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Abstract: The analysis of the effects of variables when selecting automotive 
parts operating in biodiesel medium is critical. This novel study employs RSM 
and 5-fold cross-validation of ANN in the optimisation strategy for minimising 
corrosion rates (CRs) of automotive parts (APs) in a biodiesel environment. 
The hardness number (BHN) and tensile strength (TES) as well as the surface 
morphologies of copper and brass were investigated. The optimum CRs were  
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0.01656 mpy and 0.008189 mpy at a B 3.91 biodiesel/diesel blend and  
240.9-hour exposure. The established ANN model configuration proved 
superior adaptability and nonlinearity. The ANN model had higher R2 and 
lower values of RMSE, MAE, and AAD when compared to the RSM model, 
thus validating the superiority of the ANN model. Brass exhibited greater TES 
while copper had a higher BHN. The database, model, and correlations can 
assist in mitigating and effectively planning against the corrosiveness of APs 
when using biodiesel. 

Keywords: RSM; response surface methodology; ANN; artificial neural 
network; corrosion; copper; brass; modelling; biodiesel. 
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1 Introduction 

Given the depletion of fossil resources and the looming threat of an energy crisis, it is 
essential to develop emerging solutions to address both current and future energy 
challenges (Rocabruno-Valdés et al., 2019; Elumalai et al., 2018, 2021). Due to its low  
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environmental impact, biodegradability, and ability to combat global warming, biodiesel 
is an excellent diesel fuel alternative (Samuel and Gulum, 2019). Transesterification is 
used to develop biodiesel, which is a cleaner alternative to diesel fuel (Samuel et al., 
2022a, 2022b). Factors influencing ester yield include the amount and type of catalyst 
used, the molar ratio, the temperature, and the time mandatory to produce the ester 
(Razzaq et al., 2020). Owing to its higher cetane number, greater lubricity, lower sulphur 
content, and higher flash point, biodiesel has outshone conventional fossil fuels in 
popularity. It has undesired poor cold flow properties, advanced viscosity, and volatility, 
and is more disposed to to corrosion or degradation of APs. The corrosive nature of 
automotive parts is caused by a lack of compatibility with other APs (Estevez et al., 
2022). The incompatibility is attributed to numerous features such as hygroscopic flora of 
biodiesel and biodiesel oxidation temperature, water content, and microbial advance 
(Samuel and Gulum, 2019; Jakeria et al., 2014). When an engine component comes into 
contact with fuel, it can cause corrosion, causing the fuel to deteriorate and deviate even 
further from its specifications (Singh et al., 2012; Thangavelu et al., 2016; Haseeb et al., 
2011). For example, in vehicles powered by biodiesel, the use of gaskets, washers, and 
bushings made from copper as well as brass radiator tubes, cores, and tanks, have been 
restricted. Recent findings on the corrosion of automotive parts uncovered to biodiesels 
derived from sunflower oil, palm oil, Pongamia pinnata oil, Jatropha oil, and 
Schinzochytrium sp. microalgae have been published (Samuel and Gulum, 2019;  
Fazal et al., 2012; Parameswaran and Krishnamurthy, 2013; Akhabue et al., 2014;  
Oni et al., 2022). 

