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Abstract: This paper is concerned with the unspecified dynamic scheduling 
problem by consideration of sequence-dependent setup time and resource 
constraints in the setups (UDSS-SR) in a new-type seru production system 
(SPS). The UDSS-SR problem is formulated as a mixed integer linear 
programming (MILP) model to minimise the makespan, and an iterative greedy 
algorithm based on variable neighbourhood search (VNS-IG) is designed 
subsequently to facilitate decision-making in the real environment to rationalise 
operations and additional resources. A set of test problems is generated, and 
computational experiments with different instance sizes are finally made. The 
results indicate that the proposed VNS-IG algorithm has good performance in 
solving seru scheduling problem in terms of solution quality and efficiency. 
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1 Introduction 

In the context of Industry 4.0, the rapid development of information technology and 
increased consumer demand are placing production demands on manufacturers for 
greater flexibility, higher product quality, shorter lead times and customised production. 
Market demand presents the characteristics of product variety and output fluctuations, the 
mismatch between supply and demand in the value chain has become a problem that 
manufacturing enterprises continue to pay attention to (Yin et al., 2018), the flexibility 
and agility of the production system are becoming more and more important for 
manufacturers (Niakan et al., 2016), in order to achieve production flexibility and 
respond quickly to market fluctuations, enterprises must quickly reorganise the 
production system to have both efficiency and flexibility, thereby enhancing the core 
competitiveness (Frank et al., 2019). Seru production system (SPS) is an innovative 
production mode, developed by Japanese manufacturers in production practice, achieves 
efficiency, flexibility and rapid response at the same time (Wu et al., 2021). SPS is 
reconfigured from the traditional assembly line, which contains one or more seru, where 
seru is an assembly unit consisting of one or more workers and some simple equipment, 
seru has three types, including divisional seru, rotating seru and yatai (Shao et al., 2016; 
Luo et al., 2017; Yu and Tang, 2019). The SPS as shown in Figure 1 has seven workers 
who are cross-trained, can perform most or all tasks in the SPS. There are three workers 
assigned to seru 1, each worker completes several tasks, together to complete a job, 
called divisional seru; there are three workers assigned to seru 2, each worker completes 
tasks one by one in each workstation, each completes a job independently, after each job 
is completed, the worker will return to the first workstation to start a new round of job, 
known as rotating seru; one worker is assigned to seru 3, and the worker is responsible 
for all tasks in this seru, called yatai. This paper treats seru as a black box, and the 
proposed model and methods are applicable to all types seru. 

The SPS composed of movable workstations and multi-skilled workers is 
reconfigurable, and the serus in the SPS can be frequently built, disassembled, modified 
and refactored in a short period of time to adapt to changing market needs, so it can be 
quickly reconfigured according to changes in demand, ensuring a high level of 
productivity and quality (Kaku, 2016; Luo et al., 2021; Wang et al., 2022). In production 
practice, SPS combines the advantages of other production systems and lean philosophy 
to bring significant benefits to users (Stecke et al., 2012), and is known as ‘the next 
generation of lean manufacturing’ (Yin et al., 2017). Seru production has been 
successfully implemented in the electronics industry such as Canon and Sony in Japan, 
and many leading Japanese companies such as Panasonic, NEC, Fujitsu, Sharp, Sanyo, 
etc., assembly lines have also been converted to SPS to increase productivity (Sakazume, 
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2005; Takeuchi, 2006; Kaku et al., 2009; Zhang et al., 2020). Liu et al. (2021a) 
conducted an empirical study on seru manufacturing flexibility in the context of Chinese 
enterprises, and pointed out that multi-skilled worker participation has a great impact on 
seru manufacturing flexibility. Impressively, other benefits of SPS implementation 
include: improved task bottlenecks (Andradóttir et al., 2013), reduced workshop space 
(Stecke et al., 2012), reduced completion time (Sun et al., 2019; Gai et al., 2020), reduced 
manpower (Yin et al., 2008), reduced total delays (Sun et al., 2020), etc. Nowadays, SPS 
is gaining more and more attention both in the academic and engineering field. Treville  
et al. (2017) pointed out that in the face of the rapid replacement of electronic products, 
Japanese electronics companies can use SPS to quickly respond to the market. Min et al. 
(2019) proposed that seru management and control principles also have the potential to 
be applied to smart manufacturing, and Yin et al. (2017) pointed out that SPS is an 
alternative to lean system approach that seems to offer hope for manufacturing in 
dynamic, high-cost market. Kaku (2017) illustrated the sustainability effects of SPS. 
Zhang et al. (2017) showed that the key enabling technologies for seru production have 
positive effects on sustainable performance. The SPS is known as the ‘double E’ 
(ecological and economic) production management mode (Liu et al., 2015). Roth et al. 
(2016) summarised the development of operations management over the past 25 years, 
pointing out that seru production is one of the new areas worth paying attention to. 

