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Abstract: The necessity of aluminium based metal matrix composites are 
growing rapidly in various fields especially in automobiles. To predict the 
tensile behaviour of AA2024 and AA5083 alloys, a new approach has been 
proposed by integrating the artificial neural network with mayfly optimisation 
algorithm (MOA). To analyse the predicting efficiency of the proposed 
approach, it is compared with artificial neural networks and experimental test 
values. For predicting the ultimate tensile strength of AA2024 and AA5083 
alloys, the proposed approach achieved very less absolute error and mean 
absolute error of 0.0147% and 0.3680% respectively. Similarly, the prediction 
of the tensile elongation of AA2024 and AA5083 alloys, the proposed  
ANN-MOA approach achieved very less absolute error and mean absolute error 
of 0.0017% and 0.3269% respectively. The results from the analysis indicated 
that the proposed approach has enhanced predicting accuracy than artificial 
neural networks. 
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network; mayfly optimisation algorithm; inertial weights. 
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1 Introduction 

Nowadays, several engineering application in the world require materials having typical 
combination of properties which are better than the conventional metal alloys, polymers 
or ceramics. The components in the composite materials can be known macroscopically 
while in conventional metal alloy the components can be only identified by microscopic 
examination or higher magnification (Sarada et al., 2015). Metal matrix composites 
(MMCs) have many improved properties and hence they are used in several applications. 
These MMC materials are studied and formulated by combining the necessary 
characteristics of different metals (Mazahery and Shabani, 2012). MMCs can be used as 
the efficient alternative to the conventional alloy especially in stiffness and high strength 
applications (Shorowordi et al., 2003). Aluminium alloy is a type of matrix composite 
that has excellent mechanical properties such as light weight, high corrosion resistance, 
and high strength-to-weight ratio (Sevik and Kurnaz, 2006). Cost is the major drawback 
of MMCs for wider application in industries, but it can be compensated by its advantages 
in weight saving, improved recyclability, increased component life (Klimowicz, 1994; 
Hashim et al., 2001).  

Metal matrix has certain benefits like preserving the strength at high temperature, low 
thermal shock, decreased part weight, wear resistance and higher specific strength when 
compared with conventional materials (Muthukrishnan et al., 2012). Also, mechanical 
and physical properties of MMCs can be customised for meeting specific design criteria. 
Hence, it is appropriate for variety of applications (Gurusamy et al., 2015). Aluminium 
and its alloys are broadly utilised as cylinder liner, brake rotor, drive shafts and pistons in 
automobile industry (Naher et al., 2003). The type of fabrication technique utilised in the 
manufacturing process greatly influence the properties of aluminium matrix composites 
(AMCs). Generally, both liquid and solid state fabrication techniques are utilised in alloy 
composite manufacturing process (Hajjari et al., 2011). Aluminium alloy plays an 
important role in engineering and automotive industries because of its wear resistance 
properties (Rahman et al., 2019). The aluminium alloys AA5083 and AA2024 are widely 
utilised in fabricating the aircraft structures and other structural components. Hence,  
these two alloys undergo dissimilar welding and are extensively applied during the 
fabrication process. 

The friction stir welding (FSW) method is suitable for dissimilar welding process of 
AA2024 and AA5083aluminium alloys, because fusion welding procedures are not suited 
for dissimilar welding. The FSW is the process of joining the aluminium alloys that are  
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hard to weld by conventional fusion methods which includes aluminium alloys with  
limited weldability (Flores et al., 1998; Murr et al., 1998). This method is suitable for 
producing the welded joints without bulk melting. The main advantage of FSW is that it 
is resistant to property deteriorations and defects related to fusion welding like coarsening 
and melting of strengthening phases. Hence, the weld produced by FSW shows enhanced 
mechanical properties like hardness, ductility and strength than the fusion welded alloys 
(Berbon et al., 2001; Lee et al., 2003; Sato et al., 2003). Artificial neural network is a 
developing technique to predict the response by training the network with experimental 
data (Zurada, 1992; Gurney, 1997). This technique is based on artificial intelligence 
which imitates the structure, mechanism and function of human brain (Elsheikh et al., 
2019). These models can be effectively utilised for studying the materials with 
constitutive relations and it is also used to identify very complex non-linear phenomena 
(Singh et al., 2016; Dixit et al., 2017). Non-linear mathematical problems can be 
modelled using artificial neural network (ANN) since it has excellent generalisation 
capability (Elsheikh et al., 2020).  

Recently, several meta-heuristic optimisation algorithms like particle swarm 
optimisation (PSO), whale optimisation algorithm, Harris hawks optimisation, artificial 
bee colony, cat swarm optimisation and genetic algorithm are combined with ANN for 
determining the parameters and optimal ANN structure (Oliva et al., 2019). Zervoudakis 
and Tsafarakis (2020) recently proposed a metaheuristic optimisation algorithm called 
mayfly optimisation algorithm (MOA) which imitates the social behaviour of mayflies. In 
this study, a new approach for predicting the mechanical properties of aluminium MMCs 
is presented. The hybridised metal utilised here is A413 aluminium alloy reinforced with 
5% silicon carbide and 5% flyash. The proposed approach is modelled by integrating 
ANN with recently proposed metaheuristic algorithm known as MOA. Also, to improve 
the performance of MOA, different inertial weights are employed. This proposed model 
is utilised for predicting the mechanical properties of aluminium alloy. 

