with encoder-decoder network to correctly
discriminate the rock images that have colour and texture variance. Data augmentation
is applied to generate the synthetic data for training, to increase the performance
(Karimpouli and Tahmasebi, 2019). Cheng et al. (2018) stated that the CAE further code
compressed with PCA, quantisation and entropy layers is powerful in attaining high
coding efficiency in image compression. Rate distorted loss is used to optimise CAE.

Azarang et al. (2019) trained CAE with a hybrid loss constructed using MSE and
SSIM for image fusion. In Guo et al. (2017), CAE is used in clustering application by
simultaneously minimising the reconstruction loss of CAEs and the clustering loss.

3 Multi-spectral image similarity using CAE

A 2-channel/Siamese frameworks perform well for image matching and similarity
applications (Zagoruyko and Komodakis, 2015; Wang et al., 2014). Appalaraju and
Chaoji (2017) proved that multi-scale Siamese CNN is better for finding fine-grained
features compared with CNN in curriculum learning. Later in Liu et al. (2018) similar
framework is adopted in H-Net for cross-domain image matching with MSE as a
function. H-Net has given prominent results in matching but failed in retrieval. Liu et al.
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(2018) extended the work and built HNet++, with MSE and contrastive loss. Features
extracted from the model are robust and invariant.

Figure 2 Sample images, (a) original LWIR (b) original visible images (c) unimodal-net VS
encoded representative images (d) encoded represenative images from
multi-modal-net with SSIM loss

Results observed are promising in both cross-domain patch matching and retrieval.
Both H-Net and HNet++ have shown the efficacy of the network using sythetic
images generated by cycleGan consisting of illumination variation. However, finding
similarity between long wave infrared and visible images is much more challenging
because of the wide disparity in the wavelengths of visible [8 µm to 15 µm] and
infrared [0.4 µm to 0.7 µm]. To overcome the problem of LWIR and VS image
matching, the study of image transformation is conducted. Visible spectrum images
are widely used, but most of the information will be lost or not visible with loss of
light which can be captured with thermal infrared imaging. To exploit the advantages
of both visible and thermal images, most of the multi-modal imaging applications
are applying image transformation techniques. We present some of the papers which
concentrate on visible and thermal image transformation using CAE architectures.
Berg et al. (2018) used encoder-decoder which mainly consists of convolution, batch
normalisation, LeakyReLU, drop out for transforming thermal to visible images. Results
were analysed quantitatively with L1, RMSE, PSNR and SSIM which show that
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estimating illuminance and chrominance separately resulted in better outcome. Nyberg
et al. (2018) trained auto-encoder architecture using different colour spaces and applied
on cross-spectral image transformation between infrared and visible images. Laakom
et al. (2019) composite loss built with binary cross entropy and recovery angular loss is
used in colour constancy problem. Results are better and much generalised with fewer
parameters.

Figure 3 Generating groundtruth from SIFT keypoints

4 Proposed network architecture

Objective of the proposed work is to find similarity between patches (/regions) of visible
and long wave infrared (LWIR) images. Though the problem of multi-spectral image
matching has been addressed in the literature to a certain extent, finding similarity
between LWIR and visible is still challenging. The problem is addressed using a
2-channel CAE architecture, designed as follows.

a One channel is a CAE, which is trained to encode unimodal VS or IR image.

b Second channel is a CAE, designed as a multi-modal IR to VS ‘transformation’
network.

Both the channels of the architecture are trained independently with patches of LWIR
and Visible images. The encoder part of both the CAEs is combined and lambda layer
is added to compute similarity using SSIM.

4.1 Unimodal IR, VS single channel encoder

The unsupervised CAE methods, that we focus here are primarily intended to extract
the representations that can serve as features for finding similarity. First, we train the
unimodal single channel VS encoder with visible patches and next, IR encoder with IR
image patches as shown in Figure 4(a).