Figure 1 Three seru types (see online version for colours) 
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In actual production of the SPS, the adoption of the just-in-time organisation system  
(JIT-OS) is key to achieving high performance and rapid response (Yu et al., 2018; 
Zhang et al., 2022d). The core of the JIT-OS implementation mechanism is correct serus, 
in the right place, at the appropriate time, in the exact amount (Stecke et al., 2012). In 
JIT-OS, there are three decision-making phases: seru formation, seru loading, and seru 
scheduling (Sun et al., 2020). By implementing seru formation and seru loading, SPS 
with the appropriate number of serus, suitable production materials and equipment are 
configured. Then, by implementing seru scheduling, consider the detailed job processing 
plan in each seru (e.g., job sequencing, labour allocation, resource allocation, etc.) (Jiang 
et al., 2021a). Existing research on SPS has focused on the above three areas (Zhang  
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et al., 2022c). For seru formation and seru loading, Liu et al. (2012) investigated the 
problem of how to reconfigure the conveyor assembly line to serus, a comprehensive 
mathematical model was developed to solve the problems of how many serus should be 
built and how many workers should be assigned to each seru. Liu et al. (2014) provided 
practitioners with a general framework and some basic principles that should be followed 
when implementing seru production from a practical point of view. Yu et al. (2017b) 
developed line-seru conversion to reduce workers without increasing completion time, 
and developed exact and meta-heuristic algorithms for examples of different sizes. Liu  
et al. (2013) investigated the training and assignment problem of workers when a 
conveyor assembly line is entirely reconfigured into several serus, and developed a three-
stage heuristic algorithm with nine steps. Yu et al. (2017a) established several main line-
hybrid seru system conversion models and elucidated the complexity of line-hybrid seru 
system conversion. Yu et al. (2016) selected ten scheduling rules commonly used in seru 
loading, the impact of different scheduling rules on the performance of line-seru 
conversion was studied, and the complexity of line-seru conversion of ten different 
scheduling rules was clarified from a theoretical perspective. Wang and Tang (2020) 
studied optimising the configurations for SPS in situations where requirements are 
uncertain, proposing a heuristic algorithm to solve this problem. Wang and Tang (2018) 
studied the formation of SPS under an uncertain demand and proposed a multi-objective 
optimisation model to minimise the cost of SPS and maximise service levels. Lian et al. 
(2018) solved the multi-skilled worker assignment problem of the SPS, which considered 
the differences in worker skill sets and proficiency, and developed a meta-heuristic 
algorithm based on NSGA-II for solving. Luo et al. (2016) considered a single period 
seru loading problem with worker-operation assignment, a mathematical model was 
proposed and a heuristic algorithm was designed to solve this problem. Zhang et al. 
(2021) solved a seru loading problem system with a downward substitution and random 
product demands and yields. Ying and Tsai (2017) studied the multi-skilled worker 
training and assignment problem of SPS, and designed a two-stage heuristic algorithm 
SAIG algorithm to effectively solve this problem. Liu et al. (2021b) investigated the issue 
of assigning cross-trained workers in hybrid SPSs. Jiang et al. (2021b) discussed four 
scheduling problems that consider discrete controllable processing times and resource 
allocation, and converted them into allocation problems using a general exact solution 
method. Yılmaz (2020b) addressed a bi-objective workforce scheduling problem by 
considering the inter-seru worker transfer in SPS, proposed a novel optimisation model to 
achieve two objectives, that of minimising makespan and reducing workload imbalance 
among workers. Yılmaz (2020a) conducted research on lab or scheduling problems in 
seru production environments, proposed a comprehensive optimisation model. Zhang  
et al. (2022a) investigated the scheduling problem in the SPS, which taken into account 
the sequence-dependent setup time and DeJong’s learning effect to minimise the 
makespan, developed a mixed-integer programming (MIP) model, then logic-based 
Benders decomposition (LBBD) method was applied to reformulated the proposed 
model. For seru scheduling, when studying the scheduling optimisation problem of SPS, 
the influencing factors are mainly considered: setup time, configuration of multi-skilled 
workers, learning effect, delivery time and lot-splitting (Süer and Dagli, 2005). In this 
paper, we will study for the first time the seru scheduling problem considering setup time 
and resource constraints, and hope that this research can improve the theoretical research 
of SPS and provide professional guidance for seru production managers. 
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In the actual production process, there is a lot of additional consideration involved, 
setup is usually a non-productive activity between two consecutive jobs in a sequence 
assigned to the same seru for processing. Setup includes reconfiguration, cleaning, 
adjustment tools, colour preparation, etc. (Fanjul-Peyro et al., 2019). Most scheduling 
studies assume that the setups are set to be negligible or simplified as part of job 
processing (Allahverdi et.al., 1999; Ebrahimi et al., 2014), although this assumption 
simplifies the analysis and may be reasonable for some scheduling problems, other setup 
factors such as setup time and resource constraints in the setups must be taken into 
account in other production tasks that require explicit handling of setup, especially in 
multi-product production processes (Jiang et al., 2021a; Yepes-Borrero et al., 2020; 
Zhang et al., 2022b). When the setups depend on the type of job that was just completed 
and the job that is about to be processed, the setups depend on the order of sequence. The 
setup time and the resources required for setups considered in this paper depend on both 
the job to be processed and the job immediately preceding it, which is called sequence-
dependent. 

Setup time refers to the time it takes to prepare the necessary resources (such as 
workers or tools) to perform a task (such as operation or work) in SPS (Salvendy, 2001), 
the sequence-dependent setup time also depends on seru, the setup time between two jobs 
in one seru may be different from the setup time in other seru. Therefore, if you consider 
setup time, the order of the jobs assigned to the sequence in the seru is very important. In 
addition to the sequence-dependent setup time, we also considering the additional 
resources allocated to each setup. Additional resources are considered: renewable 
resources, which are available again after setup is complete; discrete, the amount of 
resources required for setups is a positive integer; and processing, resources are required 
only during setups. The necessity of considering sequence-dependent setup time and 
resource constraints in production scheduling problems, has been recognised in some 
research. Diana et al. (2015) proposed a clone selection algorithm to solve the problem 
minimising the makespan on unrelated parallel machines with sequence-dependent setup 
times. Ruiz and Andrés-Romano (2011) considered an unrelated parallel machine 
problem with machine and job sequence-dependent setup times, where the setup time 
depends not only on the machine and job sequence, but also on the amount of resources 
allocated, which can vary between minimum and maximum values. Pinheiro  
et al. (2020) investigated the unrelated parallel machines scheduling problem with family 
setups and resource constraints. In this problem, jobs were grouped into families and 
setup times were required between jobs belonging to different families. Rajkumar et al. 
(2011) aimed at the flexible workshop scheduling problem under the constraint of limited 
resources, proposed a GRASP algorithm. Villa et al. (2018) proposed two different 
approaches to the unrelated parallel machine scheduling problem with one scarce 
additional resource: the first method considered resource constraints throughout the 
process, and the second method first did not consider resource constraints to get an 
unfeasible solution, then repaired solutions, they developed several heuristic algorithms. 
In the existing literature, there is usually no limit to the resources required for 
simultaneous setups in SPS. In other words, at any point in time, as many setups can be 
made as needed in the SPS, which is not in line with the actual production environment 
of the SPS. In the SPS, the setups between jobs are usually done by additional resources 
(such as workers with a certain professional skill), the number of available resources is 
usually limited, so the setups that can be made at the same time in the SPS are limited. 
Therefore, in this paper, we will consider both the sequence-dependent setup time and the 
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resources required for setups, as far as we know, in the field of seru scheduling problem 
research, the unspecified dynamic scheduling problem by consideration of sequence-
dependent setup time and resource constraints in the setups (UDSS-SR) is a novelty 
issue, and we will first study the UDSS-SR problem with the objective of minimising the 
makespan. 