2 Methodology 

2.1 Artificial neural network 
Artificial neural networks (ANNs) are widely used machine learning algorithms that are 
applied in several approaches due to their high classification performance. ANNs consists 
of neurons which are capable of extracting information from the dataset even in noisy 
data (Ledesma et al., 2008). They are universal function approximation algorithms for 
modelling both linear and non-linear data with required accuracy. Using different 
interconnection approaches, various kinds of neural networks are modelled in the data 
mining field. ANNs have many advantages such as easily adapting to different kinds of 
data, arbitrary decision boundary capabilities and their non-parametric nature. Typically, 
the learning of training data in neural networks takes place in an iterative way in which it 
considers all the patterns in the dataset for learning. Therefore, ANNs are called as the 
data dependent models (Kavzoglu and Mather, 2000). In ANN, the network weights are 
adjusted during training process until the actual output of the network and desired output 
of the network are as close as possible. Hence, ANNs can be effectively utilised for  
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mapping an input to a desired output, for classifying data and for learning the patterns in 
the dataset provided. The commonly utilised neural network model is the feed forward 
neural network which is a multilayer perceptron. Figure 1 shows the structure of ANN 
model. 

Figure 1 Structure of artificial neural network (see online version for colours) 
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Input2 

Inputn 

 

The FFNN consist of three types of units such as input unit, hidden unit and output unit. 
The initial unit is the known as the input unit and it is utilised for mapping the variables 
in the network. The final unit is the output unit and the units between input and output 
unit is known as hidden units. These units have processing nodes which are fully 
connected with one another and they do not have any interconnections among the nodes 
within the same layer. Here, the network is represented by directed graphs, the units are 
represented by nodes and the connections among them are represented by arcs. Each arc 
has a value which is the connection weight among a pair of units (Mavrovouniotis and 
Yang, 2015). In the neural network model, all connections from input unit is directed 
towards the hidden unit and then to the output unit. Here, the interconnection of neurons 
will be in one-directional and one-way approach. The connections are denoted as weights 
that are real numbers in the range [–1, 1]. 

In each node of the network, the output is computed in two phases. Initially, the 
summation weight of the input is computed as illustrated in equation (1). 

1

 
n

j ij i j
i

S w I β
=

= +∑  (1) 

where ijw  denotes the connection weights between iI  and j, while iI  denotes the ith 
input variable, j denotes the hidden neuron, n is represented as the total number of 
neurons and jβ  is denoted as the bias weight of jth hidden neuron. 

Then, based on the weighted summation, the output of each node in hidden unit is 
determined. Here, the activation function is utilised for triggering the output depending 
on the summation function value. In neural networks, different kinds of activation  
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function can be employed based on its requirement. In this approach, the hidden layer 
outputs are calculated using the sigmoid activation function which is illustrated in 
equation (2). 

( ) 1   
1 jj Sf x

e−=
+

 (2) 

Next the output of each neuron in the hidden unit will be calculated. Equation (3) 
illustrates the final output of ANN. 

1

ˆ
m

k kj i k
i

y W f β
=

= +∑  (3) 

2.2 Mayfly optimisation algorithm 

Mayfly optimisation algorithm is the metaheuristic algorithm which is stimulated from 
the behaviour of mayflies. Generally, the mayflies live in water at larvae stage for many 
years and then they grow into insects with wings. The life span of these mayflies will be 
from one day to seven days. During their life time, they will be busy in finding their 
partners for mating and reproduction. This behaviour of mayflies gives inspiration for the 
MOA. 

In MOA, the female mayfly will be represented as ( )iy t  and the male mayfly will be 
represented as ( )ix t  for ith individual in current iteration t. The position of these mayflies 
will be updated with velocity ( )iv t  in current iteration as illustrated in equation (4). 

( ) ( )1 ( )i i ip t p t v t+ = +  (4) 

The velocity update for female and male mayflies will be in different ways. Equation (5) 
gives the velocity update for female mayflies. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

1

1

[ ] [ ]

.  [ ] [ ]

mfr
i i i i i

i

i i i

g v t a e x t y t f y t f x t
v t

g v t fl r y t f x t

β−⎧ ⋅ + − >⎡ ⎤⎪ ⎣ ⎦= ⎨
⋅ + ≤⎪⎩

 (5) 

where ( )f x  is denoted as the fitness function, 1r  denotes the random number in uniform 
distribution ranging from –1 to 1, g  and fl  are weights that can be declined from its 
maximum to minimum value, 1a  is an attractive constant and β  represents the visibility 
coefficient, and mfr  is denoted as the Cartesian distance between the male and female 
mayfly which is computed as given in equation (6). 

