
 58 Int. J. Industrial and Systems Engineering, Vol. 46, No. 1, 2024

 Copyright © 2024 Inderscience Enterprises Ltd.

A VNS-IG algorithm for dynamic seru scheduling
problem with sequence-dependent setup time and
resource constraints

Yiran Xiang, Zhe Zhang* and Xue Gong
School of Economics and Management,
Nanjing University of Science and Technology,
Nanjing 210094, China
Email: 2206073558@qq.com
Email: zhangzhe@njust.edu.cn
Email: xue.gong@njust.edu.cn
*Corresponding author

Yong Yin
Graduate School of Business,
Doshisha University,
Karasuma-Imadegawa, Kamigyo-ku,
Kyoto 602-8580, Japan
Email: yyin@mail.doshisha.ac.jp

Abstract: This paper is concerned with the unspecified dynamic scheduling
problem by consideration of sequence-dependent setup time and resource
constraints in the setups (UDSS-SR) in a new-type seru production system
(SPS). The UDSS-SR problem is formulated as a mixed integer linear
programming (MILP) model to minimise the makespan, and an iterative greedy
algorithm based on variable neighbourhood search (VNS-IG) is designed
subsequently to facilitate decision-making in the real environment to rationalise
operations and additional resources. A set of test problems is generated, and
computational experiments with different instance sizes are finally made. The
results indicate that the proposed VNS-IG algorithm has good performance in
solving seru scheduling problem in terms of solution quality and efficiency.

Keywords: scheduling; seru production; sequence-dependent setup time;
resource constraint; hybrid intelligent algorithm.

Reference to this paper should be made as follows: Xiang, Y., Zhang, Z.,
Gong, X. and Yin, Y. (2024) ‘A VNS-IG algorithm for dynamic seru
scheduling problem with sequence-dependent setup time and resource
constraints’, Int. J. Industrial and Systems Engineering, Vol. 46, No. 1,
pp.58–89.

Biographical notes: Yiran Xiang is a Master candidate of School of
Economics and Management, Nanjing University of Science and Technology.
Her research interest is seru scheduling problem.

Zhe Zhang received her PhD from Sichuan University in December 2011. She
is an Associate Professor of Nanjing University of Science and Technology.
Her current research interests are in the areas of seru production systems,
production scheduling, advanced manufacturing and so on.

 A VNS-IG algorithm for dynamic seru scheduling problem 59

Xue Gong is an Associate Professor of Nanjing University of Science and
Technology. Her current research interests are in the areas of decision-making
optimization, transnational investment and so on.

Yong Yin is a Professor of Graduate School of Business in Doshisha
University. His current research interests are in seru production systems,
production and operations management and so on.

1 Introduction

In the context of Industry 4.0, the rapid development of information technology and
increased consumer demand are placing production demands on manufacturers for
greater flexibility, higher product quality, shorter lead times and customised production.
Market demand presents the characteristics of product variety and output fluctuations, the
mismatch between supply and demand in the value chain has become a problem that
manufacturing enterprises continue to pay attention to (Yin et al., 2018), the flexibility
and agility of the production system are becoming more and more important for
manufacturers (Niakan et al., 2016), in order to achieve production flexibility and
respond quickly to market fluctuations, enterprises must quickly reorganise the
production system to have both efficiency and flexibility, thereby enhancing the core
competitiveness (Frank et al., 2019). Seru production system (SPS) is an innovative
production mode, developed by Japanese manufacturers in production practice, achieves
efficiency, flexibility and rapid response at the same time (Wu et al., 2021). SPS is
reconfigured from the traditional assembly line, which contains one or more seru, where
seru is an assembly unit consisting of one or more workers and some simple equipment,
seru has three types, including divisional seru, rotating seru and yatai (Shao et al., 2016;
Luo et al., 2017; Yu and Tang, 2019). The SPS as shown in Figure 1 has seven workers
who are cross-trained, can perform most or all tasks in the SPS. There are three workers
assigned to seru 1, each worker completes several tasks, together to complete a job,
called divisional seru; there are three workers assigned to seru 2, each worker completes
tasks one by one in each workstation, each completes a job independently, after each job
is completed, the worker will return to the first workstation to start a new round of job,
known as rotating seru; one worker is assigned to seru 3, and the worker is responsible
for all tasks in this seru, called yatai. This paper treats seru as a black box, and the
proposed model and methods are applicable to all types seru.

The SPS composed of movable workstations and multi-skilled workers is
reconfigurable, and the serus in the SPS can be frequently built, disassembled, modified
and refactored in a short period of time to adapt to changing market needs, so it can be
quickly reconfigured according to changes in demand, ensuring a high level of
productivity and quality (Kaku, 2016; Luo et al., 2021; Wang et al., 2022). In production
practice, SPS combines the advantages of other production systems and lean philosophy
to bring significant benefits to users (Stecke et al., 2012), and is known as ‘the next
generation of lean manufacturing’ (Yin et al., 2017). Seru production has been
successfully implemented in the electronics industry such as Canon and Sony in Japan,
and many leading Japanese companies such as Panasonic, NEC, Fujitsu, Sharp, Sanyo,
etc., assembly lines have also been converted to SPS to increase productivity (Sakazume,

 60 Y. Xiang et al.

2005; Takeuchi, 2006; Kaku et al., 2009; Zhang et al., 2020). Liu et al. (2021a)
conducted an empirical study on seru manufacturing flexibility in the context of Chinese
enterprises, and pointed out that multi-skilled worker participation has a great impact on
seru manufacturing flexibility. Impressively, other benefits of SPS implementation
include: improved task bottlenecks (Andradóttir et al., 2013), reduced workshop space
(Stecke et al., 2012), reduced completion time (Sun et al., 2019; Gai et al., 2020), reduced
manpower (Yin et al., 2008), reduced total delays (Sun et al., 2020), etc. Nowadays, SPS
is gaining more and more attention both in the academic and engineering field. Treville
et al. (2017) pointed out that in the face of the rapid replacement of electronic products,
Japanese electronics companies can use SPS to quickly respond to the market. Min et al.
(2019) proposed that seru management and control principles also have the potential to
be applied to smart manufacturing, and Yin et al. (2017) pointed out that SPS is an
alternative to lean system approach that seems to offer hope for manufacturing in
dynamic, high-cost market. Kaku (2017) illustrated the sustainability effects of SPS.
Zhang et al. (2017) showed that the key enabling technologies for seru production have
positive effects on sustainable performance. The SPS is known as the ‘double E’
(ecological and economic) production management mode (Liu et al., 2015). Roth et al.
(2016) summarised the development of operations management over the past 25 years,
pointing out that seru production is one of the new areas worth paying attention to.

Figure 1 Three seru types (see online version for colours)

seru 3
Yatai

1

2

3 4 5

6

7

seru 1
Divisional seru

1

2

3 4 5

6

7

seru 2
Rotating seru

1

2

3 4 5

6

7

assign 3 workers assign 3 workers assign 1 worker

In actual production of the SPS, the adoption of the just-in-time organisation system
(JIT-OS) is key to achieving high performance and rapid response (Yu et al., 2018;
Zhang et al., 2022d). The core of the JIT-OS implementation mechanism is correct serus,
in the right place, at the appropriate time, in the exact amount (Stecke et al., 2012). In
JIT-OS, there are three decision-making phases: seru formation, seru loading, and seru
scheduling (Sun et al., 2020). By implementing seru formation and seru loading, SPS
with the appropriate number of serus, suitable production materials and equipment are
configured. Then, by implementing seru scheduling, consider the detailed job processing
plan in each seru (e.g., job sequencing, labour allocation, resource allocation, etc.) (Jiang
et al., 2021a). Existing research on SPS has focused on the above three areas (Zhang