The rest of this paper is organised as follows. Section 2 gives introduction to the 
problem and a mathematical model. Section 3 describes the algorithm designed to solve 
the UDSS-SR problem. Section 4 shows the experimental activity of evaluating the 
proposed algorithm. Finally, some conclusions and directions for future research are 
given in Section 5. 

2 Problem formulation 

In this section, we formally introduce the mathematical model we built to solve the 
UDSS-SR problem. Unlike traditional seru scheduling, the UDSS-SR problem considers 
the setup time and resources required to transform production between different jobs with 
the goal of minimising makespan. 

In the UDSS-SR problem, the SPS has been built, all serus are always available, each 
seru can only handle one job at a time, there is no pre-emption, all jobs can be processed 
in all serus. In addition, there is no priority limit on the sequence of the jobs, and all serus 
are available from time zero. The setup time and resources are related to seru and 
sequence, that is, the setup time and resources between job j and j′  in seru i may be 
different from the setup time and resources between job j′  and j in the same seru. In 
addition, the setup time and resources between jobs j and j’ in seru i may differ from the 
setup time and resources between jobs j and j′  in the other seru. The UDSS-SR problem 
requires a certain amount of resources before performing each job due to the limited 
resources in the setups, and the feasibility of the obtained solution depends on the amount 
of resources used at any point in time. The resource constraints may cause idle time 
generation in seru. 

2.1 Notations 

For convenience, following notations are introduced. 

2.1.1 Indices 
i = 1, 2, …, I index for serus 

j = 0, 1, 2, …, J index for jobs 

t = 1, 2, …, Tmax index for time. 

2.1.2 Parameters 
pij The processing time of job j in seru i. 

sijj’ The setup time of successive jobs j and j′  in seru i. 
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rijj’ The resources required in the setups of successive jobs j and j′  in seru i. 

Rmax Total number of available resources for the setups in SPS. 

2.1.3 Decision variables 
Xij Binary variable takes value 1 if job j is assigned to seru i. 

Yijj’ Binary variable takes value 1 if job j’ is processed  
continuously after job j in seru i, and 0 otherwise. 

Zijj’t Binary variable takes value 1 if job j’ is processed continuously after job j in seru 
i, and job j completes its processing at time t, and 0 otherwise. 

Cmax Makespan. 

Note that we have introduced a dummy job J0, J0 processed in each seru at time zero. We 
set 0 0 00, 0, 0, , , 0.i i j i js r i j j= ≠ ≠ ∀ ≠p  

2.2 Mathematical formulation 

The objective of the UDSS-SR problem considered in this paper is to minimise the 
makespan, we have: 

maxmin C  (1) 

Make sure that at most one job is assigned to the first position of the sequence of each 
seru, so: 

0 1,i jj J
Y i′′∈

≤ ∀  (2) 

Make sure that each job can only be assigned to one seru, so: 

1,iji I
X j

∈
= ∀  (3) 

Make sure that job j in seru i is followed by only one consecutive job j′ : 

,

, ,ij ijj
j J j j

X Y i j′
′ ′∈ ≠

= ∀  (4) 

Make sure that job j’ in seru i is preceded by only one consecutive job j: 

,
, ,ij ijjj J j j

X Y i j′ ′′∈ ≠
′= ∀  (5) 

Make sure that for each pair of consecutive jobs j and j′  in each seru i, job j must be 
processed before Tmax: 

max

, , ,ijj t ijj
t T

Z Y i j j j j′ ′
≤

′ ′= ∀ ≠  (6) 

Make sure that for each pair of consecutive jobs j and j’ in each seru i, the processing 
time of job j ends at the earliest, where M is a sufficiently large value: 
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( ) ( )
max,

1 ,

, , ,

ij jt ij j ij ijj ijj t
j J j j t T t

Z t s p M Y tZ

i j j j j

′′ ′′ ′′ ′ ′
′′ ′′ ′′∈ ≠ ≤

′′ + + − − ≤

′ ′∀ ≠

  
 (7) 

Make sure that the total number of resources used at any one time does not exceed the 
total number of resources in the setups Rmax within the SPS: 

{ }
max max

, , , , 1,..., 1
,

ij ij ijj

ijj ijj t
i I j j J j j t t p t p s

r Z R t T
′

′ ′ ′
′ ′ ′∈ ∈ ≠ ∈ + + + + +

≤ ∀ ≤  (8) 

Make sure makespan is not less than the completion time of all serus: 

max

max , , , ,ijj t
t T

C tZ i j j j j′
≤

′ ′≥ ∀ ≠  (9) 

where 

0, 0, {0, 1}, , ,ij ijj ijj tX Y Z i j t′ ′≥ ≥ ∈ ∀  (10) 

To sum up, the MILP model for the UDSS-SR problem can be presented as: 

max(MILP) min  C  

( ) ( )
max

0

,

,

max

,

1,

1,

, ,

, ,

, , , ,s.t.