2

1

( )
n

i j ik ik
k

x y x y
=

− = −∑  (6) 

The velocity update for the male mayflies is given in equation (7). 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

2 3

2

[ ] [ ]

[ ] [ ]

p g

i

r r
i h i g i i hi

i

i i hi

g v t a e x x t a e x x t f x t f x t
v t

g v t d r f x t f x t

β β− −⎧ ⎡ ⎤ ⎡ ⎤⋅ + − + − >⎪ ⎣ ⎦⎣ ⎦= ⎨
⋅ + ⋅ ≤⎪⎩

 (7) 
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where, 2r  represents another random number ranging from –1 to 1, d  is denoted as the 
dance ratio near the current position, hix  is denoted as the ith historical best trajectory, 

gx  denotes the global best candidate, pr  and gr  are denoted as the Cartesian distance 
between ( )ix t , 

ihx  and gx , 2a  and 3a  are denoted as the position attraction constants 
used to measure the contribution of social and cognitive components. 

After completing the velocity update, the mayflies will again reselect themselves. In 
the group, half of the mayflies will be selected as the male mayflies and the other half 
mayflies in the group will be considered as the female mayflies. Here, the best male 
mayfly mates with the best female mayfly and the offsprings are produced after a 
crossover as illustrated in equations (8) and (9). 

1 * (1 )*offspring L male L female= + −  (8) 

2 * (1 )*offspring L female L male= + −  (9) 

Then, the offspring will undergo mutation process for enhancing the exploration ability 
of the algorithm. And after completing the current iteration, the offspring will grow up 
and based on their fitness values and they will be sorted. After that, they will be again 
nominated as female or male for the succeeding iterations. 

2.3 MOA with varying inertial weights 

MOA is a hybrid method which is developed by combining the benefits of other 
optimisation algorithms like PSO (Kennedy and Eberhart, 1995), genetic algorithm (GA) 
(Goldberg and Kennedy, 1988) and firefly algorithm (FA) (Yang and He, 2013). 
Generally, PSO has many advantages like easy implementation, faster convergence and 
fewer parameters. But it gets trapped in the local optimum. Since MOA has the 
characteristics of PSO algorithm, the necessary modifications are performed on MOA to 
have better performance. Thus, to overcome the drawback of getting trapped in the local 
optimum, inertial weights are introduced which effectively increase the diversity of the 
particles and gives better control over exploration and exploitation. 

The inertial weight (ω) determines the local and global searching potential of the 
algorithm which is necessary for the particle to find the optimum solution. Hence, it 
strongly influences the overall performance of the algorithm. If the inertial weight is set 
as constant, the results will not be satisfactory because of its failure in balancing the 
global and local search. Thus, many inertial weighting methods have been developed for 
solving this problem. Initially, Nickabadi et al. (2011) developed a linear decreasing 
weight method which is illustrated in equation (10). 

( ) ( )1
max

max min min
max

t t
t

t
ω ω ω ω−

= − +  (10) 

Also, it is known that the relatively smaller value of inertial weight will increase the local 
search ability and the larger value of inertial weight will increase the global search. For 
solving this problem, an inertial weighting technique has been proposed by Eberhart et al. 
(Eberhart and Shi, 2000) as given in equation (11) where the inertial weight is linearly 
decreased from 0.9 to 0.4. 
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( )2

1 0.4,  0 0.5
 

1 1.4,  0.5 1

max max

max max

t t
t t

t
t t

t t

ω

⎧ ⎛ ⎞
× + ≤ ≤⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪− × + ≤ ≤⎜ ⎟⎪
⎝ ⎠⎩

 (11) 

Then, a non-linear decreasing strategy was developed by Chen et al. (Guimin et al., 2006) 
for updating the inertial weight as illustrated in equation (12). They stated that, in most of 
the continuous optimisation problems, the concave function performance depending on 
decreasing inertial weight is superior to the linear function. 

( ) ( )
2

3 start end start
max

tt
t

ω ω ω ω
⎛ ⎞

= − − +⎜ ⎟
⎝ ⎠

 (12) 

Finally, the sigmoid-like inertial weight (Tian and Shi, 2018) is proposed for combining 
the inertial weight and non-linear weight which balances both the local and global search 
ability. It is based on sigmoid and it is illustrated as given in equation (13). 

( )
( )

4
(10 2 )/

0.9,                                          , 0.2
1 0.4,  ( )

1 max max

max

t t t

t t
t

otherwise
e

α α
ω

−

⎧ ≤ =
⎪= ⎨

+⎪ +⎩

 (13) 

In deep learning, the sigmoid is the widely utilised activation function and it can 
accurately attain the trade-off between linear and non-linear function. Here, minω  and 

maxω  are denoted as the final value and initial value of inertial weight. While, maxt  and t  
are denoted as the maximum number of iterations and current iteration. 