 A VNS-IG algorithm for dynamic seru scheduling problem 61

et al., 2022c). For seru formation and seru loading, Liu et al. (2012) investigated the
problem of how to reconfigure the conveyor assembly line to serus, a comprehensive
mathematical model was developed to solve the problems of how many serus should be
built and how many workers should be assigned to each seru. Liu et al. (2014) provided
practitioners with a general framework and some basic principles that should be followed
when implementing seru production from a practical point of view. Yu et al. (2017b)
developed line-seru conversion to reduce workers without increasing completion time,
and developed exact and meta-heuristic algorithms for examples of different sizes. Liu
et al. (2013) investigated the training and assignment problem of workers when a
conveyor assembly line is entirely reconfigured into several serus, and developed a three-
stage heuristic algorithm with nine steps. Yu et al. (2017a) established several main line-
hybrid seru system conversion models and elucidated the complexity of line-hybrid seru
system conversion. Yu et al. (2016) selected ten scheduling rules commonly used in seru
loading, the impact of different scheduling rules on the performance of line-seru
conversion was studied, and the complexity of line-seru conversion of ten different
scheduling rules was clarified from a theoretical perspective. Wang and Tang (2020)
studied optimising the configurations for SPS in situations where requirements are
uncertain, proposing a heuristic algorithm to solve this problem. Wang and Tang (2018)
studied the formation of SPS under an uncertain demand and proposed a multi-objective
optimisation model to minimise the cost of SPS and maximise service levels. Lian et al.
(2018) solved the multi-skilled worker assignment problem of the SPS, which considered
the differences in worker skill sets and proficiency, and developed a meta-heuristic
algorithm based on NSGA-II for solving. Luo et al. (2016) considered a single period
seru loading problem with worker-operation assignment, a mathematical model was
proposed and a heuristic algorithm was designed to solve this problem. Zhang et al.
(2021) solved a seru loading problem system with a downward substitution and random
product demands and yields. Ying and Tsai (2017) studied the multi-skilled worker
training and assignment problem of SPS, and designed a two-stage heuristic algorithm
SAIG algorithm to effectively solve this problem. Liu et al. (2021b) investigated the issue
of assigning cross-trained workers in hybrid SPSs. Jiang et al. (2021b) discussed four
scheduling problems that consider discrete controllable processing times and resource
allocation, and converted them into allocation problems using a general exact solution
method. Yılmaz (2020b) addressed a bi-objective workforce scheduling problem by
considering the inter-seru worker transfer in SPS, proposed a novel optimisation model to
achieve two objectives, that of minimising makespan and reducing workload imbalance
among workers. Yılmaz (2020a) conducted research on lab or scheduling problems in
seru production environments, proposed a comprehensive optimisation model. Zhang
et al. (2022a) investigated the scheduling problem in the SPS, which taken into account
the sequence-dependent setup time and DeJong’s learning effect to minimise the
makespan, developed a mixed-integer programming (MIP) model, then logic-based
Benders decomposition (LBBD) method was applied to reformulated the proposed
model. For seru scheduling, when studying the scheduling optimisation problem of SPS,
the influencing factors are mainly considered: setup time, configuration of multi-skilled
workers, learning effect, delivery time and lot-splitting (Süer and Dagli, 2005). In this
paper, we will study for the first time the seru scheduling problem considering setup time
and resource constraints, and hope that this research can improve the theoretical research
of SPS and provide professional guidance for seru production managers.

 62 Y. Xiang et al.

In the actual production process, there is a lot of additional consideration involved,
setup is usually a non-productive activity between two consecutive jobs in a sequence
assigned to the same seru for processing. Setup includes reconfiguration, cleaning,
adjustment tools, colour preparation, etc. (Fanjul-Peyro et al., 2019). Most scheduling
studies assume that the setups are set to be negligible or simplified as part of job
processing (Allahverdi et.al., 1999; Ebrahimi et al., 2014), although this assumption
simplifies the analysis and may be reasonable for some scheduling problems, other setup
factors such as setup time and resource constraints in the setups must be taken into
account in other production tasks that require explicit handling of setup, especially in
multi-product production processes (Jiang et al., 2021a; Yepes-Borrero et al., 2020;
Zhang et al., 2022b). When the setups depend on the type of job that was just completed
and the job that is about to be processed, the setups depend on the order of sequence. The
setup time and the resources required for setups considered in this paper depend on both
the job to be processed and the job immediately preceding it, which is called sequence-
dependent.

Setup time refers to the time it takes to prepare the necessary resources (such as
workers or tools) to perform a task (such as operation or work) in SPS (Salvendy, 2001),
the sequence-dependent setup time also depends on seru, the setup time between two jobs
in one seru may be different from the setup time in other seru. Therefore, if you consider
setup time, the order of the jobs assigned to the sequence in the seru is very important. In
addition to the sequence-dependent setup time, we also considering the additional
resources allocated to each setup. Additional resources are considered: renewable
resources, which are available again after setup is complete; discrete, the amount of
resources required for setups is a positive integer; and processing, resources are required
only during setups. The necessity of considering sequence-dependent setup time and
resource constraints in production scheduling problems, has been recognised in some
research. Diana et al. (2015) proposed a clone selection algorithm to solve the problem
minimising the makespan on unrelated parallel machines with sequence-dependent setup
times. Ruiz and Andrés-Romano (2011) considered an unrelated parallel machine
problem with machine and job sequence-dependent setup times, where the setup time
depends not only on the machine and job sequence, but also on the amount of resources
allocated, which can vary between minimum and maximum values. Pinheiro
et al. (2020) investigated the unrelated parallel machines scheduling problem with family
setups and resource constraints. In this problem, jobs were grouped into families and
setup times were required between jobs belonging to different families. Rajkumar et al.
(2011) aimed at the flexible workshop scheduling problem under the constraint of limited
resources, proposed a GRASP algorithm. Villa et al. (2018) proposed two different
approaches to the unrelated parallel machine scheduling problem with one scarce
additional resource: the first method considered resource constraints throughout the
process, and the second method first did not consider resource constraints to get an
unfeasible solution, then repaired solutions, they developed several heuristic algorithms.
In the existing literature, there is usually no limit to the resources required for
simultaneous setups in SPS. In other words, at any point in time, as many setups can be
made as needed in the SPS, which is not in line with the actual production environment
of the SPS. In the SPS, the setups between jobs are usually done by additional resources
(such as workers with a certain professional skill), the number of available resources is
usually limited, so the setups that can be made at the same time in the SPS are limited.
Therefore, in this paper, we will consider both the sequence-dependent setup time and the

 A VNS-IG algorithm for dynamic seru scheduling problem 63

resources required for setups, as far as we know, in the field of seru scheduling problem
research, the unspecified dynamic scheduling problem by consideration of sequence-
dependent setup time and resource constraints in the setups (UDSS-SR) is a novelty
issue, and we will first study the UDSS-SR problem with the objective of minimising the
makespan.

The rest of this paper is organised as follows. Section 2 gives introduction to the
problem and a mathematical model. Section 3 describes the algorithm designed to solve
the UDSS-SR problem. Section 4 shows the experimental activity of evaluating the
proposed algorithm. Finally, some conclusions and directions for future research are
given in Section 5.

2 Problem formulation

In this section, we formally introduce the mathematical model we built to solve the
UDSS-SR problem. Unlike traditional seru scheduling, the UDSS-SR problem considers
the setup time and resources required to transform production between different jobs with
the goal of minimising makespan.

In the UDSS-SR problem, the SPS has been built, all serus are always available, each
seru can only handle one job at a time, there is no pre-emption, all jobs can be processed
in all serus. In addition, there is no priority limit on the sequence of the jobs, and all serus
are available from time zero. The setup time and resources are related to seru and
sequence, that is, the setup time and resources between job j and j′ in seru i may be
different from the setup time and resources between job j′ and j in the same seru. In
addition, the setup time and resources between jobs j and j’ in seru i may differ from the
setup time and resources between jobs j and j′ in the other seru. The UDSS-SR problem
requires a certain amount of resources before performing each job due to the limited
resources in the setups, and the feasibility of the obtained solution depends on the amount
of resources used at any point in time. The resource constraints may cause idle time
generation in seru.

2.1 Notations

For convenience, following notations are introduced.

2.1.1 Indices
i = 1, 2, …, I index for serus

j = 0, 1, 2, …, J index for jobs

t = 1, 2, …, Tmax index for time.

2.1.2 Parameters
pij The processing time of job j in seru i.

sijj’ The setup time of successive jobs j and j′ in seru i.

 64 Y. Xiang et al.

rijj’ The resources required in the setups of successive jobs j and j′ in seru i.

Rmax Total number of available resources for the setups in SPS.

2.1.3 Decision variables
Xij Binary variable takes value 1 if job j is assigned to seru i.

Yijj’ Binary variable takes value 1 if job j’ is processed
continuously after job j in seru i, and 0 otherwise.

Zijj’t Binary variable takes value 1 if job j’ is processed continuously after job j in seru
i, and job j completes its processing at time t, and 0 otherwise.

Cmax Makespan.