1 ,

, , ,

i j
j J

ij
i I

ij jj
j J j j

ij ijj
j J j j

ijj t ijj
t T

ij j ij j ij ijj ijj t
j J j j t T t

ijj ijj t

Y i

X j

X Yi i j

X Y i j

Z Y i j j j j

Z t s M Y tZ

i j j j j

r Z R

′
′∈

∈

′
′ ′∈ ≠

′ ′
′ ′∈ ≠

′ ′
≤

′′ ′′ ′ ′
′′ ′′ ′′∈ ≠ ≤

′ ′ ′

≤ ∀

= ∀

= ∀

′= ∀

′ ′= ∀ ≠

′′ + + − − ≤

′ ′∀ ≠

≤











  p

{ }

max

max max
, , , , 1,..., 1

max

,

, , , ,

0, 0, {0, 1}, , ,

ij ij ijji I j j J j j t t p t p s

ijj t
t T

ij ijj ijj t

t T

C tZ i j j j j

X Y Z i j t

′′ ′ ′∈ ∈ ≠ ∈ + + + + +

′
≤

′ ′






















∀ ≤


 ′ ′≥ ∀ ≠



≥ ≥ ∈ ∀





 (11) 
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3 A VNS-IG algorithm for UDSS-SR 

To find the solution to the UDSS-SR problem, we must solve the following three 
subproblems: 

1 The job-seru assignment problem. That is, to get the job-seru assignment 
relationship and find a suitable seru for each job. 

2 The job sequencing problem in seru. That is, to get the processing order of jobs in 
each seru. 

3 The job timing problem. That is, to get the moment when each job in each seru starts 
processing and the moment when setup time starts. 

To solve the UDSS-SR problem, we propose an iterated greedy algorithm based on 
variable neighbourhood search (VNS-IG). The proposed heuristic rule is first applied in 
the constructive phase to obtain a relatively better initial solution, and then a variable 
neighbourhood search process is applied to optimise the feasible solution obtained in the 
constructive phase, and the repairing algorithm is repeatedly applied in the iterative 
search process to ensure the feasibility of the results. 

Figure 2 Flow chat of the proposed VNS-IG 
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In the rest of this section, we show the different phases of our proposed algorithm, 
mainly: the constructive phase, the repairing phase, and the variable neighbourhood 
search phase. In order to avoid premature convergence, we set termination conditions for 
the constructive phase and the variable neighbourhood search phase, and repeat the phase 
in which they are located until the termination conditions are satisfied. Figure 2 shows 
the flowchart of the whole VNS-IG algorithm. 

3.1 Constructive phase 

In order to generate high-quality initial solutions, we use two methods in the constructive 
phase: 

a list scheduling (LS) heuristic algorithm (Davis and Jaffe, 1981) 

b Minimum setup time and minimum resources used in the setup’s priority rule 
(SST&MSR). 

And in order to avoid local optimum, we randomise the constructive phase, generate the 
job vector in random order of jobs, set the maximum number of iterations, and seek the 
optimal solution of the constructive phase under the maximum number of iterations, and 
use the repairing algorithm in this phase to ensure the feasibility of the solution. The 
procedure of the constructive phase is summarised in Algorithm 1. 
Algorithm 1 Constructive phase 

2 Best_sol ← Inf; 
3 for interation ← 1 to maximum interation number do 
4  JV ← Randomly sort the jobs that will be assigned, generate a job vector. 
5  Current_plan ← Apply LS heuristic 
6  Current_plan ← Apply SST&MSR rule 
7  Current_sol ← Apply Repairing phase 
8  if Current_sol < Best_sol, then 
9  Best_plan ← Current_plan 
10  Best_sol ← Current_sol; 
11  end 
12 end 

3.1.1 LS heuristic 
LS heuristic solves the first job-seru assignment problem in the proposed three 
subproblems. By LS heuristic, the job-seru assignment relationship can be obtained and 
the appropriate seru is selected for each job. 

LS heuristic is based on certain principles to select the appropriate seru for each job. 
Since each job j has different processing time in different seru i and the optimisation goal 
is to minimise makespan, we define a coefficient to reflect the processing efficiency of 
job j in seru i. We refer to this coefficient as eij. 

This coefficient is defined as: 
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( )0
minij i j ij

i l
e p p′

′≤ ≤
=  

The processing efficiency eij is in the interval (0, 1). Larger eij means that job j is 
processed more efficiently in seru i, and eij = 1 means that job j is processed in the most 
efficient seru. 

The LS heuristic process is summarised in Algorithm 2, where Ci is the completion 
time of seru i. 

Step1 Construct a separate list li for each seru and calculate eij for each job in each 
seru based on the order of the jobs in the JV vector. 

Step 2 Sort all unassigned jobs in non-increasing order by eij, and update the list li. 

Step 3 If the job set j* ≠ ∅, calculate Ci of all serus at this time and find 
0arg min ,i I iseru i C′ ′≤ ≤′ = assign seru i to process j’ and get the set of jobs ij ′  

assigned by 0arg min ,i I iseru i C′ ′≤ ≤′ = otherwise the LS heuristic algorithm 
terminates. 

Step 4 1 ,i je I′ ′ >  assign seru i′ to process job j′ and get the set of jobs ij ′  assigned by 
,seru i′ otherwise ,i iC C′ ′= + ∞ and return to Step 3. Note that due to the 

balance of the scheduling problem, we set the set of jobs ij ′  to be assigned to 
seru if the ij ′ is greater than /J I   , then at most the first /J I    jobs are 
assigned. 