2.4 Proposed approach 

In the proposed method, MOA with varying inertial weights is utilised for training the 
artificial neural network. The convergence and performance of training process in ANN 
is influenced by the initialisation of connection weights and biases. Hence, in the 
proposed approach, MOA is utilised on the search space for finding the optimal value of 
initial weights and biases. This process of initialising the weights and biases using 
optimal values will result in better convergence and prediction accuracy. Here, MOA is 
utilised to train the ANN with single hidden unit. While modelling the proposed 
approach, the selection of fitness function and the representation of search agents should 
be taken in consideration. In this process, each search agent will be predetermined as one 
dimensional vector for representing the optimistic neural network. The proposed model 
consist of three parts such as connection weights linking input unit and hidden unit, 
connection weights linking hidden unit and output unit and biases. The flow of the 
proposed model is given in Figure 2. 
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Figure 2 Flowchart of the proposed MOA-ANN model (see online version for colours) 
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Here, each solution is taken as the vector of real number with an interval of –1 to 1. Also, 
each vector length equalises the total number of biases and weights in the network which 
is calculated as given in equation (14). 

( ) ( ) 2 1 vector length n m m= × + × +  (14) 

where m  denotes number of nodes present in hidden units and n  denotes number of 
input features in the dataset. 

Then, mean squared error (MSE) have been utilised for measuring the fitness function 
of the MOA. It is defined as the measure of difference between the actual values and the 
predicted values generated by neural networks for all training data. The MSE measure is 
illustrated in equation (15). 

2

1

)ˆ1 (
n

i i
i

MSE y y
n =

= −∑  (15) 

where n denotes the number of samples in training dataset, ˆiy  denotes the predicted 
output and iy  is denoted as the actual output. After selecting the fitness function and 
defining the representation of solutions, the MOA will be utilised for training neural 
networks. 
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3 Materials and methods 

Experimental data from the literature (Sundaram and Murugan, 2010) was used to 
evaluate the suggested model. The sample of these experimental data are shown in  
Tables 1 and 2. The FS Welded joints were made from the aluminium alloys AA5083 and 
AA2024. The different joints were created using the FSW setup. The joints were created 
with five distinct tools made of high-speed steel (HSS) with varied pin profiles: Paddle 
Shape (PS), Tapered Cylinder with Grooves (CG), Straight Cylinder (SC), Tapered 
Square (TS), and Tapered Hexagon (TH). The impact of toolpin profile (P), welding 
speed (S), axial plunge force (F), and rotational speed (N) on welded joint tensile 
behaviour has been investigated. Three tensile specimens were taken from FS Welded 
joints and prepared to ASTM E8M-04 specifications. The tensile elongation and UTS 
were measured. 

Table 1 Sample experimental data of UTS used in the suggested model 

FSW process parameters TE(%) 
Trial run P N S F Experimental Predicted Error% 
1 –1 –1 –1 –1 281.9 269.4 4.6 
2 1 –1 –1 –1 260.3 256.5 1.5 
3 –1 1 –1 –1 263.4 256.5 2.7 
4 1 1 –1 –1 274.5 269.4 1.9 
5 –1 –1 1 –1 282.7 269.4 4.9 
6 1 –1 1 –1 261.2 256.5 1.8 
7 –1 1 1 –1 264.3 256.5 3.0 
8 1 1 1 –1 275.0 269.4 2.1 
9 –1 –1 –1 1 272.2 269.4 1.0 
10 1 –1 –1 1 249.4 256.5 –2.8 

Table 2 Sample experimental data of TE used in the suggested model 

FSW process parameters TE(%) Trial 
run P N S F Experimental Predicted Error% 
1 –1 –1 –1 –1 12.1 12.1 0.0 
2 1 –1 –1 –1 11.6 11.7 –1.0 
3 –1 1 –1 –1 9.6 9.3 3.3 
4 1 1 –1 –1 9.4 8.9 5.4 
5 –1 –1 1 –1 14.5 14.2 1.8 
6 1 –1 1 –1 14.1 13.9 1.7 
7 –1 1 1 –1 12.0 12.4 –2.9 
8 1 1 1 –1 11.9 12.0 –0.7 
9 –1 –1 –1 1 11.5 11.1 3.3 
10 1 –1 –1 1 11.2 10.8 4.1 
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4 Results and discussions 

In this study, ANN-MOA algorithm with varying inertial weights is proposed for 
prediction process. To demonstrate the accuracy of ANN-MOA algorithm, the results are 
compared with ANN and the actual experimental results. Before testing, the ANN-MOA 
model is trained with 70% of data and the remaining 30% of data is used for testing the 
performance of proposed model. The experimental process is conducted for parameters 
like tensile elongation and ultimate tensile strength. The ANN-MOA algorithm is 
experimented with varying weights ( 1 2 3, , ω ω ω  and 4ω ) and the results are estimated. The 
proposed model has attained higher prediction results for all the parameters utilised  
in the comparison process and the ANN model has attained lesser predictability than  
the proposed model. Thus, the correlation between ANN-MOA predicted data and the 
corresponding experimental data is better than those obtained by ANN model. This 
shows that the integration between the ANN and metaheuristic technique (MOA) have 
successfully predicted the experimental values. 

4.1 Validation of ANN-MOA model 

In order to validate the proposed ANN-MOA model, the actual results are compared with 
the predicted results of ANN and ANN-MOA with four different inertial weights. The 
proposed method is utilised for predicting the tensile behaviour like UTS and TS for 
AA5083 and AA2024 aluminium alloys. 

