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Abstract: With the increasing traffic load, pavement distresses are caused 
inevitably. Water penetration and extreme weather condition speed up the 
deterioration of pavements and cause the occurrence of potholes. Automated 
pothole inspection methods have been developed with both 2D and 3D-based 
imaging techniques for many years. However, the performances suffer from 
either accuracy or efficiency. In this paper, a 3D profile-based solution is 
proposed to inspect potholes with high accuracy and efficiency. A low-cost 
stereo imaging system is deployed to generate the 3D pothole profile, and an 
algorithm integrating region growing is developed to segment potholes. The 
pothole volume is calculated based on the segmentation results and the depth 
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information. Overall, the proposed method outperforms the existing method by 
1.72% and 5.192% in pothole segmentation and quantification, respectively. 
Moreover, the proposed method has no demand for large-scale datasets and 
training procedures, thus reducing time and labour costs. 

Keywords: pothole segmentation, pothole quantification, stereo imaging, 
region growing. 
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1 Introduction 

Among all the pavement diseases, pothole is one of the most common diseases that 
occurs in cold and rainy regions (Dong et al., 2014; Yang et al., 2017; Hafezzadeh et al., 
2021). Potholes develop from a deteriorated area of pavement, and the penetration of 
water and freezing speed up the occurrence of potholes (Biswas et al., 2018). The growth 
of potholes brings hazard and risk to the traffic and the safety of society, making the 
immediate pothole inspection and repair indispensable. So far, most of potholes are 
reported and inspected manually, which leads to high labour cost and puts the inspectors 
at risk (Saad and Tahar, 2019). Therefore, automated pothole inspection methods are 
developed lately to assist related departments in assessing the condition and planning 
maintenance for pavement surfaces. The inspection of pothole can be conducted in two 
steps: pothole segmentation and pothole quantification. The segmentation of pothole 
produces a binary pothole map showing the location and the shape of the pothole. The 
generated binary pothole map can be further used in pothole quantification. The 
quantification calculates the geometrical information of the pothole which enables an 
assessment of the severity. Consequently, repair strategies can be determined, and the 
cost of repair can be estimated based on the volume of the pothole (Ravi et al., 2020). 

The development of computer vision facilitated the research in 2D imaging-based 
pothole detection and segmentation. Traditional image processing-based methods were 
first developed to segment potholes from the images captured by digital cameras. Pattern 
recognition was applied to extract the low-level features of the pothole using hand-crafted 
representation (Koch and Brilakis, 2011; Tedeschi and Benedetto, 2017; Radopoulou and 
Brilakis, 2017). Edge detection-based methods were proposed to segment potholes by 
analysing the greyscale distribution of the pothole images (Nienaber et al., 2015; Akagic 
et al., 2017; Wang et al., 2017). Furthermore, support vector machine (SVM) was 
deployed in machine learning-based methods to differentiate the texture feature between 
potholes and pavement surface (Lin and Liu, 2010; Gao et al., 2020). However, all the 
methods mentioned above are predisposed to surrounding noises, such as uneven 
illumination, water stains, and so on. With the advance of deep learning, convolution 
neural networks (CNNs) significantly improve the precision of pothole detection and 
segmentation in overcoming the problem of background noise (Pan et al., 2018; Sathvik 
et al., 2022; Feng et al., 2022b; Ranyal et al., 2023). Nonetheless, the training of CNNs 
requires large-scale datasets, which is highly time and labour consuming, detracting the 
efficiency and practicality of CNNs. 