Step 5 Update the list { }\ ,i i il l J ′=   and the set of jobs { }* * \ ,iJ J J ′=   and return to 
Step 3. 

Algorithm 2 LS heuristic 

 Input eij, J 
 Output job-seru assignment (Current_plan) 
1  J* ← J 
2  li ← Create a list of jobs sorted in the non-increasing order of eij for each seru 
3 while j* ≠ ∅ do 
4  Find 0arg min i I iseru i C′ ′≤ ≤′ =  

5  flag ← 0 
6  while flag = 0do 

7   if 1 / ,i je I′ ′ >  then 

8    Assign seru i′ to process the j′ 
9   else 
10  i iC C Inf′ ′= +  

11  flag ← 1 
12  end 
13  end 
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14  
iJ ′  ← Get the set of jobs assigned to seru i′ 

15  { }\ , * * \{ }i i i il l J J J J′ ′← ←   

16 end 

3.1.2 SST&MST rule 
The SST&MST rule solves the second of the three proposed subproblems of job 
sequencing in each seru, and the SST&MST rule can optimise the job ordering in the 
seru and can effectively obtain a reasonable job sequence. 

The SST&MST rule in this paper considers a balanced solution of the makespan and 
the resources required in the setups, considering not only the setup time of different job 
sequences, but also measuring the resources required in the setups. Information about the 
resource constraints required in the setups is considered to avoid sequences with long 
setup times or high resource consumption in order to obtain solutions that require fewer 
resources (possibly allowing for increased makespan), bringing the solutions closer to 
feasibility, which makes the second stage, repairing phase easier. 

The SST&MST rule process is summarised in Algorithm 3, where the job with the 
smallest coefficient λ is selected as the next job to be processed when the current job is 
completed until all jobs are assigned, and λ is defined as .ijj ijjλ s r′ ′= ×  

Algorithm 3 SST and MST rule 

 Input job-seru assignment (Current_plan) 
 Output job scheduling results (Current_plan) 
1 for i ← 1 to I do 
2  iJ ← The set of jobs assigned to seru i 

3  while iJ ′ ≠ ∅  do 

4   Select Job j* which λ is minimum as the next job to be processed when the current 
job completes 

5   *\ { }i iJ J j←   

6  end 
7 end 

Step 1 For each seru, ( 1, 2, , )ij i I′ =   is denoted as the set of jobs assigned to seru i 
processing, note that each seru has a dummy job J0 at time 0, set i = 1. 

Step 2 If i ≤ I, go to step 3, otherwise the algorithm terminates. 

Step 3 If ,iJ ≠ ∅  select the job ,iJ ≠ ∅  with the smallest λ as the next job to be 
processed when the current job completes. 

Step 4 Set \{ *}i iJ J j=   and repeat Step 3 until all jobs are assigned. 

Step 5 If , 1,iJ i i= ∅ = +  return to step 2. 
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3.2 Repairing phase 

After obtaining the job-seru assignment relationship by LS heuristic and optimising the 
job processing sequence of each seru according to the SST&MST rule, the solution 
without resource constraints will be obtained, and then the solution needs to be evaluated 
to verify whether the resource constraints are satisfied. The following example shows the 
difference between seru scheduling without resource constraints and seru scheduling with 
resource constraints in the setups, and how the repairing phase algorithm will be applied. 

Example 1: Consider a UDSS-SR problem, with J = 5 jobs, I = 3 serus, and Rmax = 3 
resources available for setups. The specific relevant data is shown in Table 1, Table 2 and 
Table 3. 
Table 1 pij for the example 1 with 5 jobs and 3 serus. 

 j = 1 j = 2 j = 3 j = 4 j = 5 
i = 1 4 8 6 7 3 
i = 2 7 7 5 6 3 
i = 3 2 2 3 2 8 

Using the LS heuristic and SSR&MST rule proposed by constructive phase to assign jobs 
to serus and optimise the ordering of jobs in each seru, we obtain the solution without 
resource constraints in the setups for Figure 3 (a). The coloured rectangles indicate the 
jobs being processed and the numbers in them indicate the job indexes. The white 
rectangles indicate the setups before each job starts in seru, where the setup time and 
resources required in the setups are shown, but this solution is infeasible, and we can see 
that too many resources are used for setups between time 0 to time 1 and time 6 to time 7, 
which exceed the resource constraints for setups, and we need to fix the solution to make 
it satisfy the resource feasibility. 

Figure 3 Example repairing phase, (a) non-feasible solution (b) resource feasibility solution  
(see online version for colours) 
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Table 2 Setup times ( )ijjs ′  for the example 1 with 5 jobs and 3 serus 
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Table 3 Consumption of resources ( )ijjr ′  for the example 1 with 5 jobs and 3 serus 
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We use the matrix form to represent the job processing time, setup time, and the 
resources used in the setups are represented by numbers in the setup time period, and the 
number of matrix columns represent makespan. Figure 4 shows the matrix representation 
of the resources in the solution, the resources used in the solution before the repairing 
phase algorithm in Example 1 are represented as Figure 4 (a), and the resources used in 
the solution after using the repairing phase algorithm are represented as Figure 4 (b). 

Figure 4 Resource matrix representation, (a) non-feasible solution resource-matrix representation 
(b) resource feasibility solution resource-matrix representation (see online version  
for colours) 
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(a)     (b) 

Specifically divides the time into time periods in units of 1. If the resources required in a 
certain time period exceed Rmax, the solution must be repaired. The repairing phase 
algorithm judges and repairs every time period that the entire seru system takes to 
process all jobs, starting from moment 1 until makespan, calculates the total resources 
required for setups in each time period, and if the available resources are exceeded in a 
certain time period, the start moment of setups will be postponed by increasing the idle 
time in the seru. The repairing rule used in this paper is to postpone the job with latest 
starting setup in the seru (if the setting start time is the same, then select the 
postponement job in order) until the resource constraints are satisfied, and this process 
will be repeated until all moments are judged and repaired. Interestingly, if increasing the 
idle time to delay the setups start is not in the makespan seru, then deferring the setups 
start may not increase the makespan. 