Figures 3–7 gives the comparison results for tensile elongation of AA2024 and 
AA5083 alloys. Here, the actual values are compared with predicted values of ANN and 
proposed model at varying inertial weights. In this process, the proposed model has 
predicted better values than ANN for all the four weights. Also, among the four inertial 
weights, 2ω  and 4ω  has attained higher success rate than the other inertial weights. 
Hence, the results show that the proposed method has better prediction accuracy for the 
tensile elongation of aluminium alloy. 

Figure 3 Comparison of actual values with predicted values of ANN for tensile elongation  
(see online version for colours) 
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Figure 4 Comparison of actual values with predicted values of ANN-MOA(ω1) for tensile 
elongation (see online version for colours) 

 

Figure 5 Comparison of actual values with predicted values of ANN-MOA(ω2) for tensile 
elongation (see online version for colours) 

 

Figure 6 Comparison of actual values with predicted values of ANN-MOA (ω3) for tensile 
elongation (see online version for colours) 
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Figure 7 Comparison of actual values with predicted values of ANN-MOA (ω4) for tensile 
elongation (see online version for colours) 

 

To analyse the effectiveness of the proposed method in terms of tensile elongation 
prediction, MSE for four different inertial weights at varying iterations varying weights 
of ANN-MOA is considered. Figure 8 illustrates that the inertial weight 3ω -MOA 
evolves faster and converges quickly towards the best solution than the other inertial 
weights. It is observed that the other inertial weights are comparatively slower than 
inertial weight 3ω -MOA. In this process, 30 independent runs are conducted with each 
run being 100 iterations. 

Figure 8 MSE for varying weights of ANN-MOA in tensile elongation (see online version  
for colours) 

 

Figures 9–13 gives the comparison results for ultimate tensile strength of AA2024 and 
AA5083 alloys. Here, the actual values are compared with predicted values of ANN and 
proposed model at varying inertial weights. In this process, the proposed model has  
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predicted better values than ANN for all the four weights. Also, among the four inertial 
weights, 3ω  and 4ω  has attained higher success rate than the other inertial weights. 
Hence, the results show that the proposed method has better prediction accuracy for the 
ultimate tensile strength of aluminium alloy. 

Figure 9 Comparison of actual values with predicted values of ANN for ultimate tensile strength 
(see online version for colours) 

 

Figure 10 Comparison of actual values with predicted values of ANN-MOA(ω1) for ultimate 
tensile strength (see online version for colours) 

 

To analyse the effectiveness of the proposed method in terms of ultimate tensile strength 
prediction, MSE for four different inertial weights at varying iterations varying weights 
of ANN-MOA is considered. Figure 14 illustrates that the inertial weight ω4-MOA 
evolves faster and converges quickly towards the best solution than the other inertial 
weights. It is observed that the other inertial weights are comparatively slower than 
inertial weight ω4-MOA. In this process, 30 independent runs are conducted with each 
run being 100 iterations. 
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Figure 11 Comparison of actual values with predicted values of ANN-MOA(ω2) for ultimate 
tensile strength (see online version for colours) 

 

Figure 12 Comparison of actual values with predicted values of ANN-MOA (ω3) for ultimate 
tensile strength (see online version for colours) 

 

Figure 13 Comparison of actual values with predicted values of ANN-MOA(ω4) for ultimate 
tensile strength (see online version for colours) 
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Figure 14 MSE for varying weights of ANN-MOA in ultimate tensile strength (see online version 
for colours) 

 

The data are trained and tested using the proposed ANN-MOA model and the percentage 
of error is computed using equation (14). 

     % 100
 

Actual value Predicted valuePercentageof error
Actual value

−= ×  (14) 

Table 3 gives the predicted error in ultimate tensile strength of AA2024 and AA5083 
alloys using ANN-MOA model with varying inertial weights. The predicted error in 
proposed method is very less compared to the actual values. Hence, the results show that 
the proposed method has better prediction accuracy for the ultimate tensile strength of 
aluminium alloy. 

Table 3 Predicted error in ultimate tensile strength of AA2024 and AA5083 alloys using 
ANN-MOA model with varying inertial weights 

Predicted error 
w1 w2 w3 w4 Actual UTS 

0.0660 –1.8336 1.2924 –1.6317 281.9 
2.9864 –0.6463 1.4506 –0.2338 260.3 
0.4335 –0.5462 1.3781 0.6160 263.4 
0.1261 –1.8274 2.3235 –1.2083 274.5 
0.6066 –1.0553 –0.5676 –0.0361 282.7 
0.5023 0.9940 1.0991 –0.9528 261.2 
0.2705 0.8864 0.2238 0.2813 264.3 
–0.9377 –0.2377 0.3878 –1.0726 275 
–1.7412 0.9358 1.6393 –3.4898 272.2 
–2.9954 –2.0060 –2.2386 0.0472 249.4 
–0.9794 1.8420 –0.7714 –0.1046 253.6 
–1.2214 1.6301 1.6186 –0.7569 264 
5.4994 –1.9490 3.1394 –1.5106 270.8 
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Table 3 Predicted error in ultimate tensile strength of AA2024 and AA5083 alloys using 
ANN-MOA model with varying inertial weights (continued) 