We can define the E: encoding and D: decoding functions as F and G,

F : E(Iir) → IUir ;G : D(IUir) → I ′ir (1)



72 K. Kuppala et al.

F : E(Ivs) → IUvs;G : D(IUvs) → I ′vs (2)

where Iir, Ivs represent IR patch, VS patch respectively; IUir , IUvs for coded feature
representative and I ′ir, I ′vs are patches obtained by decoding the coded features.

Figure 4 (a) 2-channel unimodal CAE (b) Layer wise details of the model (see online version
for colours)

Table 2 Proposed network and training parameters

Type of DNN CAE

Optimiser RMSProp
Activation function ELU
Conv and deconv layers 4conv-4deconv
Pooling and upsampling Maxpooling and upsampling
Regulariser BN
Learning rate 0.0001
Loss MSE and SSIM

We used a dataset of 100 pairs of visible and long wave infrared images
of size 506 × 506 (Campo et al., 2012). Dataset is freely available at
http://www.cvc.uab.es/adas/projects/simeve. Figures 2(a) and 2(b) show some of the
sample LWIR and visble images from the dataset.

We started our experimentation by training a CAE with a VS image of size 400 ×
400. The encoded representatives of CAEs are presented in Figure 2(c). It is clearly
visible from the obtained images, that this approach fails to preserve the pixel level
information. To overcome such problems, we restated our objective to find patch level
similarity.

Data generation: we extracted overlapping patches of size 32 × 32 from each image
of size 506 × 506. A total of 178,600 patches are extracted from 100 images, out of
which 50% are used for training and 25% for validation.

The unimodal encoder encompasses convolutional, max pooling and batch
normalisation layers. Details are as follows: C(96,3,1)-BN-ELU-P(3,2)-C(64,3,1)-BN-
ELU-P(3,2)-C(32,3,1)-BN-ELU-P(3,2)-C(16,3,1)-BN-ELU-P(3,2) shown in Figure 4(b),
representation is similar to Liu et al. (2018): C(n, k, s) is the convolution with n filters
of kernel size k × k, P (k, s) the max pooling of size k × k and with the stride s.
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Figure 5 2-channel CAEs with transformer in multi-modal-net (see online version for colours)

Figure 6 (a) LWIR patches (b) Visible patches of size 32 × 32 from image (c) Unimodal-net
IR decoded patches (d) Unimodal-net VS decoded patches (e) Multi-modal-net IR to
VS with MSE as loss (f) Multi-modal-net IR to VS with SSIM as loss

For the decoder, transpose convolution layer is used to reconstruct patches of size 32
× 32 from encoded feature space. The details of decoder architecture are: TC(16,3,1)-
BN-ELU-P(3,2)-TC(32,3,1)-BN-ELU-P(3,2)-TC(64,3,1)-BN-ELU-P(3,2)-TC(96,3,1)-
BN-ELU-P(3,2)-Sigmoid. TC (n, k, s) is a transposed convolution with n filters of
size k × k applied with the stride s. Feature space/representation is compressed by
decreasing the number of kernels at each convolutional layer of encoder and increase of
kernels at decoder to reconstruct the same image. Network is trained with a minibatch
size of 50 and learning rate of 0.0001. MSE is used as a loss function, defined as
follows for IR images and the same can be used with VS:
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MSE(Iir, I
′
ir) =∥ Iir − I ′ir ∥2 (3)

4.2 Multi-modal IR to VS encoder

To overcome the challenge of extreme illumination variations, a network is trained
to generate a representation of LWIR image patch which when decoded results in a
corresponding visble patch.

We trained 2-channel CAE with a pair of corresponding IR and VS images of same
size. The encoded representatives of CAEs are presented in Figure 2(d). The obtained
visible images after transformation, lose the pixel level information. To overcome such
problems, we experimented with patches.

Data generation: to train the multi-modal encoder corresponding sets of IR-VS image
patches need to be genarated. Figure 3, depicts the patch extraction process and details
are given below:

1 Compute ground truth homography between LWIR and visible images, by
manually identifying five corresponding pixels between the images.

2 Compute keypoints of VS image using SIFT (Lowe, 2004) as detector.

3 Transform the keypoints of visible image to IR image using ground truth
homography.

4 A patch of size 32 × 32 is extracted around each keypoint in both LWIR and
visible images.

A total of around, 3,000 patches are extracted from each image and sum of 300,000
patches are generated for 100 images.