For example 1, job 3 in seru 2 is postponed by 1 time unit, job 1 and job 2 in seru 3 
are delayed by 1 time unit, at which point the resource constraints in the setups on all 
time units are satisfied [Figure 3(b)]. 

The repairing process is summarised in Algorithm 4. 
Algorithm 4 Repairing phase 

 Input Current_plan 
 Output Current_sol 
1 R-m ← Represent the solution as the resource-matrix 
2 while t ≤ makespan do 
3  Rt ← Calculate consumption of resources at time period t 
4  if Rt > Rmax, then 
5   Postpone the job with latest starting setup in the seru until satisfy the resources 

constraint at time period t 
6  end 
7  Update R-m matrix 
8  Update makespan 
9 end 
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3.3 Variable neighbourhood search 

To further improve the algorithm, we propose three efficient job swapping heuristics in 
the SPS as variable neighbourhood search methods to complete the local search: 

a internal swap 

b external swap 

c external insertion. 
Algorithm 5 Variable neighbourhood search 

 Input Current_plan 
 Output Best_plan, Best_sol 
1 Current_plan ← Constructive phase 
2 Current_sol ← Repairing phase 
3 Best_plan ← Current_plan 
4 Best_sol ← Current_sol 
5 flag ← 0 
6 while flag = 0 do 
7  flag ← 1 
8  Current_plan ← Apply Internal swap 
9  Current_sol ← Apply Repairing phase 
10  if current_sol < Bes_sol, then 
11   Best_plan ← Current_plan 
12   Best_sol ← Current_sol 
13   flag ← 0 
14  end 
15  Current_plan ← Apply External swap 
16  Current_sol ← Apply Repairing phase 
17  if Current_sol < Best_sol, then 
18   Best_plan ← Current_plan 
19   Best_sol ← Current_sol 
20   flag ← 0 
21  end 
22  Current_plan ← Apply External insertion 
23  Current_sol ← Apply Repairing phase 
24  if Current_sol < Best_sol, then 
25   Best_plan ← Current_plan 
26   Best_sol ← Current_sol 
27   flag ← 0 
28  end 
29 end 
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Variable neighbourhood search will be applied after the constructive phase, the variable 
neighbourhood search phase process is summarised in Algorithm 5. The flowchart of the 
variable neighbourhood search process is shown in Figure 5, and we will repeat the 
variable neighbourhood search process before the termination condition. In the remainder 
of this section, we will describe the proposed variable neighbourhood search in detail. 

Figure 5 Flow chat of variable neighbourhood search 
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3.3.1 Internal swap 
Internal swap means that for each job j in each seru i, job j is swapped with any other job 
j′  assigned to be processed in the same seru, the setup time and the resources required in 

the setups after updating the swap, and applies the repairing phase. A judgment is made 
for each internal swap, and after computing all possible swaps, we keep the internal swap 
under the solution with the minimum makespan. The internal swap process is 
summarised in Algorithm 6 and schematically shown in Figure 6(a). 
Algorithm 6 Internal swap 

 Input Current_plan, Current_sol 
1 flag ← 0 
2 while flag = 0 do 
3  flag ← 1 
4  for i ← 1 to I do 

5   j  ← job in seru i 

6    for 1jJ J←   to JJ  do 

7     for 2jJ J′ ←   to JJ  do 

8      Temporary_plan ← Swap the job jJ  with ,jJ ′  update the setup time 
and the resources used in the setups 

9      Temporary_sol ← Apply repairing phase 
10      if Temporary_sol < Best_sol, then 
11       Current_plan ← Temporary_plan 
12       Best_plan ← Current_plan 
13       Current_sol ← Temporary_sol 
14       Best_sol ← Current_sol 
15       flag ← 0 
16    end 
17  end 
18  end 
19  end 
20 end 

3.3.2 External swap 
External swap is the job j in the seru where makespan is located, defines the seru where 
makespan is located as serumakespan, that is, each job j in serumakespan is swapped with job 
j′  of other seru, updating the setup time and the resources required in the setups after the 

swap, and performing the repairing phase. Judgment is made for each external swap, and 
after computing all possible swaps, we keep the external swap under the solution with the 
minimum makespan. The external swap process is summarised in algorithm 7 and 
schematically shown in Figure 6(b). 
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Algorithm 7 External swap 

 Input Current_plan, Current_sol 
1 flag← 0 
2 serumakespan ← seru i that defines the makespan 
3 while flag = 0 do 
4  flag ← 1 

5  j  ← job in serumakespan  

6  for jj  ← 1j  to Jj  do 

7   for i′ ← 1 to I do 
8    if i′ ≠ i, then 

9     ĵ  ← job in seru i′ 

10      for 1ˆ ˆJJ J←  to ˆJJ  do 

11      Temporary_plan← Swap the job JJ  with ˆ ,JJ  update the setup time and 
the resources used in the setups 

12      Temporary_sol← Apply repairing phase 
13      if Temporary_sol < Best_sol, then 
14       Current_plan ← Temporary_plan 
15       Best_plan ← Current_plan 
16       Current_sol ← Temporary_sol 
17       Best_sol ← Current_sol 
18       flag ← 0 
19      end 
20  end 
21  end 
22  end 
23  end 
24 end 