Except for 2D imaging-based methods, 3D-based methods were developed to acquire 
the 3D geometrical information of potholes. Low-cost sensor systems were developed 
with Microsoft Kinect to detect and measure the geometrical parameters of the potholes 
(Joubert et al., 2011; Moazzam et al., 2013; Jahanshahi et al., 2013), but the accuracy is 
limited by the illumination condition (Mathavan et al., 2015). To increase the accuracy, 
mobile laser system was widely used to obtain the detail information of the road surface 
and detect pavement distresses from the reconstructed point cloud (van der Horst et al., 
2019; De Blasiis et al., 2020). Feng et al. (2022a) segmented the pothole from the point 
cloud reconstructed using mobile laser system. Then the detected potholes were 
quantified from depth, area, and diameter. Even though laser-based systems provide 
promising performance, cost of the system is generally expensive. Lately, the advances in 
stereo imaging system make the reconstruction of 3D scenes more accessible, and 
structure from motion (SfM) is the most popular method. SfM reconstructs the 3D model 
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from a series of images without knowing the position of the cameras (Ullman, 1979). 
Saad et al. (2019) collected the image sequences from different altitudes using unmanned 
aerial vehicle (UAV) and evaluated the impact of altitude on the precision of pothole 
detection. Tan and Li (2019) reconstructed the 3D pavement model from the UAV-
collected image sequences and quantified the pothole from width, length, height, and 
area. Roberts et al. (2020) developed a low-cost stereo imaging system which collected 
image sequences using mobile phones. Guan et al. (2021) proposed a GoPro-equipped 
stereo imaging system to obtain the depth information of the pothole, and the collected 
depth information was incorporated to train a U-Net-based neural network for pothole 
segmentation. Then the pothole volume was calculated based  
on the generated binary pothole map. Except the methods mentioned above, 3D  
ground-penetrating radar (GPR) was also applied to diagnose pavement and detect 
pavement distresses (Fontul et al., 2021; Liang et al., 2022). Though the above literatures 
proposed various methods to segment and quantify potholes, they suffer from either low 
accuracy or efficiency. 

In this paper, we propose a 3D profile-based solution to segment and quantify 
potholes efficiently and accurately. A low-cost GoPro-equipped stereo imaging system is 
deployed to collect image sequences of potholes from multiple perspectives. SfM is 
applied to reconstruct the 3D pothole point cloud model, and point cloud preprocessing is 
implemented to generate the 3D pothole profile. An algorithm integrating road surface 
estimation and region growing is developed based on the 3D profile to segment the 
pothole and produce the binary pothole image. Eventually, the pothole volume is 
calculated using the binary pothole image and depth information. The overview of the 
proposed method is shown in Figure 1. The results demonstrate that the proposed method 
improves the existing method in both accuracy and efficiency. 

Figure 1 Overview of the proposed 3D profile-based pothole segmentation and quantification 
(see online version for colours) 
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2 3D pothole profile generation 

2.1 Data collection 

To obtain the 3D pothole point cloud model accurately and efficiently, a GoPro-equipped 
stereo imaging system was deployed to capture high-resolution image sequences of 
potholes from multiple perspectives. Figure 2 illustrates the layout of the deployed stereo 
imaging system. Three GoPro cameras are mounted on the rear of the vehicle and 
distributed with a space of 0.6m horizontally for large field-of-view and high 
reconstruction accuracy. The distance between the cameras and the pavement surface is 
0.8m vertically. The central camera is mounted to be perpendicular to the pavement 
surface, while the other two cameras on the side are inclined to the centre with  
30 degrees. With the above settings, 2m2 of road surface can be captured with a ground 
sampling distance (GSD) of 0.27 mm/pix. Besides, an overlap rate of 70%~80% can be 
guaranteed to produce high-quality details of the road surface (Saad and Tahar, 2019). 
More parameter settings of the GoPro cameras can be found in Table 1. The cameras are 
controlled with a remote to capture pothole images simultaneously and continuously 
while the vehicle is moving. To avoid system vibration and motion blur, the vehicle 
moves with a speed of 3–15 km/h. 

Figure 2 GoPro-equipped stereo imaging systems (see online version for colours) 

  

Table 1 Parameter settings of the GoPro cameras 

Parameters Properties 
Image size 4,000 × 3,000 pixels 
Pixel size 1.5 μm × 1.5 μm 
ISO range 100–1600 
Frame rate 2–10 FPS 
Lens mode Linear 
Focal length 27mm 

2.2 3D reconstructions 

SfM is applied to reconstruct the 3D pothole point cloud model. Without knowing the 
position of the target and cameras, SfM reconstructs the 3D point cloud model from the 
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overlapping images. Firstly, key points are extracted and matched among image pairs. 
Then the relative pose between two cameras is calculated using the extracted key points 
based on the theory of epipolar geometry. Consequently, spatial coordinates of the 
captured points are derived from the geometric correlation between the images and space. 
In our research, the captured pothole image sequences are split into batches with the size 
of 20-30 images and fed into PhotoScan to compile the dense point cloud. Based on our 
previous study (Guan et al., 2021), the implemented stereo imaging system reconstructs 
the 3D pothole point cloud model with an absolute accuracy at millimetre level. An 
average relative error of 5.40% was verified by comparing the manual measurement of 
the pothole depth and the 3D measurement obtained from the reconstructed point cloud 
model. 