The multi-modal-net encoding and decoding functions are as follows,

F : E(Iir, Ivs) → IMir ;G : D(IMir ) → I ′irvs, (4)

where I ′irvs is patch decoded from IMir representative code of multi-modal IR and VS
patches.

The idea is to use CAE as a transformation network with input being corresponding
IR and VS patches of size 32 × 32 as shown in Figure 5. The network gets trained
by computing loss between encoded IR image patch and VS patch. To attain good
quality reconstruction of compressed image, with less structural degradation, structural
similarity index (SSIM) is used (Berg et al., 2018; Nyberg et al., 2018).

The structural difference score between the input and output patches is calculated
with DSSIM as follows:

DSSIM(I ′irvs, Ivs) = 1/2(1− SSIM(Ivs − I ′irvs)) (5)

Similar batch size and the learning rate are maintained in training, as in unimodal CAE.
Batch normalisation (BN) is applied on the each batch of output feature maps from
convolution layers. To maintain the similar range of values in pixel intesities along the
batch, features are normalised with a batch mean and variance. Small constant values
are used to maintain the smoothness, avoid vanishing gradient problem and speedup
the training process. BN, max-pooling, up-sampling are applied, inspired by Žižakić
et al. (2019). A simplified set of parameters used in building our network are shown in
Table 2.
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Figure 7 Average of, (a) MSE (b) PSNR (c) SSIM similarity for 16,000 similar patches
(see online version for colours)

(a) (b) (c)

Figure 8 Average SSIM score over each image for original VS patches (see online version
for colours)

Figure 9 Average SSIM score over each image for representative encoded VS patches
(see online version for colours)

5 Evaluation and results

Implementation is carried out on Intel Core i3-3220 CPU @ 3.30 GHz, 8 GB RAM,
Ubuntu 16.04 64bit GPU: Nvidia GeForce GT 710. OpenCV 3.3 DNN module is used
for all the approaches.
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Evaluation is carried out in the following ways:

• Approach-1 (Appr-1): Distance between original IR patch (Iir) and VS patch
(Ivs) in order to provide a baseline.

• Approach-2 (Appr-2): Distance between encoded representative patches of IR
(I ′ir) and VS (I ′vs) from unimodal CAEs.

• Approach-3: Multi-modal network with MSE as loss:

1 Appr-3.a: Distance between encoded representative (I ′irvs) from multi-modal
encoder trained with MSE as loss and VS original patch (Ivs).

2 Appr-3.b: Distance between encoded representative (I ′irvs) from multi-modal
encoder trained with MSE as loss and unimodal-net VS encoder (I ′vs).

• Approach-4: Multi-modal network with SSIM as loss:

1 Appr-4.a: Distance between encoded representative (I ′irvs) from multi-modal
encoder trained with SSIM as loss and VS original patch (Ivs).

2 Appr-4.b: Distance between encoded representative (I ′irvs) from multi-modal
encoder trained with SSIM as loss and unimodal-net VS encoder (I ′vs).

5.1 Evaluation using IR-VS dataset

In Figure 6, we present some of the randomly picked decoded patches for unimodal and
multi-modal networks. The average similarity scores of the decoded patch representives
are presented in Table 3.

Table 3 Similarity score of evaluation approaches on IRVS

Patch evaluation Avg. SSIM score Decoded patch evaluation Avg. SSIM score

Appr-1 (Iir , Ivs) 0.59 Appr-2 (I ′ir , I ′vs) 0.63
Appr-3.a (I ′irvs, Ivs) 0.72 Appr-3.b (I ′irvs, I ′vs) 0.75
Appr-4.a (I ′irvs, Ivs) 0.79 Appr-4.b (I ′irvs, I ′vs) 0.83

For quantitative evaluation, we used mean squared error (MSE), peak signal to noise
ratio (PSNR), and structural similarity (SSIM) as in Berg et al. (2018) and Tsagkatakis
et al. (2019). In evaluating the trained model, we have taken 16,000 patches from 16
images, out of which ten images belong to training and validation dataset, and 6 images
belong to test set. The mean values of the MSE, PSNR and SSIM evaluation metrics
for all the four approaches can be seen in Figures 7(a), 7(b) and 7(c) respectively. The
following observations are made:

• The error rate between the original IR patches and VS patches (Appr-1) is more in
comparison with any other encoder-based (Appr-2, Appr-3 and Appr-4) approach.