3.3.3 External insertion 
External insertion is the job j in the seru where makespan is located, defines the seru 
where makespan is located as serumakespan, that is, each job j in serumakespan, inserted into 
any location in other seru, updating the setup time and the resources required in the 
setups after the insertion, and performing the repairing phase. Judgment is made for each 
external insertion, and after computing all possible insertions, we keep the external 
insertion under the solution with the minimum makespan. The external insertion process 
is summarised in Algorithm 8 and schematically shown in Figure 6(c). 
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Figure 6 Three types of variable neighbourhood search (a) internal swap of job 1 with job 2 in 
seru 3 (b) external swap of job 3 in seru 2 with job 2 in seru 3 (c) external insertion of 
job 2 in seru 3 at last position in seru 2 (see online version for colours) 
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Algorithm 8 External insertion 

 Input Current_plan, Current_sol 
1 flag ← 0 
2 serumakespan← seru i that defines the makespan 
3 while flag = 0 do 
4  flag←1 

5  j  ← job in serumakespan  

6  for jj  ← 1j  to Jj  do 

7   for i′ ← 1 to I do 
8    if i′ ≠ i, then 

9     ĵ  ← job in seru i′ 

10     for 1ˆ ˆJJ J←  to ˆJJ  do 

11 
     Temporary _plan ← Insertion of job jJ  in seru i′ at any adjacent location 

for all jobs, update the setup times and the resources used for the sets 
12      Temporary_sol ← Apply repairing phase 
13      if Temporary_sol < Best_sol, then 
14       Current_plan ← Temporary_plan 
15       Best_plan ← Current_plan 
16       Current_sol ← Temporary_sol 
17       Best_sol ← Current_sol 
18       flag ← 0 
19      end 
20  end 
21  end 
22  end 
23  end 
24  end 
25 end 

4 Computation experiments 

In this section, we conduct computational experiments. Tests are conducted at different 
scale instances to evaluate the performance of the proposed VNS-IG algorithm to solve 
the UDSS-SR problem. We test them on randomly generated benchmarks and discuss the 
results. The generations of instances and the algorithm for solving the UDSS-SR problem 
proposed in this paper are implemented by MATLAB R2021b. MATLAB software run 
on a personal computer, including Inter (R) Core (TM) i7-10710U CPU with 1.10GHz 
speed, 16 GB main memory. 
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4.1 Data setting 

For the instances of the UDSS-SR problem, we choose the combination of the total 
number of serus (I) and the number of jobs (J) to reflect the scale of the experiments. 
Since the distribution of the resources required in the setups is U = (1, 9), rmin = 1,  

rmax = 9, we will calculate the total resources for setups is max min
max 5

2
r rR I I+= × = × , 

in SPS, I is the total number of serus. The other parameters of the UDSS-SR problem are 
completely random within a given range. The parameters in Table 4 are used to generate 
the test instances set. U(a, b) is the uniform distribution of random integers between a 
and b (including the both extremes), which is the most commonly distribution used for 
generating scheduling problem instances. There are a total of five test instances, denoted 
by I × J. All instances are repeated 20 times, so the total number of instances to be tested 
is 100. 
Table 4 Parameter settings 

Parameters Value 

Instance size {I × J} {10 × 100, 15 × 200, 20 × 300, 25 × 400, 30 × 500} 
The total resources for setups Rmax 5 × I 
Setup times ijjs ′  U = (1, 20) 

Resources required for setup ijjr ′  U = (1, 9) 

Processing times ijp  U = (1, 50) 

4.2 Experimental results and analysis 
To demonstrate the effectiveness of the VNS-IG algorithm, it is compared with the 
solution obtained from the constructive phase heuristic rule (Heuristic), and the results 
are presented in Table 5. The improvement ratio δ (%) and the CPU time in seconds are 
also presented in Table 5, where the improvement ratio δ (%) is calculated by the 
following equation. 

max max

max
100%

Heuristic VNS IG

Heuristic
C Cδ

C

−−= ×  

As can be seen from Table 5, the solutions obtained by the VNS-IG algorithm are 
significantly better than those obtained by Heuristic, and VSN-IG has better performance 
with significant improvement, and the CPU time for all instances are within the 
satisfactory range, even for large instances of 30 × 500. To check whether the differences 
in δ are statistically significant, the one-way analysis of variance (ANOVA) method is 
used. We analysed different instance sizes {10 × 100, 15 × 200, 20 × 300, 25 × 400,  
30 × 500} using δ as the response variable. Figure 7(a) shows a box plot of different 
instance sizes at 95% confidence level, Figure 7(b) shows a point line diagram for all 
instances. Interestingly, we observe that improvements are better in the 20 × 300 and  
25 × 400 instances. 
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Table 5 Results of heuristic and the VNS-IG algorithm 

Size 
Heuristic 

 
VNS-IG 

δ (%) Avg. δ (%) 
maxHeuristicC  CPU 

time(s) maxVNS IGC −  CPU 
time(s) 

10 × 100 187 0.4311  159 15.4481 14.973 22.492 
230 0.2665  145 28.4886 36.957 
208 0.3248  144 31.2654 30.769 
208 0.2699  157 19.9572 24.519 
221 0.3722  179 12.1266 19.005 
191 0.3527  141 34.7662 26.178 
211 0.2768  162 24.3086 23.223 
225 0.2982  156 30.773 30.667 
206 0.2661  192 10.3506 6.796 
266 0.321  181 24.1542 31.955 
189 0.2776  149 11.1146 21.164 
221 0.287  161 22.4876 27.149 
193 0.2594  165 11.6119 14.508 
225 0.2693  171 14.5139 24.000 

 166 0.2902  149 11.0084 10.241  
184 0.3943  165 6.8834 10.326 
214 0.2895  170 7.9003 20.561 
237 0.3397  173 22.9854 27.004 
196 0.2821  185 13.2485 5.612 
303 0.487  169 20.4079 44.224 