It is critical for accurate forecasting and monitoring of engine-part durability to have 
a reliable prediction of the corrosive characteristics of automotive parts exposed to the 
biodiesel domain. Rocabruno-Valdés et al. (2019) successfully used the ANN model to 
forecast the corrosion rates (CRs) of automotive parts and reported that the model is 
suitable for CR estimation. It is repeatedly indispensable to forecast the effectiveness of 
an exact substance in a given situation as part of assessing the intrinsic corrosiveness of 
the structure (Rocabruno-Valdés et al., 2019). These computational tools, according to 
Samuel and Okwu (2019), enable the correlation of non-linear information by 
establishing a link amid the inputs and outcomes of the system, even if the underlying 
mathematical principles of the process are unknown. These computational tools can 
connect the system’s input and output variables even when the mathematical 
fundamentals of the process are unknown. RSM coupled with ANN is one of the tools 
that is substantially considered. The hybrid RSM-ANN models (HRAMs) are favoured 
because they are capable of plotting non-linear and multifaceted data in a suitable  
and resilient manner. RSM in conjunction with ANN is one of the tools that is 
extensively considered. The HRAMs make it easy to plot and map non-linear and 
complex data (Samuel et al., 2021). Particle swarm optimisation and anti-bee colony  
optimisation, for example, are more difficult to use and require more training to master 
than the HRAMs (Samuel et al., 2022). The ability of ANN model to correlate non-linear 
and complex data is what makes it so robust. The lack of a black-box learning 
mechanism, on the other hand, is largely responsible for ANN’s inability to correlate 
response and dependent parameters (Gupta and Sharma, 2014). The RSM is combined  
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with other approaches to link responses and corrosion variables to resolve the 
shortcoming in the ANN model and generate a reliable corrosion prediction. 

Table 1 summarises the concise review of the various model tools used to predict 
metal corrosion rates. Although numerous attempts have been made to model and 
forecast CRs of various metals in various media using various model tools, only 
Rocabruno-Valdés et al. (2019) have used ANN models to predict CRs of copper, 
aluminium, cast iron, mild steel, and mild steel in methyl esters of canola, soybean, 
chicken, and pork (CSCP). As far as the authors are aware, there is no prior research on 
the combination of RSM and ANN-based modelling of CRs of waste frying oil biodiesel 
(WFOB). In order to stop the scarcity in the literature and reduce the corrosiveness of 
APs in biodiesel, (i) the simultaneous impact of fuel types (0%, 10%, and 10%) and 
exposure duration (240, 480, and 720 hours) on the CRs of copper and brass of RSM,  
(ii) the synergic effects of corrosion variables were scrutinised, and (iii) a study on the 
interaction effects between corrosion variables was investigated. 

The evaluations of the hybrid models will demonstrate the performance of these fuels, 
their corrosivity, and stability in a fuel-metal system, permitting the definition of the 
operating conditions required for the viable use of copper and brass in the automotive 
industry. 

Table 1 Review of model tools for corrosion of metals in various media 

Metals Corrosion media Model tools Remarks References 

Copper, brass, 
aluminium, Cast 
iron, mild steel, 
304 stainless 
steel 

Methyl esters of 
(CSCP) 

Artificial 
neural 
network 
(ANN) 

Efficacy of ANN 
model authenticated 
for estimating 
corrosion rate for 
oils from CSCP 

Rocabruno-
Valdés et al. 
(2019) 

Ni-Cr-Mo-V Simulated deep sea 
environments 

DoE and 
ANN 

DoE model 
exhibited good 
validity and 
precision 

Hu et al. (2019) 

Magnesium 
alloys 

0.1 M NaCl solution 
at room temperature 

ANN Precision prediction 
of CR within the 
tested range of 
compositions 

Xia et al. (2016) 

Copper Acid extract of 
Gnetum Africana 
(GA) 

Factorial DoE 
(FDoE) 

Established 
suitability of FDoE 
for optimum GA for 
reducing corrosion 

Nkuzinna et al. 
(2014) 

 
 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

    Corrosion estimation of Cu and Br based automotive parts 191    
 

    
 

   

   
 

   

   

 

   

       
 

2 Experimental methodology 

2.1 Experimental procedure 
WFOB-diesel blends of 10% (B10), 20% (B20), and pure diesel were prepared using the 
splash method. For 7 minutes, a magnetic stirrer was used to ensure that the blends were 
thoroughly mixed, and no heating was used. Figure 1 portrays a photograph of the 
various types of fuels. An ASTM standard regulatory assessment was performed on the 
fuel types. 