Note that we have introduced a dummy job J0, J0 processed in each seru at time zero. We
set 0 0 00, 0, 0, , , 0.i i j i js r i j j= ≠ ≠ ∀ ≠p

2.2 Mathematical formulation

The objective of the UDSS-SR problem considered in this paper is to minimise the
makespan, we have:

maxmin C (1)

Make sure that at most one job is assigned to the first position of the sequence of each
seru, so:

0 1,i jj J
Y i′′∈

≤ ∀ (2)

Make sure that each job can only be assigned to one seru, so:

1,iji I
X j

∈
= ∀ (3)

Make sure that job j in seru i is followed by only one consecutive job j′ :

,

, ,ij ijj
j J j j

X Y i j′
′ ′∈ ≠

= ∀ (4)

Make sure that job j’ in seru i is preceded by only one consecutive job j:

,
, ,ij ijjj J j j

X Y i j′ ′′∈ ≠
′= ∀ (5)

Make sure that for each pair of consecutive jobs j and j′ in each seru i, job j must be
processed before Tmax:

max

, , ,ijj t ijj
t T

Z Y i j j j j′ ′
≤

′ ′= ∀ ≠ (6)

Make sure that for each pair of consecutive jobs j and j’ in each seru i, the processing
time of job j ends at the earliest, where M is a sufficiently large value:

 A VNS-IG algorithm for dynamic seru scheduling problem 65

() ()
max,

1 ,

, , ,

ij jt ij j ij ijj ijj t
j J j j t T t

Z t s p M Y tZ

i j j j j

′′ ′′ ′′ ′ ′
′′ ′′ ′′∈ ≠ ≤

′′ + + − − ≤

′ ′∀ ≠

  
 (7)

Make sure that the total number of resources used at any one time does not exceed the
total number of resources in the setups Rmax within the SPS:

{ }
max max

, , , , 1,..., 1
,

ij ij ijj

ijj ijj t
i I j j J j j t t p t p s

r Z R t T
′

′ ′ ′
′ ′ ′∈ ∈ ≠ ∈ + + + + +

≤ ∀ ≤ (8)

Make sure makespan is not less than the completion time of all serus:

max

max , , , ,ijj t
t T

C tZ i j j j j′
≤

′ ′≥ ∀ ≠ (9)

where

0, 0, {0, 1}, , ,ij ijj ijj tX Y Z i j t′ ′≥ ≥ ∈ ∀ (10)

To sum up, the MILP model for the UDSS-SR problem can be presented as:

max(MILP) min C

() ()
max

0

,

,

max

,

1,

1,

, ,

, ,

, , , ,s.t.

1 ,

, , ,

i j
j J

ij
i I

ij jj
j J j j

ij ijj
j J j j

ijj t ijj
t T

ij j ij j ij ijj ijj t
j J j j t T t

ijj ijj t

Y i

X j

X Yi i j

X Y i j

Z Y i j j j j

Z t s M Y tZ

i j j j j

r Z R

′
′∈

∈

′
′ ′∈ ≠

′ ′
′ ′∈ ≠

′ ′
≤

′′ ′′ ′ ′
′′ ′′ ′′∈ ≠ ≤

′ ′ ′

≤ ∀

= ∀

= ∀

′= ∀

′ ′= ∀ ≠

′′ + + − − ≤

′ ′∀ ≠

≤











  p

{ }

max

max max
, , , , 1,..., 1

max

,

, , , ,

0, 0, {0, 1}, , ,

ij ij ijji I j j J j j t t p t p s

ijj t
t T

ij ijj ijj t

t T

C tZ i j j j j

X Y Z i j t

′′ ′ ′∈ ∈ ≠ ∈ + + + + +

′
≤

′ ′






















∀ ≤


 ′ ′≥ ∀ ≠



≥ ≥ ∈ ∀





 (11)

 66 Y. Xiang et al.

3 A VNS-IG algorithm for UDSS-SR

To find the solution to the UDSS-SR problem, we must solve the following three
subproblems:

1 The job-seru assignment problem. That is, to get the job-seru assignment
relationship and find a suitable seru for each job.

2 The job sequencing problem in seru. That is, to get the processing order of jobs in
each seru.

3 The job timing problem. That is, to get the moment when each job in each seru starts
processing and the moment when setup time starts.

To solve the UDSS-SR problem, we propose an iterated greedy algorithm based on
variable neighbourhood search (VNS-IG). The proposed heuristic rule is first applied in
the constructive phase to obtain a relatively better initial solution, and then a variable
neighbourhood search process is applied to optimise the feasible solution obtained in the
constructive phase, and the repairing algorithm is repeatedly applied in the iterative
search process to ensure the feasibility of the results.

Figure 2 Flow chat of the proposed VNS-IG

Start

Constructive phase

Best solution Is it currently optimal？

Current solution

Randomly generate
job vector

Termination?

Repairing seru

YES

NO
NO

YES

Local search Repairing seru

Termination?

Best solution

YES

NO

End

 A VNS-IG algorithm for dynamic seru scheduling problem 67

In the rest of this section, we show the different phases of our proposed algorithm,
mainly: the constructive phase, the repairing phase, and the variable neighbourhood
search phase. In order to avoid premature convergence, we set termination conditions for
the constructive phase and the variable neighbourhood search phase, and repeat the phase
in which they are located until the termination conditions are satisfied. Figure 2 shows
the flowchart of the whole VNS-IG algorithm.

3.1 Constructive phase

In order to generate high-quality initial solutions, we use two methods in the constructive
phase:

a list scheduling (LS) heuristic algorithm (Davis and Jaffe, 1981)

b Minimum setup time and minimum resources used in the setup’s priority rule
(SST&MSR).

And in order to avoid local optimum, we randomise the constructive phase, generate the
job vector in random order of jobs, set the maximum number of iterations, and seek the
optimal solution of the constructive phase under the maximum number of iterations, and
use the repairing algorithm in this phase to ensure the feasibility of the solution. The
procedure of the constructive phase is summarised in Algorithm 1.
Algorithm 1 Constructive phase

2 Best_sol ← Inf;
3 for interation ← 1 to maximum interation number do
4 JV ← Randomly sort the jobs that will be assigned, generate a job vector.
5 Current_plan ← Apply LS heuristic
6 Current_plan ← Apply SST&MSR rule
7 Current_sol ← Apply Repairing phase
8 if Current_sol < Best_sol, then
9 Best_plan ← Current_plan
10 Best_sol ← Current_sol;
11 end
12 end

3.1.1 LS heuristic
LS heuristic solves the first job-seru assignment problem in the proposed three
subproblems. By LS heuristic, the job-seru assignment relationship can be obtained and
the appropriate seru is selected for each job.

LS heuristic is based on certain principles to select the appropriate seru for each job.
Since each job j has different processing time in different seru i and the optimisation goal
is to minimise makespan, we define a coefficient to reflect the processing efficiency of
job j in seru i. We refer to this coefficient as eij.

This coefficient is defined as:

 68 Y. Xiang et al.

()0
minij i j ij

i l
e p p′

′≤ ≤
=

The processing efficiency eij is in the interval (0, 1). Larger eij means that job j is
processed more efficiently in seru i, and eij = 1 means that job j is processed in the most
efficient seru.

The LS heuristic process is summarised in Algorithm 2, where Ci is the completion
time of seru i.

Step1 Construct a separate list li for each seru and calculate eij for each job in each
seru based on the order of the jobs in the JV vector.

Step 2 Sort all unassigned jobs in non-increasing order by eij, and update the list li.

Step 3 If the job set j* ≠ ∅, calculate Ci of all serus at this time and find
0arg min ,i I iseru i C′ ′≤ ≤′ = assign seru i to process j’ and get the set of jobs ij ′

assigned by 0arg min ,i I iseru i C′ ′≤ ≤′ = otherwise the LS heuristic algorithm
terminates.

Step 4 1 ,i je I′ ′ > assign seru i′ to process job j′ and get the set of jobs ij ′ assigned by
,seru i′ otherwise ,i iC C′ ′= + ∞ and return to Step 3. Note that due to the

balance of the scheduling problem, we set the set of jobs ij ′ to be assigned to
seru if the ij ′ is greater than /J I   , then at most the first /J I   jobs are
assigned.

Step 5 Update the list { }\ ,i i il l J ′=  and the set of jobs { }* * \ ,iJ J J ′=  and return to
Step 3.

Algorithm 2 LS heuristic

 Input eij, J
 Output job-seru assignment (Current_plan)
1 J* ← J
2 li ← Create a list of jobs sorted in the non-increasing order of eij for each seru
3 while j* ≠ ∅ do
4 Find 0arg min i I iseru i C′ ′≤ ≤′ =

5 flag ← 0
6 while flag = 0do

7 if 1 / ,i je I′ ′ > then

8 Assign seru i′ to process the j′
9 else
10 i iC C Inf′ ′= +

11 flag ← 1
12 end
13 end

 A VNS-IG algorithm for dynamic seru scheduling problem 69

14
iJ ′ ← Get the set of jobs assigned to seru i′

15 { }\ , * * \{ }i i i il l J J J J′ ′← ← 

16 end

3.1.2 SST&MST rule
The SST&MST rule solves the second of the three proposed subproblems of job
sequencing in each seru, and the SST&MST rule can optimise the job ordering in the
seru and can effectively obtain a reasonable job sequence.