2.3 Point cloud preprocessing 

Since the orientation of the compiled point cloud model is random, calibration is first 
conducted to rotate the reconstructed pavement surface onto the X-Y plane using 
principal component analysis (PCA). PCA estimates the three principal directions of the 
model, which are represented by the three eigenvectors of the point cloud. The 
eigenvector with the minimum eigenvalue denotes the normal vector of the point cloud. 
By multiplying the coordinates of points with the normal vector, the original point cloud 
is geometrically rotated to the X-Y plane. 

Furthermore, the points in the point cloud model generated by SfM cannot be indexed 
orderly. To facilitate further calculation, we vectorise the dense point cloud to generate 
an M × N point cloud array. The dense point cloud is split into spaces along X and Y-axis 
with a certain step calculated as 

max( ) min( )x xstep
M
−=  (1) 

in which, max(x) and min(x) are the maximum and minimum value of X in the dense 
point cloud, M is the number of rows in the point cloud array, and 512 is used in this 
study. Then the number of columns of the point cloud array can be determined as 

max( ) min( )y yN
step

−=  (2) 

in which max(y) and min(y) are the maximum and minimum value of Y in the dense 
point cloud. After vectorisation, the points in the point cloud array can be indexed as  
(m, n, d), where m ∈ [0, M), n ∈ [0, N). The value of d represents the depth of the point, 
which is calculated by averaging the depth of all the points inside each split space. In the 
end, the 3D profile of the captured pothole is represented by the vectorised point cloud 
array. Figure 3 shows an example of the generated 3D pothole profile. Besides, RGB and 
depth orthoimages are generated to visualise the pothole as shown in Figure 4. The RGB 
orthoimage is obtained by taking the average RGB value of the points in each split space, 
while the greyscale of the pixel (m, n) in the depth orthoimage is the value of d. 

 

 



   

 

   

   
 

   

   

 

   

   22 Z. Pan et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 An example of the generated 3D pothole profile (see online version for colours) 

 

Figure 4 (a) RGB orthoimage (b) Depth orthoimage 

 

3 3D profile-based pothole segmentation and quantification 

This section introduces the proposed 3D profile-based pothole segmentation and 
quantification method. Based on the generated 3D pothole profile, a plane is first fitted to 
simulate the pavement surface. Then region growing algorithm is implemented to 
segment the pothole from the pavement surface and generate the binary pothole image. 
With the segmentation result and depth information provided by the 3D pothole profile, 
the volume of the pothole is calculated. 

3.1 Pothole segmentation 

3.1.1 Pavement surface estimation 
According to Figure 3, the points belonging to the pavement surface and the points inside 
the pothole can be differentiated from altitude. Compared with the pothole, the points on 
the pavement surface present more consistent altitude. Therefore, a plane that represents 
the pavement surface can be fitted. In this study, 3-dimensional random sample 
consensus (RANSAC) is implemented to fit the plane. RANSAC predicts the 
mathematical model without considering outliers (Fischler and Bolles, 1981). 
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Presumably, a given dataset is comprised of inliers and outliers, RANSAC iteratively 
chooses elements from the given dataset to estimate the mathematical model until a 
satisfied model is obtained. The pavement surface estimated using RANSAC is plotted in 
Figure 5(a), showing that most of points inside the pothole locate below the estimated 
pavement surface. However, except for the pothole, noisy points caused by pavement 
unevenness also distribute under the fitted plane. To reduce the impact of pavement 
unevenness, we fit all the inliers of the fitted plane to the plane itself. The inliers 
mentioned here are the points that are selected as inliers when implementing RANSAC. 
The result after reducing pavement unevenness is given in Figure 5(b). 