Figure 1 Fuel types prepared for corrosion analysis (see online version for colours) 

 

Experiment coupons were machined from brass and copper bars. The chemical 
composition and dimensions of the coupons are depicted in Figure 2(a) and (b). To 
prevent atmospheric corrosion, the coupons were degreased, polished, soaked in acetone 
for 30 min, weighed, and then stored in desiccators. The prepared coupons were then 
submitted to static immersion, as described by Aquino et al. (2012) (See Figure 3(a) and 
(b)). Aquino et al. (2012) investigated the CRs of brass and copper at a temperature of 
55°C. The approach used is compliant with ASTM G1 and ASTM G31 regulations 
(Standard, 2011). Computation of the CRs of copper and brass in response to various fuel 
sources were made using equations (1) and (2). Pre-exposure and post-exposure 
measurements of thermophysical fuel types were analysed. Details of the accuracy of 
equipment utilised are discussed elsewhere (Samuel and Gulum, 2019). 

  534Cu
Cu

Cu Cu Cu

W
CR

D A T
×

=  (1) 

  534
 Br

Br
Br Br Br

W
CR

D A T
×

=  (2) 

where , Cu BrCR CR  are the CRs of the copper and brass, CuW , BrW  are the weight  
losses in copper and copper (mg): the difference between weight prior to immersion  
and weight after immersion, CuD , BrD  are the densities of copper and brass ( 
g/cm3), and , Cu BrT T  is the exposure duration of copper and brass to WFOB (hours), 
respectively. 
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Figure 2 Specification for Br and Cu: (a) dimension (b) chemical composition (see online 
version for colours) 

 

 

Figure 3 Schematic for immersion of corrosion testing of coupons: (a) Cu and (b) Br (see online 
version for colours) 

a b 
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2.2 Uncertainty analysis of corrosiveness of automotive parts 

There is a range of operational and static immersion tests on fuel, as well as corrosion 
studies of automotive features, which results in some ambiguity. For the time being, an 
uncertainty examination of the precision of the experimentation in conjunction with 
repeatability is required for certifying the accuracy of the experimental setup. 

Table 2 summarises the uncertainty of all measurements. As discovered, the valuation 
of critical parameters is presented. The measuring equipment’s uncertainty analysis was 
carried out using the standard technique described elsewhere (Holman, 2012). The 
experiment’s overall uncertainty analysis was determined using equation (3). Table 2 
summarises the uncertainty of all measurements. 

2

2 2

Overall uncertainity square root of{ (uncertainity of exposure duration of Cu / Br)  
(uncertainity of weight loss by Cu) (uncerainity of weight loss by Br) } 

=
+ +

 (3) 

{ }2 2 2Overall uncertainity square root of (0.707107) (0.003514) (1.93431)  

Overall uncertainty 1 .63 %;  i.e. within the range  

= + +

= =
 

Table 2 Uncertainty assessment of corrosion test of automotive parts 

S. No. Measuring instruments Uncertainty 
1 Uncertainity of exposure duration of Cu/Br 0.7071 
2 Uncertainity of weight loss by Cu 0.003514 
3 Uncerainity of weight loss by Br 1.93431 

2.3 Measurement of BHN and TES of degraded Cu and Br 

The Brinell hardness number (BHN) of degraded Cu and Br exposed to various fuel types 
under optimal conditions was determined using ASTM standard E10-17. The percent 
BHN was calculated by averaging the results of three consecutive runs of experiments 
using equation (4). 

2 1

1

% 100   AE BE

BE

BHN BHNBHN
BHN

−
∆ = ×  (4) 

Corroded coupons were tested for tensile strength (TES, MPa) and percent variation 
using equations (5) and (6), respectively. 