The SST&MST rule in this paper considers a balanced solution of the makespan and
the resources required in the setups, considering not only the setup time of different job
sequences, but also measuring the resources required in the setups. Information about the
resource constraints required in the setups is considered to avoid sequences with long
setup times or high resource consumption in order to obtain solutions that require fewer
resources (possibly allowing for increased makespan), bringing the solutions closer to
feasibility, which makes the second stage, repairing phase easier.

The SST&MST rule process is summarised in Algorithm 3, where the job with the
smallest coefficient λ is selected as the next job to be processed when the current job is
completed until all jobs are assigned, and λ is defined as .ijj ijjλ s r′ ′= ×

Algorithm 3 SST and MST rule

 Input job-seru assignment (Current_plan)
 Output job scheduling results (Current_plan)
1 for i ← 1 to I do
2 iJ ← The set of jobs assigned to seru i

3 while iJ ′ ≠ ∅ do

4 Select Job j* which λ is minimum as the next job to be processed when the current
job completes

5 *\ { }i iJ J j← 

6 end
7 end

Step 1 For each seru, (1, 2, ,)ij i I′ =  is denoted as the set of jobs assigned to seru i
processing, note that each seru has a dummy job J0 at time 0, set i = 1.

Step 2 If i ≤ I, go to step 3, otherwise the algorithm terminates.

Step 3 If ,iJ ≠ ∅ select the job ,iJ ≠ ∅ with the smallest λ as the next job to be
processed when the current job completes.

Step 4 Set \{ *}i iJ J j=  and repeat Step 3 until all jobs are assigned.

Step 5 If , 1,iJ i i= ∅ = + return to step 2.

 70 Y. Xiang et al.

3.2 Repairing phase

After obtaining the job-seru assignment relationship by LS heuristic and optimising the
job processing sequence of each seru according to the SST&MST rule, the solution
without resource constraints will be obtained, and then the solution needs to be evaluated
to verify whether the resource constraints are satisfied. The following example shows the
difference between seru scheduling without resource constraints and seru scheduling with
resource constraints in the setups, and how the repairing phase algorithm will be applied.

Example 1: Consider a UDSS-SR problem, with J = 5 jobs, I = 3 serus, and Rmax = 3
resources available for setups. The specific relevant data is shown in Table 1, Table 2 and
Table 3.
Table 1 pij for the example 1 with 5 jobs and 3 serus.

 j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 4 8 6 7 3
i = 2 7 7 5 6 3
i = 3 2 2 3 2 8

Using the LS heuristic and SSR&MST rule proposed by constructive phase to assign jobs
to serus and optimise the ordering of jobs in each seru, we obtain the solution without
resource constraints in the setups for Figure 3 (a). The coloured rectangles indicate the
jobs being processed and the numbers in them indicate the job indexes. The white
rectangles indicate the setups before each job starts in seru, where the setup time and
resources required in the setups are shown, but this solution is infeasible, and we can see
that too many resources are used for setups between time 0 to time 1 and time 6 to time 7,
which exceed the resource constraints for setups, and we need to fix the solution to make
it satisfy the resource feasibility.

Figure 3 Example repairing phase, (a) non-feasible solution (b) resource feasibility solution
(see online version for colours)

Sij=4, Rij=31

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

seru 1
seru 2
seru 3

7
6

Rmax=
4
3
2
1
0

2

11

11

11 12

12

5

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

3Sij=3, Rij=25
4

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

seru 1
seru 2
seru 3

7
6

Rmax=
4
3
2
1
0

11

11

11 12 13 14

12 13 14

5

16

Sij=4, Rij=31 2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

35
4

Sij=3, Rij=2

(a) (b)

 A VNS-IG algorithm for dynamic seru scheduling problem 71

Table 2 Setup times ()ijjs ′ for the example 1 with 5 jobs and 3 serus

j =

 1

j =
 2

j =

 3

j =
 4

j =

 4

j =
 5

j =
 1

j =

 2

j =
 3

j =

 4

j =
 4

j =

 5

j =

 1

j =
 2

j =

 3

j =
 4

j =

 4

j =
 5

1
j′

=

4
0

7
3

9
7

7

0
8

6
5

10

4

0
8

3
8

9

2
j′

=

8
5

0
7

3
3

2

10

0
3

5
9

5

4
0

8
7

4

3
j′

=

4
9

3
0

4
5

3

2
4

0
1

3

8
4

4
0

3
3

4
j′

=

5
8

8
5

0
5

7

2
4

6
0

10

9

9
5

4
0

10

5
j′

=

3
10

2

1
3

5

1
3

7
1

6
6

8

3
5

4
1

0

 72 Y. Xiang et al.

Table 3 Consumption of resources ()ijjr ′ for the example 1 with 5 jobs and 3 serus

,
,

,

(

1)
ij

j
i

r
′

=

(

2)
ij

j
i

r
′

=

(

3)
ij

j
i

r
′

=

j =
 0

j =

 1

j =
2

j =
 3

j =

 4

j =
 5

j =
 0

j =

 1

j =
 2

j =

 3

j =
 4

j =

 5

j =

 0

j =
 1

j =

 2

j =
 3

j =

 4

j =
 5

1
j′

=

2
0

1
3

1
3

3

0
2

1
2

1

2
0

1
2

1
1

2
j′

=

3
1

0
1

3
2

1

2
0

2
2

2

3
3

0
2

2
3

3
j′

=

1
3

2
0

1
1

1

2
2

0
1

2

1
2

2
0

1
1

4
j′

=

1
3

2
2

0
2

2

1
2

1
0

1

2
2

1
3

0
1

5
j′

=

2
2

1
3

1
0

2

3
2

3
2

0

1
1

2
1

3
0

 A VNS-IG algorithm for dynamic seru scheduling problem 73

We use the matrix form to represent the job processing time, setup time, and the
resources used in the setups are represented by numbers in the setup time period, and the
number of matrix columns represent makespan. Figure 4 shows the matrix representation
of the resources in the solution, the resources used in the solution before the repairing
phase algorithm in Example 1 are represented as Figure 4 (a), and the resources used in
the solution after using the repairing phase algorithm are represented as Figure 4 (b).

Figure 4 Resource matrix representation, (a) non-feasible solution resource-matrix representation
(b) resource feasibility solution resource-matrix representation (see online version
for colours)

1 1 1 1 1 0 0 0 0 0 0 0

2 0 0 0 2 2 20 0 0 0 0

2 2 2 2 0 0 3 3 3 3 0 0

1 2 3 4 5 6 7 8 9 10 11 12t

0 0

0 0

0

13 14

0

1 1 1 1 1 0 0 0 0 0 0 0

2 0 0 0 2 2 2 0 0 0 0 0

2 2 2 2 0 0 3 3 3 3 0 0

1 2 3 4 5 6 7 8 9 10 11 12t
(a) (b)

Specifically divides the time into time periods in units of 1. If the resources required in a
certain time period exceed Rmax, the solution must be repaired. The repairing phase
algorithm judges and repairs every time period that the entire seru system takes to
process all jobs, starting from moment 1 until makespan, calculates the total resources
required for setups in each time period, and if the available resources are exceeded in a
certain time period, the start moment of setups will be postponed by increasing the idle
time in the seru. The repairing rule used in this paper is to postpone the job with latest
starting setup in the seru (if the setting start time is the same, then select the
postponement job in order) until the resource constraints are satisfied, and this process
will be repeated until all moments are judged and repaired. Interestingly, if increasing the
idle time to delay the setups start is not in the makespan seru, then deferring the setups
start may not increase the makespan.

For example 1, job 3 in seru 2 is postponed by 1 time unit, job 1 and job 2 in seru 3
are delayed by 1 time unit, at which point the resource constraints in the setups on all
time units are satisfied [Figure 3(b)].