Predicted error 
w1 w2 w3 w4 Actual UTS 

4.4684 –2.3332 1.3781 0.2716 260.6 
–1.4508 0.0475 1.9607 –1.8363 274.2 
0.0865 0.5460 1.9193 –0.9780 269 
4.0150 0.3679 2.1642 0.7293 260.2 
4.6706 –1.7249 –2.6979 1.7812 245.8 
–4.7027 –3.6265 –1.4514 –0.5074 246.3 
–2.3661 1.0970 –1.4308 1.6052 250.6 
–0.2292 0.1933 –2.2440 0.7938 251.4 
–0.7888 1.3903 –0.6923 –0.5644 262.9 
0.9570 –0.0316 –0.3554 –0.4330 263.7 
–0.2747 –1.5476 –2.2743 –1.0064 253 
0.3366 0.1556 –0.1942 1.0765 302.2 
1.2645 1.4033 –0.2605 2.8347 306.1 
0.1732 –1.1261 0.4801 –0.6077 297.4 
–1.3991 –0.4079 –0.6503 –0.3959 298.3 
0.1176 0.7682 –0.6001 1.7136 303.7 
–1.3798 –0.1074 –0.8453 0.0259 299.5 
1.2501 0.8556 –0.0448 2.2239 304.8 

Table 4 gives the absolute error and mean absolute error for aluminium alloy in ANN-
MOA model with varying inertial weights in terms of ultimate tensile strength. The 
proposed method has lesser absolute error (0.0147 %) and mean absolute error (0.3680 
%) for all inertial weights. Hence, the results show that the proposed method has better 
prediction accuracy for the tensile behaviour of aluminium alloy. 

Table 4 Absolute error and mean absolute error for ultimate tensile strength of AA2024 and 
AA5083 alloys using ANN-MOA model with varying weights 

Absolute error % 
AE1 AE2 AE3 AE4 
0.0234 0.6504 0.4585 0.5788 
1.1473 0.2483 0.5573 0.0898 
0.1646 0.2074 0.5232 0.2339 
0.0459 0.6657 0.8465 0.4402 
0.2146 0.3733 0.2008 0.0128 
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Table 4 Absolute error and mean absolute error for ultimate tensile strength of AA2024 and 
AA5083 alloys using ANN-MOA model with varying weights (continued) 

Absolute error % 
AE1 AE2 AE3 AE4 
0.1923 0.3806 0.4208 0.3648 
0.1024 0.3354 0.0847 0.1064 
0.3410 0.0864 0.1410 0.3900 
0.6397 0.3438 0.6022 1.2821 
1.2011 0.8043 0.8976 0.0189 
0.3862 0.7263 0.3042 0.0413 
0.4627 0.6175 0.6131 0.2867 
2.0308 0.7197 1.1593 0.5578 
1.7147 0.8953 0.5288 0.1042 
0.5291 0.0173 0.7151 0.6697 
0.0321 0.2030 0.7135 0.3636 
1.5430 0.1414 0.8317 0.2803 
1.9001 0.7017 1.0976 0.7247 
1.9093 1.4724 0.5893 0.2060 
0.9442 0.4378 0.5710 0.6406 
0.0912 0.0769 0.8926 0.3157 
0.3000 0.5288 0.2633 0.2147 
0.3629 0.0120 0.1348 0.1642 
0.1086 0.6117 0.8990 0.3978 
0.1114 0.0515 0.0643 0.3562 
0.4131 0.4584 0.0851 0.9261 
0.0582 0.3787 0.1614 0.2043 
0.4690 0.1367 0.2180 0.1327 
0.0387 0.2529 0.1976 0.5643 
0.4607 0.0359 0.2822 0.0086 
0.4101 0.2807 0.0147 0.7296 

MAE % 
0.5919 0.4146 0.4861 0.3680 

Table 5 gives the predicted error in ultimate tensile strength of AA2024 and AA5083 
alloys using ANN-MOA model with varying inertial weights. The predicted error in 
proposed method is very less compared to the actual values. Hence, the results show that 
the proposed method has better prediction accuracy for the tensile behaviour of 
aluminium alloy. 
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Table 5 Predicted error in tensile elongation of AA2024 and AA5083 alloys using ANN-MOA 
model with varying inertial weights 