34   
10

TES BHN=  (5) 

2 1

1

% 100  AE BE

BE

TES TESTES
TES

−
∆ = ×  (6) 

The morphology of the coupons (brass and copper) immersed in the fuel types was 
inspected using a JCM 100 small scanning electron microscope (Joel, USA). 
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2.4 Model techniques 

2.4.1 Corrosion study via RSM 
This experiment used the Central Composite Design (CCD) component of the response 
surface methodology (RSM). The CRs of copper and brass exposed to different fuel types 
can be analysed by examining the linear, quadratic, and interaction impacts of corrosion 
factors. Table 3 displays the face-centered CCD that was accomplished using Design 
Expert, which uses a three-level, two-factor CCD for the variables. This section involves 
the choice of optimum corrosion conditions for minimising the corrosivity of fuel types 
susceptible to Br and Cu. The RSM was used to perform independent variable 
optimisation. The development of the RSM model takes into account not only the 
responses Cu(CR  and BrCR ), but also a number of independent variables (fuel kinds and 
exposure length). The CCD approach was used to evaluate the impact of fuel types and 
exposure duration on the CRs of Cu and Br in this investigation. Figure 4 depicts the 
steps involved in corrosion modelling using the RSM technique. Two sets of data are 
used to generate an output: fuel type (B0–B20)/(WFOB0-WFO20) and exposure time 
(240–720 h) (See Table 3). 

Table 3 Variable and levels for RSM based corrosion analysis for Cu and Br 

Levels 
Variables Lower Upper 
Biodiesel blends (%) (X1 ) 0 20 
Exposure duration (hours) (X2) 240 720 

Figure 4 RSM protocol for corrosion (see online version for colours) 

 

2.4.2 Corrosion modelling via ANN 
MATLAB 7.10 R2015a was utilised in the creation of the ANN model (The Neural 
Network Toolbox, Inc., USA). The ANN model used in this research was a feed-forward 
structure with three layers: an input layer, a hidden layer, and an output layer. Three 
neurons were used in the input layer and one neuron was used in the output layer for both 
Cu and Br CRs. Table 4 highlights the neural network model’s details. The RSM  
design’s CCD datasets were fed into the ANN model; these datasets each indicated a 
different set of CRs for automotive processes and corrosion factors (fuel type and 
exposure duration).The schematic representation of the ANN model and 5-fold cross-
validation employed to predict the CRs of Cu and Br are depicted in Figure 5. The mean 
square error (MSE) and correlation coefficient (R) are used as the two most popular 
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statistical indices which are used to assess the recital and accurateness of the network. 
Models are typically chosen based on their ability to produce the lowest possible mean 
square error and the highest possible correlation coefficient. Reports indicate that R-
values more than 0.9 indicate excellent model efficiency, R-values between 0.8 and 0.9 
indicate satisfactory model performance, and R-values less than 0.8 indicate inadequate 
model performance (Ahmadi et al., 2013). Statistical measures like the correlation 
coefficient (R), the regression coefficient (R2), the root mean square error (RMSE), the 
mean average error (MAE), the standard error of prediction (SEP), and the absolute 
standard deviation (ASD) were employed to assess the efficacy of the model techniques 
and their ability to predict outcomes (AAD). Statistics for both the RSM and ANN 
models were calculated using equations (7)–(12). Success and prominence of the model 
procedures were evaluated by the results. 

, .1

2 2
. .1 1

( )( )

( ) ( )

n
pre m pred exp m expm

n n
pre m pred exp m expm m

Z Z Z Z
R

Z Z Z Z
=

= =

⎛ ⎞− −⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

∑
∑ ∑

 (7) 
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−
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−
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i e i p
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Z Z
MAE
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⎢ ⎥−⎣ ⎦=∑  (10) 
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e ave

RMSESEP
Y

=  (11) 

, ,

1 ,

( )100
( )

n
i e i p

i i e

Z Z
AD

n Z=

⎢ ⎥−⎣ ⎦= ∑  (12) 

Table 4 Particulars for the neural network model 

Parameters ANN 
Number of input layer units 2 
Number of hidden layer 1 
Number of hidden layer units 3–10 
Number of output layer units 1 
Transfer function in hidden layer Tansig 
Transfer function in hidden layer Purelin 
Training function Levenberg-Marquardt 
Learning rate 0.01 
Performance goal 0 
Maximum number of epoch 100 
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Figure 5 Flow chart of ANN model with 5-fold cross validation (see online version for colours) 