The repairing process is summarised in Algorithm 4.
Algorithm 4 Repairing phase

 Input Current_plan
 Output Current_sol
1 R-m ← Represent the solution as the resource-matrix
2 while t ≤ makespan do
3 Rt ← Calculate consumption of resources at time period t
4 if Rt > Rmax, then
5 Postpone the job with latest starting setup in the seru until satisfy the resources

constraint at time period t
6 end
7 Update R-m matrix
8 Update makespan
9 end

 74 Y. Xiang et al.

3.3 Variable neighbourhood search

To further improve the algorithm, we propose three efficient job swapping heuristics in
the SPS as variable neighbourhood search methods to complete the local search:

a internal swap

b external swap

c external insertion.
Algorithm 5 Variable neighbourhood search

 Input Current_plan
 Output Best_plan, Best_sol
1 Current_plan ← Constructive phase
2 Current_sol ← Repairing phase
3 Best_plan ← Current_plan
4 Best_sol ← Current_sol
5 flag ← 0
6 while flag = 0 do
7 flag ← 1
8 Current_plan ← Apply Internal swap
9 Current_sol ← Apply Repairing phase
10 if current_sol < Bes_sol, then
11 Best_plan ← Current_plan
12 Best_sol ← Current_sol
13 flag ← 0
14 end
15 Current_plan ← Apply External swap
16 Current_sol ← Apply Repairing phase
17 if Current_sol < Best_sol, then
18 Best_plan ← Current_plan
19 Best_sol ← Current_sol
20 flag ← 0
21 end
22 Current_plan ← Apply External insertion
23 Current_sol ← Apply Repairing phase
24 if Current_sol < Best_sol, then
25 Best_plan ← Current_plan
26 Best_sol ← Current_sol
27 flag ← 0
28 end
29 end

 A VNS-IG algorithm for dynamic seru scheduling problem 75

Variable neighbourhood search will be applied after the constructive phase, the variable
neighbourhood search phase process is summarised in Algorithm 5. The flowchart of the
variable neighbourhood search process is shown in Figure 5, and we will repeat the
variable neighbourhood search process before the termination condition. In the remainder
of this section, we will describe the proposed variable neighbourhood search in detail.

Figure 5 Flow chat of variable neighbourhood search

Internal swap

Start

Constructive phase

Current solution

Current plan

Repairing phase

Best solution

Best plan

Flag=0

flag=0?

Flag=1

YES

Current plan Repairing phase Current solution

Current solution<Best solution

Best solution=Current solutionBest plan=Current plan

YES

Flag=0

External swap Current plan Repairing phase Current solution

NO

Current solution<Best solution

Best solution=Current solutionBest plan=Current plan

YES

Flag=0

External insertion Current plan Repairing phase Current solution

NO

Current solution<Best solution

Best solution=Current solutionBest plan=Current plan

YES

Flag=0

NO

End

NO

 76 Y. Xiang et al.

3.3.1 Internal swap
Internal swap means that for each job j in each seru i, job j is swapped with any other job
j′ assigned to be processed in the same seru, the setup time and the resources required in

the setups after updating the swap, and applies the repairing phase. A judgment is made
for each internal swap, and after computing all possible swaps, we keep the internal swap
under the solution with the minimum makespan. The internal swap process is
summarised in Algorithm 6 and schematically shown in Figure 6(a).
Algorithm 6 Internal swap

 Input Current_plan, Current_sol
1 flag ← 0
2 while flag = 0 do
3 flag ← 1
4 for i ← 1 to I do

5 j ← job in seru i

6 for 1jJ J←  to JJ do

7 for 2jJ J′ ←  to JJ do

8 Temporary_plan ← Swap the job jJ with ,jJ ′ update the setup time
and the resources used in the setups

9 Temporary_sol ← Apply repairing phase
10 if Temporary_sol < Best_sol, then
11 Current_plan ← Temporary_plan
12 Best_plan ← Current_plan
13 Current_sol ← Temporary_sol
14 Best_sol ← Current_sol
15 flag ← 0
16 end
17 end
18 end
19 end
20 end

3.3.2 External swap
External swap is the job j in the seru where makespan is located, defines the seru where
makespan is located as serumakespan, that is, each job j in serumakespan is swapped with job
j′ of other seru, updating the setup time and the resources required in the setups after the

swap, and performing the repairing phase. Judgment is made for each external swap, and
after computing all possible swaps, we keep the external swap under the solution with the
minimum makespan. The external swap process is summarised in algorithm 7 and
schematically shown in Figure 6(b).

 A VNS-IG algorithm for dynamic seru scheduling problem 77

Algorithm 7 External swap

 Input Current_plan, Current_sol
1 flag← 0
2 serumakespan ← seru i that defines the makespan
3 while flag = 0 do
4 flag ← 1

5 j ← job in serumakespan

6 for jj ← 1j to Jj do

7 for i′ ← 1 to I do
8 if i′ ≠ i, then

9 ĵ ← job in seru i′

10 for 1ˆ ˆJJ J← to ˆJJ do

11 Temporary_plan← Swap the job JJ with ˆ ,JJ update the setup time and
the resources used in the setups

12 Temporary_sol← Apply repairing phase
13 if Temporary_sol < Best_sol, then
14 Current_plan ← Temporary_plan
15 Best_plan ← Current_plan
16 Current_sol ← Temporary_sol
17 Best_sol ← Current_sol
18 flag ← 0
19 end
20 end
21 end
22 end
23 end
24 end

3.3.3 External insertion
External insertion is the job j in the seru where makespan is located, defines the seru
where makespan is located as serumakespan, that is, each job j in serumakespan, inserted into
any location in other seru, updating the setup time and the resources required in the
setups after the insertion, and performing the repairing phase. Judgment is made for each
external insertion, and after computing all possible insertions, we keep the external
insertion under the solution with the minimum makespan. The external insertion process
is summarised in Algorithm 8 and schematically shown in Figure 6(c).

 78 Y. Xiang et al.

Figure 6 Three types of variable neighbourhood search (a) internal swap of job 1 with job 2 in
seru 3 (b) external swap of job 3 in seru 2 with job 2 in seru 3 (c) external insertion of
job 2 in seru 3 at last position in seru 2 (see online version for colours)

Sij=4, Rij=31 2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

3Sij=3, Rij=25
4

Sij=8, Rij=1 12

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=5, Rij=3

3Sij=3, Rij=25
4

(a)

Makespan seru Sij=4, Rij=31 2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

3Sij=3, Rij=25
4

Sij=4, Rij=31 2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

3Sij=3, Rij=25
4

Sij=4, Rij=21
2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2 3

Sij=9, Rij=25
4

(b)

Makespan seru Sij=4, Rij=31 2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

3Sij=3, Rij=25
4

Sij=4, Rij=31 2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

3Sij=3, Rij=25
4

1
2

Sij=5, Rij=1

Sij=1,
Rij=2

Sij=4, Rij=2

Sij=9, Rij=25
4

3Sij=3, Rij=2

(c)

 A VNS-IG algorithm for dynamic seru scheduling problem 79

Algorithm 8 External insertion

 Input Current_plan, Current_sol
1 flag ← 0
2 serumakespan← seru i that defines the makespan
3 while flag = 0 do
4 flag←1

5 j ← job in serumakespan

6 for jj ← 1j to Jj do

7 for i′ ← 1 to I do
8 if i′ ≠ i, then

9 ĵ ← job in seru i′

10 for 1ˆ ˆJJ J← to ˆJJ do

11
 Temporary _plan ← Insertion of job jJ in seru i′ at any adjacent location

for all jobs, update the setup times and the resources used for the sets
12 Temporary_sol ← Apply repairing phase
13 if Temporary_sol < Best_sol, then
14 Current_plan ← Temporary_plan
15 Best_plan ← Current_plan
16 Current_sol ← Temporary_sol
17 Best_sol ← Current_sol
18 flag ← 0
19 end
20 end
21 end
22 end
23 end
24 end
25 end

4 Computation experiments

In this section, we conduct computational experiments. Tests are conducted at different
scale instances to evaluate the performance of the proposed VNS-IG algorithm to solve
the UDSS-SR problem. We test them on randomly generated benchmarks and discuss the
results. The generations of instances and the algorithm for solving the UDSS-SR problem
proposed in this paper are implemented by MATLAB R2021b. MATLAB software run
on a personal computer, including Inter (R) Core (TM) i7-10710U CPU with 1.10GHz
speed, 16 GB main memory.

 80 Y. Xiang et al.

4.1 Data setting

For the instances of the UDSS-SR problem, we choose the combination of the total
number of serus (I) and the number of jobs (J) to reflect the scale of the experiments.
Since the distribution of the resources required in the setups is U = (1, 9), rmin = 1,

rmax = 9, we will calculate the total resources for setups is max min
max 5

2
r rR I I+= × = × ,

in SPS, I is the total number of serus. The other parameters of the UDSS-SR problem are
completely random within a given range. The parameters in Table 4 are used to generate
the test instances set. U(a, b) is the uniform distribution of random integers between a
and b (including the both extremes), which is the most commonly distribution used for
generating scheduling problem instances. There are a total of five test instances, denoted
by I × J. All instances are repeated 20 times, so the total number of instances to be tested
is 100.
Table 4 Parameter settings

Parameters Value

Instance size {I × J} {10 × 100, 15 × 200, 20 × 300, 25 × 400, 30 × 500}
The total resources for setups Rmax 5 × I
Setup times ijjs ′ U = (1, 20)

Resources required for setup ijjr ′ U = (1, 9)

Processing times ijp U = (1, 50)

4.2 Experimental results and analysis
To demonstrate the effectiveness of the VNS-IG algorithm, it is compared with the
solution obtained from the constructive phase heuristic rule (Heuristic), and the results
are presented in Table 5. The improvement ratio δ (%) and the CPU time in seconds are
also presented in Table 5, where the improvement ratio δ (%) is calculated by the
following equation.

max max

max
100%

Heuristic VNS IG

Heuristic
C Cδ

C

−−= ×

As can be seen from Table 5, the solutions obtained by the VNS-IG algorithm are
significantly better than those obtained by Heuristic, and VSN-IG has better performance
with significant improvement, and the CPU time for all instances are within the
satisfactory range, even for large instances of 30 × 500. To check whether the differences
in δ are statistically significant, the one-way analysis of variance (ANOVA) method is
used. We analysed different instance sizes {10 × 100, 15 × 200, 20 × 300, 25 × 400,
30 × 500} using δ as the response variable. Figure 7(a) shows a box plot of different
instance sizes at 95% confidence level, Figure 7(b) shows a point line diagram for all
instances. Interestingly, we observe that improvements are better in the 20 × 300 and
25 × 400 instances.