• Performance of multi-modal CAE (Appr-3 and Appr-4) is much better as
compared to unimodal CAE (Appr-2).
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• Multi-modal CAE network, trained with SSIM (Appr-4) is better in comparison
with MSE (Appr-3) trained network.

In Figure 8, we present the graphs which depict structural similarity scores between
original VS patches and patches from encoded representatives as mentioned in
approaches 1, 3a, 4a for the 16 images. In Figure 9, SSIM scores between VS unimodal
encoded representatives and patches of encoded representatives as in 2, 3b, 4b.

It can be observed that the transformation encoder trained with SSIM loss is able to
generate visual patches close to the original VS patch.

Table 4 Similarity and dissimilarity scores of evaluation approaches on KAIST

Similar patch RMSE SSIM PSNR EMD Dissimilar patch RMSE SSIM PSNR EMD
evaluation evaluation

Appr-1 (Iir , Ivs) 0.326 0.226 56.65 118.758 Appr-1 (Iir , Ivs) 0.105 0.233 60.69 29.853
Appr-4.a (I′irvs, Ivs) 0.015 0.826 68.041 57.504 Appr-4.a (I′irvs, Ivs) 0.118 0.515 60.35 146.907

Table 5 Precision, recall, F-measure and accuracy table

Threshold 0.8 0.7 0.6

measure Appr-1 Appr-4.a Appr-1 Appr-4.a Appr-1 Appr-4.a
(Iir , Ivs) (I ′irvs, Ivs) (Iir , Ivs) (I ′irvs, Ivs) (Iir , Ivs) (I ′irvs, Ivs)

Precision 0.758 0.969 0.655 0.877 0.648 0.828
Recall 0.066 0.655 0.107 0.8 0.179 0.880
F-measure 0.115 0.778 0.174 0.835 0.263 0.851
Accuracy 0.532 0.817 0.522 0.837 0.521 0.844

5.2 Evaluation using KAIST dataset

We evaluated our model with a popular multi-spectral dataset, KAIST pedestrian dataset
(Berg et al., 2018; Nyberg et al., 2018). The dataset has 95 k real traffic scene images,
captured both in the day and night time from the moving vehicle with different sensors.
Figure 10, shows a sample LWIR image and its corresponding visible image, each of
size 640 × 512. The model is trained with approximately 3,000 day time image patches
for 50 epochs with SSIM as loss.

Some of the patches extracted from VS and LWIR images of Figure 10, and their
corresponding decoded patches obtained using multi-modal-net are shown in Figure 11.

The network is evaluated for use in image matching, wherein corresponding
patches between images must be found using nearest neighbour approach. For a
given region/patch of an image, corresponding patch in the other image is found
mostly based on a threshold set on the similarity value between the patches. Hence,
we analysed the various similarity and dissimilarity measures computed between the
encoded representations of the patches. Rubner et al. (2000) and Zhang et al. (2020)
stated that Earth mover’s distance (EMD) is one of the best metric in the area of
image retireval and image matching. It is able to find optimal structural difference in
representations of image regions.



78 K. Kuppala et al.

Table 4 shows the average values of the measures, computed over 16,000 similar
and dissimilar patches of visual and IR images. It can be observed that encoded
representations help in clearly distinguishing between positive and negative pairs.

Figure 10 Original IR and visible images (see online version for colours)

Figure 11 (a) IRpatches (b) Decoded patches from multi-modal-net (c) VSpatches

Nyberg et al. (2018) proposed (TIR-to-RGB) image transformation using CAE. The
appraoch could obtain an average SSIM value of 0.81 and RMSE 0.147 for 29,168
images of KAIST dataset. The results obtained from our model for 16,000 patches of
KAIST images as shown in Table 4 are marginally better which indicates that our model
is giving good performance in comparison to the existing approaches.