 

3 Results and discussion 

3.1 WFOB’s fatty acid composition and fuel physicochemical qualities 
The fatty acid content is shown in Figure 6. 84.6% of WFOB’s total weight is saturated, 
while the remaining 15.4% is unsaturated. Samuel et al. (2022) hinted that saturated acid 
in WFOB can increase NOx while enhancing cetane number at the same time. 
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Figure 6 Fatty acid composition of WFOB (see online version for colours) 
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The biodiesel produced must meet the EN 14214 specification’s certification 
requirements in order to be considered commercially viable. Table 5 lists the 
characteristics of the various fuels. The major properties were found to meet European 
standards. Since the fuel types have not changed significantly, the diesel engine does not 
need to be adjusted (Samuel et al., 2019). 

Table 5 Properties of fuel for corrosion study 

Types of fuel 
Fuel properties B0 B10/WFOB10 B20/WFOB20 B100/WFOB100 EN 41214 
Density (kg/m2) 861.3 862.6 865.3 883.6 850–900 
Viscosity 
(mm2/s) @ 40°C 

4.7162 4.7614 4.8910 5.1282 3.5–5.0 

Flash point (°C) 72 74 78 142 120 min 

Acid value (mg 
KOH/g) 

0.12 0.14 0.17 0.298 0.50 max 

3.2 Modelling and prognostic competence of RSM and analysis of variance 
(ANOVA) for corrosion rate 

Table 6 presents the design layout for the corrosion examination of copper and brass in 
WFOB. As observed, the highest CRs of copper (0.2429 mpy) and brass (0.1840 mpy) 
were achieved at a blend ratio of 20% and exposure duration of 720 h while the minimum 
CRs of copper (0.0173 mpy) and brass (0.0110 mpy) were achieved at a blend ratio of 
unblended diesel (B0) and exposure duration of 240 h. 

Table 7(a) and (b) highlight the ANOVA for the CRs of Cu and Br bare to WFOB, 
respectively. As observed in Table 7(a), the model F-value of 264.28 infers the model is 
substantial. This great value of an F-value cannot be explained by random chance alone; 
the probability is only 0.01%. When the probability of a term in the model is smaller than 
0.0500, we say that it is significant. In this case, the quadratic terms of fuel type (A2) and 
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exposure duration (B2) are as important as the linear terms of fuel type (A). However, 
other factors are not significant. For instance, if the number is higher than 0.1000, it 
means that the model terms are not important. Model reduction can be useful if your 
model has a large number of irrelevant terms (excluding those necessary to maintain 
hierarchy). The model F-value of 12.23, as shown in Table 7(b), also indicates the 
model’s significance. It’s not as close as one may assume between the ‘Pred R-Squared’ 
value of 0.4266 and the ‘Adj R-Squared’ value of 0.6709. Possible issues with your 
model and/or data may be indicated by this. Model simplification, data translation, the 
identification of outliers, etc. The ‘Adeq Precision’ metric evaluates the quality of the 
signal over the background noise. We favour ratios higher than 4. A signal strength of 
9.554 shows sufficient ratio. Using this model, you may further explore potential layout 
options. 

Table 6 Design matrix for the corrosion of copper and brass 

Coded process variables Experimental data Predicted data by RSM 
Blends 
(v/v%) 

Exposure 
duration (hours) 

Corrosion rates 
of Cu (mpy) 

Corrosion rates 
of Br (mpy) 

Corrosion rates 
of Cu (mpy) 

Corrosion rates 
of Br (mpy) 