 A VNS-IG algorithm for dynamic seru scheduling problem 81

Table 5 Results of heuristic and the VNS-IG algorithm

Size
Heuristic

VNS-IG

δ (%) Avg. δ (%)
maxHeuristicC CPU

time(s) maxVNS IGC − CPU
time(s)

10 × 100 187 0.4311 159 15.4481 14.973 22.492
230 0.2665 145 28.4886 36.957
208 0.3248 144 31.2654 30.769
208 0.2699 157 19.9572 24.519
221 0.3722 179 12.1266 19.005
191 0.3527 141 34.7662 26.178
211 0.2768 162 24.3086 23.223
225 0.2982 156 30.773 30.667
206 0.2661 192 10.3506 6.796
266 0.321 181 24.1542 31.955
189 0.2776 149 11.1146 21.164
221 0.287 161 22.4876 27.149
193 0.2594 165 11.6119 14.508
225 0.2693 171 14.5139 24.000

 166 0.2902 149 11.0084 10.241
184 0.3943 165 6.8834 10.326
214 0.2895 170 7.9003 20.561
237 0.3397 173 22.9854 27.004
196 0.2821 185 13.2485 5.612
303 0.487 169 20.4079 44.224

15 × 200 297 1.2447 220 262.641 25.926 20.133
281 0.9772 230 147.9782 18.149
294 1.071 202 186.4302 31.293
274 0.9849 204 208.83 25.547
249 0.8674 205 140.7985 17.671
294 0.9519 205 136.2086 30.272
263 1.1511 216 95.5002 17.871
294 0.8949 238 67.5731 19.048
261 0.9963 213 138.8502 18.391
288 0.9377 243 103.1174 15.625
345 0.8159 222 93.6121 35.652
263 0.8867 223 115.3082 15.209
282 0.8006 229 59.1407 18.794
290 0.8875 258 58.6048 11.034
274 0.6627 239 68.9954 12.774
272 0.6012 203 64.4207 25.368
255 0.6906 228 40.4328 10.588
248 0.5499 202 63.3477 18.548
251 0.6913 215 26.4919 14.343
292 0.63 232 79.1137 20.548

 82 Y. Xiang et al.

Table 5 Results of heuristic and the VNS-IG algorithm (continued)

Size
Heuristic

VNS-IG

δ (%) Avg. δ (%)
maxHeuristicC CPU

time(s) maxVNS IGC − CPU
time(s)

20 × 300 432 0.9987 231 351.668 46.528 31.725
338 1.2367 250 189.4956 26.036
393 0.9925 229 190.1129 41.730
307 0.9454 231 169.2985 24.756
354 1.0586 210 230.8494 40.678
327 1.0274 238 76.347 27.217
333 1.0164 261 145.5857 21.622
356 0.9945 222 151.953 37.640
304 1.2753 219 190.9431 27.961
418 1.0984 254 191.692 39.234

 363 1.2609 250 210.3311 31.129
380 1.1603 259 104.7934 31.842
356 1.0649 249 106.5757 30.056
374 1.5002 223 268.6044 40.374
356 1.0539 265 76.7074 25.562
368 1.0778 226 490.9935 38.587
366 1.8422 227 395.0233 37.978
326 1.662 284 78.2233 12.883
316 2.6752 236 386.8679 25.316
307 2.2142 223 489.7231 27.362

25 × 400 319 2.1026 239 164.0654 25.078 35.527
437 1.6555 250 287.3242 42.792
373 1.6756 227 409.3324 39.142
319 1.7401 225 365.1709 29.467
414 1.6988 234 258.0641 43.478
343 1.6487 270 278.3417 21.283
421 1.6926 239 422.645 43.230
426 1.715 278 357.8836 34.742
324 1.6482 222 431.603 31.481
384 1.6429 273 163.9269 28.906
383 1.9596 251 326.898 34.465
450 1.6064 248 385.65 44.889
379 1.7074 233 368.6817 38.522
438 1.7278 269 435.7079 38.584
337 1.7548 255 191.9043 24.332

 398 1.8541 249 531.0397 37.437

 A VNS-IG algorithm for dynamic seru scheduling problem 83

Table 5 Results of heuristic and the VNS-IG algorithm (continued)

Size
Heuristic

VNS-IG

δ (%) Avg. δ (%)
maxHeuristicC CPU

time(s) maxVNS IGC − CPU
time(s)

25 × 400 386 1.9486 248 263.0265 35.751 35.527
394 2.2335 242 393.5228 38.579
398 1.6529 237 586.7498 40.452
396 1.8509 246 359.7934 37.879

30 × 500 318 4.1421 235 773.7176 26.101 22.055
296 2.6542 233 456.1981 21.284
360 2.8691 291 361.1639 19.167
361 2.5678 244 638.7439 32.410
305 3.3037 246 600.3728 19.344
322 3.043 265 289.2475 17.702

 281 2.5527 251 347.1778 10.676
366 2.6678 251 474.7473 31.421
329 2.6153 261 570.7909 20.669
316 2.5832 235 702.3107 25.633
318 3.046 269 444.7714 15.409
367 2.6672 278 464.8519 24.251
353 2.65 281 427.706 20.397
338 3.0451 249 393.2359 26.331
302 2.7531 248 738.4533 17.881
326 2.7031 272 465.4965 16.564
348 2.6084 247 984.9874 29.023
294 2.5803 250 345.3055 14.966
347 2.67 261 423.6897 24.784
358 2.5775 261 699.0969 27.095

In summary, it can be concluded that the solutions obtained by applying the VNS-IG
algorithm are always satisfactory. Therefore, in the actual production scheduling process,
our proposed VNS-IG algorithm is a good choice for managers, because in addition to
being able to obtain a feasible solution to the UDSS-SR problem in an acceptable time,
and the feasible solution is satisfactory. Therefore, the VNS-IG algorithm proposed in
this paper can be considered as a good method with good performance if we consider
both the quality and efficiency of the solution.

 84 Y. Xiang et al.

Figure 7 Data analysis, (a) ANOVA (b) point line diagram (see online version for colours)

10×100 15×200 20×300 25×400 30×500

0

20

40

60

δ
(
%)

(a)

0 5 10 15 20
0

10

20

30

40

50

δ(
%

)

instances

 10×100
 15×200
 20×300
 25×400
 30×500

(b)

5 Conclusions

This paper focuses on the scheduling problem in SPS, which considers both
sequence-dependent setup time and resource constraints in the setups to minimise
makespan, which helps production managers to strike a balance between production
efficiency and resource utilisation and helps manufacturing plants to schedule jobs and
additional resources (e.g., worker resources) in a more rational manner. Therefore, we
developed a mixed integer linear programming model for UDSS-SR and designed an
iterative greedy algorithm based on variable neighbourhood search. Computational
experiments show that the proposed solution method is effective for the UDSS-SR

 A VNS-IG algorithm for dynamic seru scheduling problem 85

problem and can find good solutions for instances of the proposed problem with a short
CPU time.

Future research may add consideration of other practical factors in seru scheduling,
such as adding additional considerations: limited resource allocation during job
processing, etc. In addition, a multi-objective seru scheduling model can be considered
considering the conflicts between different decision objectives in the actual decision
process.

Acknowledgements

This research is sponsored by National Natural Science Foundation of China (Grant
Nos. 71401075, 71801129), and System Science and Enterprise Development Research
Center (Grant No. Xq22B06). We would like to give our great appreciation to all the
reviewers and editors who contributed this research.

References
Allahverdi, A., Gupta, J.N. and Aldowaisan, T. (1999) ‘A review of scheduling research involving

setup considerations’, Omega, Vol. No. 272, pp.219–239, https://doi.org/10.1016/ S0305-
0483(98)00042-5.