Figure 5 Results of pavement surface estimation, (a) result of estimating pavement surface using 
RANSAC (b) result after reducing pavement unevenness (see online version  
for colours) 

 
(a) 

 
(b) 

3.1.2 Region growing 
According to Figure 5(b), the pothole can be segmented from the pavement surface by 
selecting all the points below the estimated plane. However, there are chances that noisy 
points still exist below the plane even after reducing the pavement unevenness. 
Therefore, instead of simply selecting the points below the estimated plane, region 
growing is applied for pothole segmentation. In region growing algorithm, an initial seed 
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is first determined, then the region grows by iteratively including the neighbours of the 
seed that satisfy the pre-defined criterion (Adams and Bischof, 1994). In our case, the 
algorithm is implemented based on the vertical distance between the point and the 
estimated pavement surface. As shown in Figure 5(b), if we grow the region from the 
lowest point, the boundary of the pothole can be determined when the examined point 
reaches the estimated plane. Hence, the distance D between the examined point and the 
estimated plane can be used as the criterion that stops the region growing. Given an 
estimated pavement surface ax + by + cz = e and an examined point (xi, yi, zi), the 
distance D(xi, yi, zi) is calculated as 

( )
2 2 2

, , .i i i
i i i

ax by cz
D x y z

a b c

+ +
=

+ +
 (3) 

Overall, in the implemented region growing algorithm, we determine the lowest point in 
the 3D pothole profile as the initial seed. The criterion used to stop the region growing is 
when D(xi, yi, zi) < 10–4, and 4-connected neighbours of the seed are examined. 

3.2 Pothole quantification 

The knowledge of volume enables an estimation for the material cost spent in pothole 
repair (Wang et al., 2022). Thus, we quantify the pothole by measuring the volume in this 
study. The volume of a pothole is calculated based on the area and depth of the pothole. 
With the segmented binary pothole image, the location of the pothole can be determined, 
meaning that the effective area for volume measurement can be extracted. By 
overlapping the binary pothole image with the depth orthoimage, the depth of each pixel 
in the pothole region can be obtained. Figure 6 shows an example of effective pothole 
area extraction. Based on the extracted area, the volume of every single pixel can be 
calculated by multiplying the area and the depth of the pixel. Consequently, the pothole 
volume is acquired by accumulating the volume of all the pixels. The calculation is given 
as below: 

K
kk

Volume S d= ⋅  (4) 

where K is the number of pixels of the segmented pothole region, S is the area of the 
pixel, dk is the depth of the kth pixel. 

Figure 6 The extraction of effective pothole area for volume calculation (see online version  
for colours) 
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4 Results 

This section discusses the results of the proposed 3D profile-based pothole segmentation 
and quantification method. Six potholes are studied to evaluate the performance of the 
proposed method. Moreover, the deep learning-based pothole segmentation method 
proposed by Guan et al. (2021) is compared. 

4.1 Pothole segmentation 

Figure 7 and Table 1 list the qualitative and quantitative results of comparing the 
proposed pothole segmentation method against the deep learning-based method proposed 
by Guan et al. (2021). The ground-truth images were obtained by manually labelling the 
RGB orthoimages. To quantitively evaluate the segmentation results, intersection over 
union (IoU) between the ground-truth A and the predicted binary pothole map B is 
calculated. IoU is a metric that quantifies the overlap between the ground-truth and 
segmentation result. The value of IoU is calculated as follows: 

( , ) ,A BIoU A B
A B

∩=
∪

 (5) 

where A ∩ B is the overlap area of A and B, and A ∪ B combines the area of A and B. 
Therefore, the value of IoU is penalised not only when the overlap area is low, but also 
when the segmentation result overflows the ground-truth. 