0 240 0.0173 0.011 0.0204 0.006 
20 240 0.0254 0.0215 0.0238 0.017 
0 720 0.1196 0.106 0.1113 0.124 
20 720 0.2429 0.184 0.2299 0.136 
0 480 0.0753 0.0639 0.0659 0.065 
20 480 0.1268 0.0102 0.1268 0.077 
10 240 0.017 0.0109 0.0221 0.012 
10 720 0.1427 0.109 0.1706 0.13 
10 480 0.0971 0.0807 0.0963 0.071 
10 480 0.0971 0.0807 0.0963 0.071 
10 480 0.0971 0.0807 0.0963 0.071 
10 480 0.0971 0.0807 0.0963 0.071 
10 480 0.0971 0.0807 0.0963 0.071 

The response surface model obtained to estimate the corrosion rate of Cu in WFOB 
including all experimental variables is represented by equation (13a) in terms of coded 
experimental variables and equation (13b) in terms of actual experimental variables. 
Equation (14a) represents the response surface model obtained to estimate the corrosion 
rate of brass in WFOB in terms of coded experimental variables, while equation (14b) 
represents the model in terms of real experimental data. 

0.096 0.030 0.074 0.029CuCR A B AB= + + +  (13a) 

CuCR 0.025037 0.002712*Blend 0.0001894*Exposure duration 0.012 
0.029*Fuel blend*Exposure duration 

= − − + +
+

(13b) 
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Br 0.071 0.0058 0.0 0.059  CR A B AB= + + +  (14a) 

Br 0.053564 0.00058*Blend 0.000247*Exposure duration CR = − + +  (14b) 

Table 7(a) ANOVA for modelling of corrosion rate of Cu in WFOB 

Source 
Sum of 
squares Df 

Mean 
square F-value p-value  

Model 0.1257 5 0.0251 264.28 <0.0001 *SIG 
A-Blend 0.011 1 0.011 115.35 <0.0001 SIG 
B-Exposure duration 0.1054 1 0.1054 1108.16 <0.0001 SIG 
AB 0.0036 1 0.0036 37.34 0.0005 SIG 
A² 0.0007 1 0.0007 7.03 0.0329 **NSIG 
B² 0.0057 1 0.0057 60.45 0.0001 SIG 
Residual 0.0007 7 0.0001    

Lack of fit 0.0007 3 0.0002    

Pure error 0 4 0    

Cor Total 0.1263 12     

*SIG, **NSIG. 

Table 7(b) ANOVA for modelling of corrosion rate of brass in WFOB 

Source 
Sum of 
squares Df Mean square F-value p-value  

Model 0.0213 2 0.0106 13.23 0.0016 SIG 
A-Blend 0.0002 1 0.0002 0.2510 0.6272 NSIG 
B-Exposure duration 0.9211 1 0.0211 26.21 0.00025 SIG 
Residual 0.0080 10 0.0008    

Lack of fit 0.0080 6 0.0013    

Pure error 0.0000 4 0.0000    

Cor Total 0.0293 12     

3.3 Interactive effects of process variables/Parameters on the CRs 

Plotting the model’s response surface is the best way to visualise the impact of each 
variable on the response across the space of experiments (Kusuma and Mahfud, 2016). 
The contour plots (2-dimensional) and the response surfaces (3-dimensional) generated 
by the model are shown in Figure 7(a)–(d) for all experimental parameters. 

As observed in Figure 7(a)–(b), the CR of copper augmented with the upsurge in 
WFOB fraction and exposure duration. The CR ranged from 0.05 to 0.10 mpy with 10% 
WFOB and 480 h of exposure duration. The CR became exceedingly aggravated at a 
higher WFOB and exposure duration. Similar observation was detected by Fazal et al. 
(2010) and Cursaru et al. (2014). This phenomenon is due to long exposure duration and 
high biodiesel content, which is attributed to hydrolysis, leading to a high corrosion rate 
(Zuleta et al., 2012; Gulzar et al., 2016). 
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Figure 7 Contour and response surface plots for CRs: (a) 2D for CRs of Cu, (b) 3D for CRs of 
Cu, (c) 2D for CRs of Br, and (d) 3D for CRs of Br (see online version for colours) 

 

As observed in Figure 8(c)–(d), the CR of brass increased with the increase in WFOB and 
exposure duration. The CR ranged from 0.05 to 0.10 mpy with 10% WFOB and 480 h of 
exposure duration. The CR became exceedingly aggravated at a higher WFOB and 
exposure duration (Chandran et al., 2016). 