Predicted error  
w1 w2 w3 w4 Actual TE 
–0.1349 –0.0251 –0.1038 –0.0464 12.1 
–0.0314 0.0523 –0.1260 0.0042 11.6 
0.1270 –0.0400 –0.0269 0.0591 9.6 
0.0209 0.0212 –0.1571 –0.0305 9.4 
–0.3653 0.0865 0.3487 0.0488 14.5 
–0.3674 0.0036 0.1771 0.0152 14.1 
–0.5718 0.0388 0.1168 –0.0460 12 
–0.5699 0.0429 0.0470 –0.0170 11.9 
0.0520 0.0062 0.3415 –0.0497 11.5 
0.1127 0.0843 0.3780 –0.0361 11.2 
0.1195 –0.0515 –0.1635 –0.0414 8.9 
0.0642 –0.1060 –0.2550 –0.0308 8.8 
–0.3843 0.0333 –0.3445 –0.0358 11.3 
–0.3712 0.0801 –0.3180 –0.0382 11.2 
–0.2570 0.0425 0.0974 0.0369 10.7 
–0.2295 0.0778 0.0630 0.0315 10.5 
–0.0265 0.1822 –0.0231 0.1000 10.5 
–0.0697 0.0335 –0.4726 –0.0067 9.2 
–0.2224 –0.0865 –0.0527 0.0511 13.2 
0.0228 –0.0332 0.0047 0.0210 9.3 
0.3709 0.0081 0.1223 0.1023 9.6 
–0.4555 –0.0271 0.3401 –0.0891 13.8 
–0.4952 0.0832 0.0141 –0.0591 12.8 
0.0058 –0.0078 0.0895 –0.0268 10 
–0.1905 –0.0086 –0.0427 0.0085 11.2 
–0.2106 –0.0211 –0.0398 0.0002 11.3 
–0.1353 0.0086 –0.0860 0.0347 10.9 
–0.2505 0.0149 0.0598 –0.0154 11.6 
–0.2361 0.0002 0.0136 –0.0071 11.5 
–0.2668 0.0139 0.0754 –0.0204 11.7 
–0.1822 –0.0294 –0.0763 0.0095 11.1 

Table 6 gives the absolute error and mean absolute error for AA2024 and AA5083 
aluminium alloy in ANN-MOA model with varying inertial weights in terms of tensile 
elongation. The proposed method has lesser absolute error (0.0017%) and mean absolute 
error (0.3269 %) for all inertial weights. Hence, the results show that the proposed 
method has better prediction accuracy for the tensile behaviour of aluminium alloy. 
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Table 6 Absolute error and mean absolute error for tensile elongation of AA2024 and AA5083 
alloys using ANN-MOA model with varying weights 

Absolute Error % 
AE1 AE2 AE3 AE4 
1.1153 0.2077 0.8582 0.3839 
0.2705 0.4513 1.0864 0.0364 
1.3232 0.4170 0.2801 0.6153 
0.2223 0.2258 1.6714 0.3248 
2.5194 0.5968 2.4046 0.3368 
2.6059 0.0257 1.2559 0.1076 
4.7652 0.3235 0.9735 0.3836 
4.7894 0.3602 0.3950 0.1431 
0.4522 0.0539 2.9696 0.4318 
1.0065 0.7523 3.3751 0.3223 
1.3428 0.5786 1.8366 0.4656 
0.7299 1.2047 2.8979 0.3499 
3.4009 0.2944 3.0489 0.3168 
3.3139 0.7153 2.8394 0.3415 
2.4023 0.3968 0.9104 0.3445 
2.1858 0.7408 0.5999 0.2997 
0.2524 1.7356 0.2199 0.9521 
0.7571 0.3638 5.1371 0.0731 
1.6845 0.6552 0.3995 0.3870 
0.2454 0.3569 0.0502 0.2255 
3.8636 0.0840 1.2741 1.0656 
3.3008 0.1966 2.4642 0.6455 
3.8684 0.6501 0.1098 0.4618 
0.0577 0.0784 0.8955 0.2679 
1.7008 0.0767 0.3808 0.0763 
1.8633 0.1866 0.3520 0.0017 
1.2415 0.0786 0.7891 0.3187 
2.1594 0.1288 0.5159 0.1329 
2.0526 0.0017 0.1183 0.0621 
2.2807 0.1186 0.6444 0.1746 
1.6413 0.2645 0.6875 0.0859 

MAE % 
1.9166 0.3975 1.3368 0.3269 

Table 7 gives the actual values by experimental process and predicted values by ANN-
MOA model with varying inertial weights for ultimate tensile strength of AA2024 and 
AA5083 alloys. The proposed method has predicted nearly equal values relating to the 
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actual values. Hence, the results show that the proposed method has better prediction 
accuracy for the tensile behaviour of aluminium alloy. 

Table 7 Predicted values for ultimate tensile strength inAA2024 and AA5083 alloy using 
ANN-MOA model with varying weights 