15 × 200 297 1.2447  220 262.641 25.926 20.133 
281 0.9772  230 147.9782 18.149 
294 1.071  202 186.4302 31.293 
274 0.9849  204 208.83 25.547 
249 0.8674  205 140.7985 17.671 
294 0.9519  205 136.2086 30.272 
263 1.1511  216 95.5002 17.871 
294 0.8949  238 67.5731 19.048 
261 0.9963  213 138.8502 18.391 
288 0.9377  243 103.1174 15.625 
345 0.8159  222 93.6121 35.652 
263 0.8867  223 115.3082 15.209 
282 0.8006  229 59.1407 18.794 
290 0.8875  258 58.6048 11.034 
274 0.6627  239 68.9954 12.774 
272 0.6012  203 64.4207 25.368 
255 0.6906  228 40.4328 10.588 
248 0.5499  202 63.3477 18.548 
251 0.6913  215 26.4919 14.343 
292 0.63  232 79.1137 20.548 
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Table 5 Results of heuristic and the VNS-IG algorithm (continued) 

Size 
Heuristic 

 
VNS-IG 

δ (%) Avg. δ (%) 
maxHeuristicC  CPU 

time(s) maxVNS IGC −  CPU 
time(s) 

20 × 300 432 0.9987  231 351.668 46.528 31.725 
338 1.2367  250 189.4956 26.036 
393 0.9925  229 190.1129 41.730 
307 0.9454  231 169.2985 24.756 
354 1.0586  210 230.8494 40.678 
327 1.0274  238 76.347 27.217 
333 1.0164  261 145.5857 21.622  
356 0.9945  222 151.953 37.640  
304 1.2753  219 190.9431 27.961  
418 1.0984  254 191.692 39.234  

 363 1.2609  250 210.3311 31.129  
380 1.1603  259 104.7934 31.842 
356 1.0649  249 106.5757 30.056 
374 1.5002  223 268.6044 40.374 
356 1.0539  265 76.7074 25.562 
368 1.0778  226 490.9935 38.587 
366 1.8422  227 395.0233 37.978 
326 1.662  284 78.2233 12.883 
316 2.6752  236 386.8679 25.316 
307 2.2142  223 489.7231 27.362 

25 × 400 319 2.1026  239 164.0654 25.078 35.527 
437 1.6555  250 287.3242 42.792 
373 1.6756  227 409.3324 39.142 
319 1.7401  225 365.1709 29.467 
414 1.6988  234 258.0641 43.478 
343 1.6487  270 278.3417 21.283 
421 1.6926  239 422.645 43.230 
426 1.715  278 357.8836 34.742 
324 1.6482  222 431.603 31.481 
384 1.6429  273 163.9269 28.906 
383 1.9596  251 326.898 34.465 
450 1.6064  248 385.65 44.889 
379 1.7074  233 368.6817 38.522 
438 1.7278  269 435.7079 38.584 
337 1.7548  255 191.9043 24.332 

 398 1.8541  249 531.0397 37.437  
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Table 5 Results of heuristic and the VNS-IG algorithm (continued) 

Size 
Heuristic 

 
VNS-IG 

δ (%) Avg. δ (%) 
maxHeuristicC  CPU 

time(s) maxVNS IGC −  CPU 
time(s) 

25 × 400 386 1.9486  248 263.0265 35.751 35.527 
394 2.2335  242 393.5228 38.579 
398 1.6529  237 586.7498 40.452 
396 1.8509  246 359.7934 37.879 

30 × 500 318 4.1421  235 773.7176 26.101 22.055 
296 2.6542  233 456.1981 21.284 
360 2.8691  291 361.1639 19.167 
361 2.5678  244 638.7439 32.410 
305 3.3037  246 600.3728 19.344 
322 3.043  265 289.2475 17.702 

 281 2.5527  251 347.1778 10.676  
366 2.6678  251 474.7473 31.421  
329 2.6153  261 570.7909 20.669  
316 2.5832  235 702.3107 25.633  
318 3.046  269 444.7714 15.409  
367 2.6672  278 464.8519 24.251  
353 2.65  281 427.706 20.397  
338 3.0451  249 393.2359 26.331  
302 2.7531  248 738.4533 17.881  
326 2.7031  272 465.4965 16.564  
348 2.6084  247 984.9874 29.023  
294 2.5803  250 345.3055 14.966  
347 2.67  261 423.6897 24.784  
358 2.5775  261 699.0969 27.095  

In summary, it can be concluded that the solutions obtained by applying the VNS-IG 
algorithm are always satisfactory. Therefore, in the actual production scheduling process, 
our proposed VNS-IG algorithm is a good choice for managers, because in addition to 
being able to obtain a feasible solution to the UDSS-SR problem in an acceptable time, 
and the feasible solution is satisfactory. Therefore, the VNS-IG algorithm proposed in 
this paper can be considered as a good method with good performance if we consider 
both the quality and efficiency of the solution. 

 

 

 



   

 

   

   
 

   

   

 

   

   84 Y. Xiang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 Data analysis, (a) ANOVA (b) point line diagram (see online version for colours) 
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5 Conclusions 

This paper focuses on the scheduling problem in SPS, which considers both  
sequence-dependent setup time and resource constraints in the setups to minimise 
makespan, which helps production managers to strike a balance between production 
efficiency and resource utilisation and helps manufacturing plants to schedule jobs and 
additional resources (e.g., worker resources) in a more rational manner. Therefore, we 
developed a mixed integer linear programming model for UDSS-SR and designed an 
iterative greedy algorithm based on variable neighbourhood search. Computational 
experiments show that the proposed solution method is effective for the UDSS-SR 
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problem and can find good solutions for instances of the proposed problem with a short 
CPU time. 

Future research may add consideration of other practical factors in seru scheduling, 
such as adding additional considerations: limited resource allocation during job 
processing, etc. In addition, a multi-objective seru scheduling model can be considered 
considering the conflicts between different decision objectives in the actual decision 
process. 
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