Figure 8(a) The topology of artificial neural network (see online version for colours) 
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Figure 8(b) Performance-plot of the chosen network (see online version for colours) 

 

Figure 8(c) Performance of the suitable ANN for the training, testing and validation datasets  
  (see online version for colours) 
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3.4 ANN model for corrosion rates 

The ANN architecture is the foundation for perfect prediction (Ranasinghe et al., 2017). 
Figure 8(a) depicts the schematic of a multilayer ANN. As seen, the input layer consists 
of two process parameters (fuel blend and exposure length), eight hidden levels, and two 
layers in the output (corrosion rate of Cu and corrosion rate of Br). Through iterative 
testing, the optimal condition can be identified. Neurons for the input layer are selected 
according to the layer that is specified. 

The best validation results from a different time period are shown in Figure 8(b). As 
can be shown, the greatest validation performance is 114.50 10−×  at epoch 34, and the 
lowest MSE value and good prediction of the outputs of both training and test sets were 
gained with 8 neurons in the hidden layer. 

Figure 8(c) shows the output vs. target chart, as well as the observed and predicted 
outputs for each sample when running for the training, testing, and validation datasets. 
Training and testing results show the correlation coefficients (R) values of 0.99989 and 
0.99997, with 1.0 being a perfect correlation between actual and projected values 
(validation). This implies that the linear fit regression between the experimental CRs for 
Br and Cu and the ANN predicted values is ideal. 

3.5 Comparing of RSM and ANN models 

Figure 9(a) depicts the actual CRs for Cu and Br, as well as those of the HRAMs. As 
demonstrated, the CRs model from the ANN is very close to the experimental CRs when 
compared to the model obtained from the RSM for each run. Other researchers have 
reported similar findings (Samuel et al., 2021; Coşkun and Karahan, 2018; Oguntade et 
al., 2020). 

Figure 9(b)–(c) show RSM prediction CRs vs. experimental CRs for Cu and Br, while 
Figure 9(d)–(e) show ANN prediction CRs vs. experimental CRs for Cu and Br. The 
linear equations (1 0.00001)x +  and (1.0014 0.0003)x −  are discovered to be adequate for 
the variations of experimental and RSM-based CRs, respectively, whereas the linear 
equations (0.9993 0.00002)x +  and (1.0057 0.0006)x −  are also found to be appropriate 
for these same variations for copper and brass, respectively. The RSM had an R2 of 
0.7254 and 0.9734 for the CRs of brass and copper, while the ANN had an R2 of 0.9999 
and 1.0, indicating that the ANN model captured a greater proportion of the data than the 
RSM model. As a result, the ANN model could predict CRs for brass and copper in a 
biodiesel environment. Comparable reports were expressed by researchers elsewhere 
(Samuel et al., 2022; Li et al., 2022) 

It is critical to compare the superiority of RSM and ANN in predicting the CRs of Cu 
and Br in a biodiesel environment in order to get accurate predictions. Various statistical 
criteria were used to compare the RSM and ANN models in this study’s prediction power 
comparison. Bar graphs in Figure 9(f) show statistical index values associated with the 
comparison of RSM and ANN performance. According to statistical bar graphs, ANN 
models outperform RSM models. 
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Figure 9(a) Runs vs. experimental, RSM, and ANN predicted corrosion rates (see online  
  version for colours) 

 