UTS 
predicted 

Actual w1 w2 w3 w4 
281.9 281.8340 283.7336 280.6076 283.5317 
260.3 257.3136 260.9463 258.8494 260.5338 
263.4 262.9665 263.9462 262.0219 262.7840 
274.5 274.3739 276.3274 272.1765 275.7083 
282.7 282.0934 283.7553 283.2676 282.7361 
261.2 260.6977 260.2060 260.1009 262.1528 
264.3 264.0295 263.4136 264.0762 264.0187 
275 275.9377 275.2377 274.6122 276.0726 
272.2 273.9412 271.2642 270.5607 275.6898 
249.4 252.3954 251.4060 251.6386 249.3528 
253.6 254.5794 251.7580 254.3714 253.7046 
264 265.2214 262.3699 262.3814 264.7569 
270.8 265.3006 272.7490 267.6606 272.3106 
260.6 256.1316 262.9332 259.2219 260.3284 
274.2 275.6508 274.1525 272.2393 276.0363 
269 268.9135 268.4540 267.0807 269.9780 
260.2 256.1850 259.8321 258.0358 259.4707 
245.8 241.1294 247.5249 248.4979 244.0188 
246.3 251.0027 249.9265 247.7514 246.8074 
250.6 252.9661 249.5030 252.0308 248.9948 
251.4 251.6292 251.2067 253.6440 250.6062 
262.9 263.6888 261.5097 263.5923 263.4644 
263.7 262.7430 263.7316 264.0554 264.1330 
253 253.2747 254.5476 255.2743 254.0064 
302.2 301.8634 302.0444 302.3942 301.1235 
306.1 304.8355 304.6967 306.3605 303.2653 
297.4 297.2268 298.5261 296.9199 298.0077 
298.3 299.6991 298.7079 298.9503 298.6959 
303.7 303.5824 302.9318 304.3001 301.9864 
299.5 300.8798 299.6074 300.3453 299.4741 
304.8 303.5499 303.9444 304.8448 302.5761 
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Table 8 gives the actual values by experimental process and predicted values by ANN-
MOA model with varying inertial weights for tensile elongation AA2024 and AA5083 
alloys. The proposed method has predicted nearly equal values relating to the actual 
values. Hence, the results show that the proposed method has better prediction accuracy 
for the tensile behaviour of aluminium alloy. 

Table 8 Predicted values in ANN-MOA model for tensile elongation 

TE 
Predicted 

Actual w1 w2 w3 w4 
12.1 12.2349459 12.1251 12.20383621 12.1464 
11.6 11.63137508 11.5477 11.72602036 11.5958 
9.6 9.472971553 9.6400 9.626891314 9.5409 
9.4 9.379105503 9.3788 9.557107201 9.4305 
14.5 14.8653155 14.4135 14.15133445 14.5488 
14.1 14.46743135 14.0964 13.92291614 14.0848 
12 12.57181873 11.9612 11.88317986 12.046 
11.9 12.46993601 11.8571 11.85299896 11.917 
11.5 11.44799152 11.4938 11.15849603 11.5497 
11.2 11.0872742 11.1157 10.8219861 11.2361 
8.9 8.780492299 8.9515 9.063459749 8.9414 
8.8 8.735765448 8.9060 9.055013676 8.7692 
11.3 11.68429951 11.2667 11.64453016 11.3358 
11.2 11.57115129 11.1199 11.51801519 11.2382 
10.7 10.95704716 10.6575 10.60259122 10.6631 
10.5 10.72950982 10.4222 10.43701167 10.4685 
10.5 10.52650447 10.3178 10.52309446 10.4 
9.2 9.269652818 9.1665 9.672615017 9.2067 
13.2 13.42235249 13.2865 13.25273005 13.1489 
9.3 9.277174576 9.3332 9.295336035 9.279 
9.6 9.229094883 9.5919 9.477688725 9.4977 
13.8 14.25551296 13.8271 13.45994073 13.8891 
12.8 13.29515777 12.7168 12.78594567 12.8591 
10 9.99422751 10.0078 9.910454346 10.0268 
11.2 11.39048417 11.2086 11.242653 11.1915 
11.3 11.51055388 11.3211 11.33977387 11.2998 
10.9 11.03531883 10.8914 10.98601123 10.8653 
11.6 11.8504884 11.5851 11.54015616 11.6154 
11.5 11.73605348 11.4998 11.48639401 11.5071 
11.7 11.96684217 11.6861 11.62460306 11.7204 
11.1 11.28218899 11.1294 11.17631522 11.0905 
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5 Conclusion 

In this experimental process, the artificial neural networks with MOA are employed for 
predicting the tensile behaviour like tensile elongation and ultimate tensile strength for 
AA2024 and AA5083 alloys. The experimental results are conducted for one unforged 
specimen and three forged specimens at different directions. The predicted results from 
the proposed model are compared with actual results and ANN. From the results attained, 
it can be concluded that when the artificial neural networks are optimised by MOA, the 
prediction results are in admissible agreement with the experimental results. The 
proposed ANN-MOA approach achieved very less absolute error and mean absolute error 
of 0.0147% and 0.3680% respectively for the prediction of ultimate tensile strength of 
AA2024 and AA5083 alloys. Similarly, the proposed ANN-MOA approach achieved 
very less absolute error and mean absolute error of 0.0017% and 0.3269% respectively 
for the prediction of the tensile elongation of AA2024 and AA5083 alloys. Therefore, 
using ANN-MOA model instead of experiments will decrease the cost and need for 
special testing facilities and the ANN-MOA model can be used for optimising and 
predicting the effective parameters of MMCs. In future, other mechanical properties of 
aluminium alloys can be considered in the prediction process. 
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