Andradóttir, S., Ayhan, H. and Down, D.G. (2013) ‘Design principles for flexible systems’,
Production and Operations Management, Vol. 22, No. 5, pp.1144–1156, https://doi.org/
10.1111/ poms.12009.

Davis, E. and Jaffe, J.M. (1981) ‘Algorithms for scheduling tasks on unrelated processors’, Journal
of the ACM (JACM), Vol. 28, No. 4, pp.721–736, https://doi.org/10.1145/322276.322284.

Diana, R.O.M., de França Filho, M.F., de Souza, S.R. and de Almeida Vitor, J.F. (2015) ‘An
immune-inspired algorithm for an unrelated parallel machines’ scheduling problem with
sequence and machine dependent setup-times for makespan minimisation’, Neurocomputing,
Vol. 163, pp.94–105, https://doi.org/10.1016/j.neucom.2014.06.091.

Ebrahimi, M., Ghomi, S.F. and Karimi, B. (2014) ‘Hybrid flow shop scheduling with sequence
dependent family setup time and uncertain due dates’, Applied Mathematical Modelling,
Vol. 38, Nos. 9–10, pp.2490–2504, https://doi.org/10.1016/j.apm.2013.10.061.

Fanjul-Peyro, L., Ruiz, R. and Perea, F. (2019) ‘Reformulations and an exact algorithm for
unrelated parallel machine scheduling problems with setup times’, Computers & Operations
Research, Vol. 101, pp.173–182, https://doi.org/10.1016/j.cor.2018.07.007.

Frank, A., Dalenogare, L. and Ayala, N.F. (2019) ‘Industry 4.0 technologies: implementation
patterns in manufacturing companies’, International Journal of Production Economics,
Vol. 210, pp.15–26, https://doi.org/10.1016/j.ijpe.2019.01.004.

Gai, Y., Yin, Y., Tang, J. and Liu, S. (2020) ‘Minimizing makespan of a production batch within
concurrent systems: seru production perspective’, Journal of Management Science and
Engineering, https://doi.org/10.1016/j.jmse.2020.10.002.

Jiang, Y., Zhang, Z., Gong, X. and Yin, Y. (2021a) ‘An exact solution method for solving seru
scheduling problems with past-sequence-dependent setup time and learning effect’, Computers
& Industrial Engineering, Vol. 158, 107354.https://doi.org/10.1016/j.cie.2021.107354.

Jiang, Y., Zhang, Z., Song, X. and Yin, Y. (2021b) ‘Scheduling controllable processing time jobs in
seru production system with resource allocation’, Journal of the Operational Research
Society, pp.1–21, https://doi.org/10.1080/01605682.2021.1999182.

 86 Y. Xiang et al.

Kaku, I. (2016) ‘A fundamental positive investigation into Japanese seru production systems’,
IFAC-PapersOnLine, Vol. 49, No. 12, pp.337–342, https://doi.org/10.1016/j.ifacol.2016.
07.627.

Kaku, I. (2017) ‘Is seru a sustainable manufacturing system?’, Procedia Manufacturing, Vol. 8,
pp.723–730, https://doi.org/10.1016/j.promfg.2017.02.093.

Kaku, I., Gong, J., Tang, J. and Yin, Y. (2009) ‘Modeling and numerical analysis of line-cell
conversion problems’, International Journal of Production Research, Vol. 47, No. 8,
pp.2055–2078, https://doi.org/10.1080/00207540802275889.

Lian, J., Liu, C., Li, W. and Yin, Y. (2018) ‘A multi-skilled worker assignment problem in seru
production systems considering the worker heterogeneity’, Computers & Industrial
Engineering, Vol. 118, pp.366–382, https://doi.org/10.1016/j.cie.2018.02.035.

Liu, C., Dang, F., Li, W., Lian, J., Evans, S. and Yin, Y. (2015) ‘Production planning of multi-stage
multi-option seru production systems with sustainable measures’, Journal of Cleaner
Production, Vol. 105, pp.285–299, https://doi.org/10.1016/j.jclepro.2014.03.033.

Liu, C., Li, W., Lian, J. and Yin, Y. (2012) ‘Reconfiguration of assembly systems: from conveyor
assembly line to serus’, Journal of Manufacturing Systems, Vol. 31, No. 3, pp.312–325,
https://doi.org/10.1016/j.jmsy.2012.02.003.

Liu, C., Li, Z., Tang, J., Wang, X. and Yao, M.J. (2021a)’, How SERU production system improves
manufacturing flexibility and firm performance: an empirical study in China’, Annals of
Operations Research, pp.1–26, https://doi.org/10.1007/s10479-020-03850-y.

Liu, C., Stecke, K.E., Lian, J. and Yin, Y. (2014) ‘An implementation framework for seru
production’, International Transactions in Operational Research, Vol. 21, No. 1, pp.1–19,
https://doi.org/ 10.1111/itor.12014.

Liu, C., Yang, N., Li, W., Lian, J., Evans, S. and Yin, Y. (2013) ‘Training and assignment of multi-
skilled workers for implementing seru production systems’, The International Journal of
Advanced Manufacturing Technology, Vol. 69, No. 5, pp.937–959, https://doi.org/
10.1007/s00170-013-5027-5.

Liu, F., Niu, B., Xing, M., Wu, L. and Feng, Y. (2021b). Optimal cross-trained worker assignment
for a hybrid seru production system to minimize makespan and workload imbalance.
Computers & Industrial Engineering, 160, 107552. https://doi.org/10.1016 /j.cie.2021.107552.

Luo, L., Zhang, Z. and Yin, Y. (2016) ‘Seru loading with worker-operation assignment in single
period’, in IEEE International Conference on Industrial Engineering and Engineering
Management (IEEE IEEM), December, pp.1055–1058, https://doi.org/10.1109/IEEM.
2016.7798039.

Luo, L., Zhang, Z. and Yin, Y. (2017) ‘Modelling and numerical analysis of seru loading problem
under uncertainty’, European Journal of Industrial Engineering, Vol. 11, No. 2, pp.185–204,
https://doi.org/10.1504/EJIE.2017.083255.

Luo, L., Zhang, Z. and Yin, Y. (2021) ‘Simulated annealing and genetic algorithm based method
for a bi-level loading problem with worker assignment in production systems’, Journal of
Industrial & Management Optimization, Vol. 17, No. 2, p.779, https://doi.org/779.
10.3934/jimo.2019134.

Min, Q., Lu, Y., Liu, Z., Su, C. and Wang, B. (2019) ‘Machine learning based digital twin
framework for production optimization in petrochemical industry’, International Journal of
Information Management, Vol. 49, pp.502–519, https://doi.org/10.1016/j.ijinfomgt.2019.
05.020.

Niakan, F., Baboli, A., Moyaux, T. and Botta-Genoulaz, V. (2016) ‘A bi-objective model in
sustainable dynamic cell formation problem with skill-based worker assignment’, Journal of
Manufacturing Systems, Vol. 38, pp.46–62, https://doi.org/10.1016/j.jmsy.2015.11.001.

Pinheiro, J.C., Arroyo, J.E. C. and Fialho, L.B. (2020) ‘Scheduling unrelated parallel machines
with family setups and resource constraints to minimize total tardiness’, in Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion, July, pp.1409–1417,
https://doi.org/10.1145/3377929.3398150.

 A VNS-IG algorithm for dynamic seru scheduling problem 87

Rajkumar, M., Asokan, P., Anilkumar, N. and Page, T. (2011) ‘A GRASP algorithm for
flexible job-shop scheduling problem with limited resource constraints’, International Journal
of Production Research, Vol. 49, No. 8, pp.2409–2423, https://doi.org/10.1080/
00207541003709544.

Roth, A., Singhal, J., Singhal, K. and Tang, C. (2016) ‘Knowledge creation and dissemination in
operations and supply chain management’, Production and Operations Management, Vol. 25,
No. 9, pp.1473–1488, https://doi.org/ 10.1111/poms.12590.

Ruiz, R. and Andrés-Romano, C. (2011) ‘Scheduling unrelated parallel machines with
resource-assignable sequence-dependent setup times’, The International Journal of Advanced
Manufacturing Technology, Vol. 57, No. 5, pp.777–794, https://doi.org/10.1007/s00170-011-
3318-2.

Sakazume, Y. (2005) ‘Is Japanese cell manufacturing a new system? A comparative study between
Japanese cell manufacturing and cellular manufacturing’, Journal of Japan Industrial
Management Association, Vol. 55, No. 6, pp.341–349, https://doi.org/10.11221/jima.55.341.

Salvendy, G. (Ed.) (2001) Handbook of Industrial Engineering: Technology and Operations
Management, John Wiley & Sons, Inc., Hoboken, NJ, USA.