To assert that the proposed network can identify similarity between visual and IR
image patches, we have performed the following evaluation as done typically in image
retrieval kind of applications. The following values are computed:

• A pair of patches is true positive (TP) if it is a corresponding patch pair of VS
and IR images and the SSIM value between the encoded representations is greater
than a threshold.
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• A pair of patches is true negative (TN) if it is not a corresponding patch pair of
VS and IR images and the SSIM value between the encoded representations is
less than a threshold.

• A pair of patches is false positive (FP) if it is not a corresponding patch pair and
the SSIM value is greater than a threshold.

• A pair of patches is false negative (FN) if it is a corresponding patch pair and the
SSIM value is less than a threshold.

To measure the quality of encoding, precision, recall, F1 measure and accuracy values
are computed using the above mentioned TP, TN, FP, FN values for three different
thresholds. In Table 5, we present the results for 0.8, 0.7 and 0.6 thresholds on SSIM
similarity score between the patches. The results for all the measures show stable
improvement for approach 4a in comparison with approach 1. It is clearly observed that
the model is giving precise results in identifying the similar or dissimilar regions of VS
and IR images, which is essential for applications such as image matching and retrieval.

5.3 Discussion

The proposed encoder architecture is trained with visual and LWIR patches and tested
for patch similarity using two different dataset. From the mentioned results the following
inferences can be drawn.

1 The network architecture, hyperparameters are carefully selected based on
extensive litearture study of encoder architectures. Activation function is choosen
as ELU, BN, and use of SSIM as a loss function, contributed in improving the
performance of the network.

2 Reconstruction of a visual patch from IR patch is successfully demonstrated and
objective evaluted using SSIM.

3 Multi-modal encoded represenations are most efiicient for image matching when
compared to intensity values of patches or unimodal encoded representatives,
irrespective of the similairty measure used. This is comprehensively proved using
SSIM and EMD.

4 We considered similar and disimiliar patches as two different classes, for which
TP, TN, FP, and FN are computed. we obtained an accuracy of 84 perecentage for
the propose apparoch. This clearly proves that the encoded representation of
mulimodal net are able to distinguish between similar and dissmiliar patches.

5 The proposed approach extends the idea of image trnasformation as proposed in
Nyberg et al. (2018) and Berg et al. (2018). Multi-modal CAE can be effectively
employed for applications which require similarity computations of Visual and
LWIR patches.

6 Conclusions

In this paper, various problems of multi-spectral patch matching are addressed and how
deep learning CAE features can give notable results is explored.
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We present a 2-channel network architecture, integrated with CAEs for multi-spectral
patch matching. One channel is unimodal-net and the other is multi-modal-net. Firstly,
our unimodal CAE network is giving promising results in encoding LWIR and visible
patches. In order to overcome the spectral differences, we proposed a novel training
upon multi-modal-net with CAE as a transformer. This channel is trained with different
spectral patches to encode LWIR image patch as VS representative. To obtain a decoded
visual patch closest to the original patch, SSIM is used as a loss function to train
the network. The model trained with DSSIM is better in comparison with MSE.
The encoded representatives are invariant to the spectral differences and similarity
between these instance representatives is better in comparison and is able to reduce the
differences.

The proposed network architecture is proved using LWIR-visual images and
KAIST datasets objectively using MSE, PSNR, EMD and SSIM. The 2-channel
transformer-based CAE architecture has greatly improved between LWIR and visual
patches as shown in the results. This architecture can further be extended to other
multi-modal applications such as retrieval, etc.

Novelty of proposed method is in generating representation of IR patch using
corresponding IR and VS patches with an unsupervised CAE architecture. This enables
us to employ unimodal similarity measures such as SSIM and EMD for VS-IR patch
matching.

In addition to similarity, we have proved the usability of encoded representatives in
matching, retrieval.
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