According to quantitative comparison given in Table 1, the proposed method 
outperforms Guan’s method by 1.72% in IoU. Qualitatively, the proposed method 
segments the pothole with more boundary details. The lack of detailed boundary 
information in deep learning-based method can be introduced from two perspectives. On 
the one hand, the ground-truth images used for training the neural network are not 
labelled properly. It can be noticed from the RGB orthoimages that the boundary of 
pothole is hardly to be identified by human eyes due to the pavement texture and the 
surrounding pavement diseases, thus increasing the difficulty of manual labelling. On the 
other hand, the unpredictable shape of potholes increases the requirement of the diversity 
of the dataset. Due to the lack of diversified dataset, the neural network is trained to 
predict certain patterns instead of differentiating the features of pothole and background. 
Therefore, a large-scale and diversified dataset is essential for training neural networks 
that segment potholes with high precision. However, the establishment of such dataset is 
highly time and labour-consuming. On the contrary, the proposed method segments 
potholes by extracting and processing the 3D pothole geometrical information, thus 
having no demand for dataset and training procedure. Overall, the proposed method 
segments potholes with higher accuracy and lower time and labour cost compared with 
deep learning-based methods. 
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Figure 7 Qualitative comparison results of pothole segmentation, (a) 3D pothole profile (b) RGB 
orthoimage (c) ground-truth images (d) Guan et al. (2021) (e) proposed method  
(see online version for colours) 

 

Table 1 Quantitative comparison results of pothole segmentation 

Pothole no. 
IoU 

Guan et al. (2021) Proposed method 
#1 0.8377 0.8465 
#2 0.8106 0.8548 
#3 0.8171 0.8134 
#4 0.8781 0.8827 
#5 0.8025 0.8104 
#6 0.8093 0.8510 
Mean IoU 0.8259 0.8431 
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4.2 Pothole quantification 

Figure 8 shows the extracted effective area for pothole volume calculation of the 
proposed method, and Table 2 compares the volume measurement results against Guan  
et al. (2021) and manual measurement. The manual measurement of the pothole volume 
was measured using sand replacement method. The volume measurement results of Guan 
et al. (2021) were obtained based on the binary pothole images shown in Figure 7(d). 
According to Table 2, the most and least severe potholes are Pothole #4 and Pothole #3 
since they provide the highest and lowest volume, respectively. Based on the effective 
area given in Figure 8, even though Pothole #1 is larger than Pothole #5 and #6, the 
volume of Pothole #1 is the lowest among the three potholes, meaning that Pothole #5 
and #6 are deeper than Pothole #1. Generally, both methods underestimate the pothole 
volume, but the proposed method produces the results that are closer to the manual 
measurement. Overall, the relative error of the proposed method is 5.192% lower than the 
method proposed by Guan et al. (2021). Since the volume is calculated based on the area 
of the extracted pothole, the accuracy of volume measurement is directly affected by the 
performance of pothole segmentation. Therefore, the outperformance in pothole volume 
measurement also proves our superiority in pothole segmentation. 

Figure 8 The results of extracting effective area for pothole volume calculation, (a) depth 
orthoimages (b) the extracted effective areas 

  

Table 2 The comparison results of pothole volume calculation 

Pothole no. 
Volume/cm3  Relative error (%) 

Manual 
measurement 

Guan et al. 
(2021) 

Proposed 
method  Guan et al. 

(2021) 
Proposed 
method 

#1 366 301 349  17.760 4.645 
#2 1088 1029 1087  5.423 0.092 
#3 139 114 123  17.986 11.511 
#4 2520 2422 2541  3.889 0.833 
#5 1536 1559 1563  1.497 1.758 
#6 669 601 624  10.164 6.726 
Mean relative error (%) 9.453 4.261 
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5 Conclusions 

In this paper, we propose a 3D profile-based pothole segmentation and quantification 
method. A GoPro-equipped stereo imaging system is deployed to reconstruct the 3D 
point cloud model of the pothole, and preprocessing is implemented to generate the 3D 
pothole profile. An algorithm integrating region growing is developed to differentiate the 
pothole from the pavement surface and generate the binary pothole image. The pothole 
volume is then calculated based on the effective area extracted from the binary pothole 
image. According to the quantitative comparison results, the proposed method 
outperforms the existing deep learning-based method by 1.72% and 5.192% in pothole 
segmentation and quantification, respectively. Moreover, the proposed method has no 
demand for dataset and training procedures which are highly time and labour consuming. 
Hence, the proposed method improves the existing method in both accuracy and 
efficiency. For future work, we will work on quantifying potholes from more 
perspectives, such as width and diameter, to facilitate the severity assessment of potholes. 
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