Shao, L., Zhang, Z. and Yin, Y. (2016) ‘A bi-objective combination optimisation model for
line-conversion based on queuing theory’, International Journal of Manufacturing Research,
Vol. 11, No. 4, pp.322–338, https://doi.org/10.1504/IJMR.2016.082821.

Stecke, K.E., Yin, Y., Kaku, I. and Murase, Y. (2012) ‘Seru: the organizational extension of JIT for
a super-talent factory’, International Journal of Strategic Decision Sciences (IJSDS), Vol. 3,
No. 1, pp.106–119, https://doi.org/10.4018/jsds.2012010104.

Süer, G. and Dagli, C. (2005) ‘Intra-cell manpower transfers and cell loading in labor-intensive
manufacturing cells’, Computers & Industrial Engineering, Vol. 48, No. 3, pp.643–655,
https://doi.org/ 10.1016/j.cie.2003.03.006.

Sun, W., Wu, Y., Lou, Q. and Yu, Y. (2019) ‘A cooperative coevolution algorithm for the seru
production with minimizing makespan’, IEEE Access, Vol. 7, pp.5662–5670, https://doi.org/
10.1109/ACCESS.2018.2889372.

Sun, W., Yu, Y., Lou, Q., Wang, J. and Guan, Y. (2020) ‘Reducing the total tardiness by Seru
production: model, exact and cooperative coevolution solutions’, International Journal of
Production Research, Vol. 58, No. 21, pp.6441–6452, https://doi.org/10.1080/00207543.
2019.1680898.

Takeuchi, N. (2006) Manufacturing Methods Illustrated: Cell Production System, JMA
Management Center Inc., Tokyo, in Japanese.

Treville, S., Ketokivi, M. and Singhal, V. (2017) ‘Competitive manufacturing in a high-cost
environment: introduction to the special issue’, Journal of Operations Management,
Vols. 49–51, pp.1–5, https://doi.org/10.1016 /j.jom.2017.02.001

Villa, F., Vallada, E. and Fanjul-Peyro, L. (2018) ‘Heuristic algorithms for the unrelated parallel
machine scheduling problem with one scarce additional resource’, Expert Systems with
Applications, Vol. 93, pp.28–38, https://doi.org/10.1016/j.eswa.2017.09.054.

Wang, L., Zhang, Z. and Yin, Y. (2022) ‘Order acceptance and scheduling problem with
outsourcing in production system considering lot-spitting’, European Journal of Industrial
Engineering, Vol. 16, No. 1, pp.91–116, https://doi.org/10.1504/EJIE.2022.119371.

Wang, Y. and Tang, J. (2018) ‘Cost and service-level-based model for a seru production system
formation problem with uncertain demand’, Journal of Systems Science and Systems
Engineering, Vol. 27, No. 4, pp.519–537, https://doi.org/10.1007/s11518-018-5379-3.

Wang, Y. and Tang, J. (2020) ‘Optimized skill configuration for the seru production system under
an uncertain demand’, Annals of Operations Research, https://doi.org/ 10.1007/s10479-020-
03805-3.

 88 Y. Xiang et al.

Wu, Y., Wang, L. and Chen, J.F. (2021) ‘A cooperative coevolution algorithm for complex hybrid
seru-system scheduling optimization’, Complex & Intelligent Systems, Vol. 7, No. 5,
pp.2559–2576, https://doi.org/10.1007/s40747-021-00432-8.

Yepes-Borrero, J.C., Villa, F., Perea, F. and Caballero-Villalobos, J.P. (2020) ‘GRASP algorithm
for the unrelated parallel machine scheduling problem with setup times and additional
resources’, Expert Systems with Applications, March, Vol. 141, p.112959.

Yılmaz, Ö.F. (2020a) ‘Attaining flexibility in seru production system by means of Shojinka: an
optimization model and solution approaches’, Computers & Operations Research, Vol. 119,
p.104917, https://doi.org/10.1016/j.cor.2020.104917.

Yılmaz, Ö.F. (2020b) ‘Operational strategies for seru production system: a bi-objective
optimisation model and solution methods’, International Journal of Production Research,
Vol. 58, No. 11, pp.3195–3219, https://doi.org/10.1080/00207543.2019.1669841.

Yin, Y., Kaku, I. and Stecke, K. (2008) ‘The evolution of seru production systems throughout
Canon’, Neilson Journals Publishing, http://dx.doi.org/10.4135/9781526462060.

Yin, Y., Stecke, K.E. and Li, D. (2018) ‘The evolution of production systems from Industry 2.0
through Industry 4.0’, International Journal of Production Research, Vol. 56. Nos. 1–2,
pp.848–861, https://doi.org/10.1080/00207543.2017.1403664.

Yin, Y., Stecke, K.E., Swink, M. and Kaku, I. (2017) ‘Lessons from seru production on
manufacturing competitively in a high cost environment’, Journal of Operations Management,
Vol. 49, pp.67–7, .https://doi.org/10.1016/j.jom.2017.01.003.

Ying, K.C. and Tsai, Y.J. (2017) ‘Minimising total cost for training and assigning multiskilled
workers in seru production systems’, International Journal of Production Research, Vol. 55,
No. 10, pp.2978–2989, https://doi.org/10.1080/00207543.2016.1277594.

Yu, Y. and Tang, J. (2019) ‘Review of seru production’, Frontiers of Engineering Management,
Vol. 6, No. 2, pp.183–192, https://doi.org/10.1007/s42524-019- 0028-1.

Yu, Y., Sun, W., Tang, J. and Wang, J. (2017a) ‘Line-hybrid seru system conversion: models,
complexities, properties, solutions and insights’, Computers & Industrial Engineering,
Vol. 103, pp.282–299, https://doi.org/10.1016/j.cie.2016.11.035.

Yu, Y., Sun, W., Tang, J., Kaku, I. and Wang, J. (2017b) ‘Line-seru conversion towards reducing
worker(s) without increasing makespan: models, exact and meta-heuristic solutions’,
International Journal of Production Research, Vol. 55, No. 10, pp.2990–3007, https://doi.org/
10.1080/00207543.2017.1284359.

Yu, Y., Wang, J., Ma, K. and Sun, W. (2018) Seru system balancing: definition, formulation, and
exact solution’, Computers & Industrial Engineering, Vol. 122, pp.318–325, https://doi.org/
10.1016/j.cie.2018.05.048.

Yu, Y., Wang, S., Tang, J., Kaku, I. and Sun, W. (2016) ‘Complexity of line-seru conversion for
different scheduling rules and two improved exact algorithms for the multi-objective
optimization’, SpringerPlus, Vol. 5, No. 1, pp.1–26, https://doi.org/10.1186/s40064-016-2445-
5.

Zhang, X., Liu, C., Li, W., Evans, S. and Yin, Y. (2017) ‘Effects of key enabling technologies for
seru production on sustainable performance’, Omega, Vol. 66, pp.290–307, https://doi.org/
10.1016/j.omega.2016.01.013.

Zhang, Z., Song, X., Huang, H., Zhou, X. and Yin, Y. (2022a) ‘Logic-based benders decomposition
method for the seru scheduling problem with sequence-dependent setup time and DeJong’s
learning effect’, European Journal of Operational Research, Vol. 297, No. 3, pp.866–877,
https://doi.org/10.1016/j.ejor.2021.06.017.

Zhang, Z., Gong, X., Song, X., Yin, Y., Lev B. and Chen, J. (2022b) ‘A column generation-based
exact solution method for seru scheduling problems’, Omega, Vol. 108, p.102581,
https://doi.org/ 10.1016/j.omega.2021.102581.

Zhang, Z., Song, X., Huang, H., Yin, Y. and Lev, B. (2022c) ‘Scheduling problem in seru
production system considering DeJong’s learning effect and job splitting’, Annals of
Operations Research, https://doi.org/ 10.1007/s10479-021-04515-0.

 A VNS-IG algorithm for dynamic seru scheduling problem 89

Zhang, Z., Song, X., Gong, X., Yin, Y., Lev, B. and Zhou, X. (2022d) ‘An effective heuristic based
on 3-opt strategy for seru scheduling problems with learning effect’, International Journal of
Production Research, https://doi.org/ 10.1080/00207543.2022.2054744.

Zhang, Z., Shao, L. and Yin, Y. (2020) ‘PSO-based algorithm for solving lot splitting in
unbalanced seru production system’, International Journal of Industrial and Systems
Engineering, Vol. 35, No. 4, pp.433–450, https://doi.org/10.1504/IJISE.2020.108547.

Zhang, Z., Wang, L., Song, X., Huang, H. and Yin, Y. (2021) ‘Improved genetic-simulated
annealing algorithm for seru loading problem with downward substitution under stochastic
environment’, Journal of the Operational Research Society, pp.1–12, https://doi.org/10.1080/
01605682.2021.1939172.