Figure 9 Contrast of the various corrosion rates: (b) RSM predicted and experimental CRs for 
Cu; (c) RSM predicted and experimental CRs for Br; (d) ANN predicted and 
experimental CRs for Cu and (e) ANN predicted and experimental CRs for Br  
(see online version for colours) 
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Figure 9 Contrast of the various corrosion rates: (b) RSM predicted and experimental CRs for 
Cu; (c) RSM predicted and experimental CRs for Br; (d) ANN predicted and 
experimental CRs for Cu and (e) ANN predicted and experimental CRs for Br  
(see online version for colours) (continued) 
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Figure 9 Contrast of the various corrosion rates: (b) RSM predicted and experimental CRs for 
Cu; (c) RSM predicted and experimental CRs for Br; (d) ANN predicted and 
experimental CRs for Cu and (e) ANN predicted and experimental CRs for Br  
(see online version for colours) (continued) 

 

Figure 9(f)   Catalogues of RSM and ANN models (see online version for colours) 

 

3.6 Corrosions’ optimal condition for minimisation and its mechanical 
properties 

Figure 10(a) depicts the optimal conditions for minimising Cu and Br CRs in a biodiesel 
environment. The CRs of Cu (0.01656 mpy) and Br (0.008189) were found to be optimal 
at B 3.91 of biodiesel/diesel blend and exposure duration of 240.9 h. Optimised 
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experimental variables led to experimental CRs of 0.01655 mpy and 0.0081865 mpy for 
Cu and Br, respectively, in a justification test. Comparing forecasted and measured  
CRs for Cu and Br, the average error was 0.06% and 0.03054%, respectively. Good 
agreement between the percentages of error in prediction was found during validation, 
proving that the RSM model developed was reliable. Table 8 shows the mechanical 
properties of Cu and Br exposed to biodiesel at optimal conditions, namely BHN and 
TES. As can be seen, the TES of Br was higher than copper while the hardness of the 
latter exceeded that of the former. According to Chandran et al. (2016), the higher 
hardness number and tensile strength are due to higher oxygen dissociation and better 
conductivity of optimal corroded biodiesel of Br to Cu. 

Figure 10(a) Optimal condition for corrosion minimisation for Cu and Br in biodiesel   
  environment (see online version for colours) 

 

Table 8 Mechanical properties of corroded Cu and Br 

AP* Hardness number (N/mm2) Tensile strength (MPa) 
Cu 211.12 717.80 
Br 68.63 1476.52 

*Automotive parts. 

3.7 Surface morphology of the automotive parts 

Figure 10(b) depicts the micrograph surface (MS) of copper and brass under optimal 
conditions. When compared to brass, the MS of copper darkens. This phenomenon can be 
explained by the greater computability of brass to copper. 
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Figure 10(b) SEM Morphologies of Cu and Br: (a) Cu before exposure; (b) Cu after exposure;  
  (c) Br before exposure and (d) Br after exposure  

 

4 Conclusion 

The study demonstrated the prediction and modelling of copper and brass CRs in 
biodiesel synthesised using RSM and ANN models. The best conditions and correlations 
for predicting and modelling the CRs of these automotive parts were identified. The 
mechanical properties of automotive parts, specifically BHN and TES, as well as surface 
morphologies prior to exposure and under optimal conditions, were investigated.  
To achieve a vigorous study in the close imminent, (i) supplementary operating corrosion 
variables can be studied, (ii) the inclusion and efficacy of cost-effective inhibitors can be 
studied, and (iii) kinetic and thermodynamic features can be studied further. The 
optimum CRs for copper and brass were 0.01656 mpy and 0.008189 mpy at a B 3.91 
biodiesel/diesel blend and 240.9-h exposure. The developed ANN model configuration 
(2-13-2) demonstrated greater adaptability and nonlinearity. When compared to the RSM 
model, the ANN model had a higher coefficient of determination and lower values of root 
mean squared errors (RMSE), MAE, and average absolute deviation (AAD); this 
validates the ANN model’s superiority for predicting CRs of copper and brass. The 
tensile strength of brass was greater than that of copper, while the latter had a higher 
hardness number. 
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