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Abstract: This work is motivated by the problem of managing inventory and 
the optimal replenishment schedule for a network of automated teller machines 
(ATMs) in India. The objective is to minimise the occurrences of shortages at 
the ATMs and in turn to achieve a higher service levels while minimising the 
cost of holding inventory and replenishment of ATMs. The problem is casted 
as a rich variant of inventory routing problem with several practical restrictions 
such as maximum inventory at the ATMs. A two-phase iterative decomposition 
heuristic is proposed to efficiently solve the practical size problem instance. 
The computational experiments based on synthetic data are conducted to assess 
the efficiency and effectiveness of the proposed solution approach and a case of 
Varanasi city in India is presented for the analysis. The results show the 
effectiveness of our proposed approach over the conventional replenishment 
policies. 
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1 Introduction 

Due to convenience and utility, the automated teller machines (ATM) are one of the most 
commonly used services nowadays. There has been an increased penetration of ATMs in 
both urban and rural areas of developing counties like India in the recent past.  
Currently, there are 210,195 ATMs operating on-site and off-site in India as per the 
records of the Reserve Bank of India (https://www.rbi.org.in/Scripts/ATMView.aspx). 
The total amount of transactions using debit and credit cards through ATM is of the order 
of ₹3,200,999.6 million in the financial year 2019, which is a staggering amount. It is 
observed that even after demonetisation in India in the year 2016 and the promotion of 
cashless transactions through the unified payment interfaces and digitised platforms, the 
usage of ATMs has been continuously increasing in the country. 

With the large network of ATMs, ensuring the availability of cash at each ATM at all 
times to meet the demand of the customers is a challenging task. This calls for managing 
an inventory of cash at the ATMs and the order and frequency of cash replenishment at 
the ATMs. In the Indian scenario, usually the policy of managing inventory at the ATMs 
is decided by the bank authorities and the task of replenishment of ATMs is outsourced to 
a service provider. A continuous review policy is practiced for managing the inventories 
at ATMs. That is, the order for refilling the ATMs are issued when the cash level drop 
down to the reorder point. However, due to the outsourcing of replenishment activity, in 
many cases, there is no control over the time when the ATM is visited. As a result, the 
ATMs run out of cash and the customer demand during the interval of order initiation and 
actual receipt of the cash is lost. This scenario is prevalent in the case of most of the 
public sector banks in India. This motivated us to propose an integrated model for both 
inventory management and replenishment policy for ATMs in the Indian scenario. The 
problem is further complicated due to several practical restrictions such as maximum 
inventory at the ATMs, different denominations of currency notes, strict time windows 
for the replenishment of the ATMs, maximum cash that can be carried by a vehicle 
during replenishment, security protocols during the operations and the high level of 
uncertainty associated with the customers demand of cash. 

Motivated from this scenario, we propose a mixed-integer programming model to 
solve the problem of inventory management and cash replenishment of the ATMs. The 
consideration of inventory and vehicle routing aspects led us to visualise the problem as a 
variant of the well-known inventory routing problem (IRP). The output of the model is a 
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period wise routing plan along with replenishment quantities at each ATM. Further, since 
the real-time demand for cash withdrawal is highly uncertain and very difficult to predict, 
the approach of simulation is followed to mimic the withdrawal patterns and demand 
quantity. The output of simulation runs is useful in estimating customer demand during a 
period more accurately. Then, the routing plans obtained from the deterministic model 
can be revisited based on inputs from the simulation model. This leads to a combined 
simulation-optimisation framework for the problem. 

The IRPs are as well-known for their computational complexities. This fact is also 
applicable to the proposed model. As explained later, it is observed that the model 
becomes computationally intractable with an increase in the size of the problem 
instances. Therefore, to solve the problem efficiently and effectively, we propose a 
decomposition heuristic. In this, the inventory management problem and the vehicle 
routing problem (VRP) are attacked independently, sequentially and repetitively. The 
computational experiments have demonstrated the efficiency of the proposed heuristics. 
This heuristic, when coupled with the simulation phase, produces overall desirable results 
for the considered problem. In this way, with a mathematical model for a practical 
problem about the class of IRPs, a two-phase decomposition heuristics, and an integrated 
simulation-optimisation framework for the problem, we contribute to the body of the 
literature. 

The remainder of the paper is organised as follows. A crisp review of the related 
literature is presented in Section 2. Section 3 describes the problem under consideration. 
A mix-integer programming model is presented in this section. The proposed two-phase 
decomposition heuristic is presented in Section 4. The methodology for simulation and 
the integrated simulation-optimisation framework is given in Section 5. Further, the 
results of computational experiments are presented in Section 6. Finally, Section 7 
concludes the paper. 

2 Related work 

The problem of managing the cash at the ATMs has been considered with different 
aspects in the literature. For example, Zhang and Kulkarni (2018) devised an optimal 
strategy for the replenishment of the ATMs to minimise the long-term costs by taking 
into account the economies of scale while replenishing multiple ATMs simultaneously. 
Ekinci et al. (2019) views the problem for the individual ATMs as a cash replenishment-
planning problem and propose a robust optimisation with linear programming to consider 
the uncertainty in cash requirement. Xu et al. (2019) considers a network of ATMs and 
propose a VRP while Kurdel and Sebestyénová (2013) modelled the problem as an IRP. 

Although the problem classes such as IRP (Andersson et al., 2010; Coelho et al., 
2014; Sofianopoulou and Mitsopoulos, 2018) and VRP (Toth and Vigo, 2002) have been 
extensively studied in the literature, their applications to the problem of managing 
inventory and replenishment of cash for the ATMs are rather limited. There are a few 
studies that modelled the problem as some variant of VRPs such as a single VRP (Min 
and Chong, 2012), multi-depot VRP (Boonsam et al., 2011), VRP with forced backhauls 
(Anbuudayasankar et al., 2012), periodic VRP (Michallet et al., 2014) and k-dissimilar 
VRP (Talarico et al., 2015). The problem is firstly as a rich variant of a multi-period 
inventory-routing problem for the ATMs in the Netherlands by Van Anholt et al. (2016). 
A network of ATMs is considered in their work which is to be managed through a single 
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depot. Both cash deposits and withdrawal in the ATMs are allowed that generates both 
positive and negative demands at the ATMs. A clustering procedure is applied to 
decompose the problem into more manageable sub-problems. Similar work in the context 
of cash management and replenishment of ATMs in Santiago, Chile, is undertaken by 
Larrain et al. (2017). They have considered a special replenishment strategy that is the 
replacement of the entire cassette of the currency notes. The stock-outs are allowed but 
penalised to minimise them. A mixed-integer programming model is formulated and a 
Variable MIP neighbourhood descent algorithm is proposed to solve the problem 
efficiently. In a recent contribution, Batı and Gözüpek (2019) have considered the joint 
optimisation of cash management and routing for the recycling ATMs in Istanbul. They 
have proposed several heuristic algorithms for obtaining good quality solutions. Along 
with the conventional IRP, their model also takes a decision of replacing the conventional 
ATMs with the new recycle ATMs. However, in these works, the denomination mix has 
not been considered explicitly due to the nature of the ATMs. There are two recent works 
that take into account the issue of the denomination mix. Xu et al. (2019) have modelled 
the problem of cash logistics as a variant of the capacitated VRP with explicit 
consideration of a combination of different cash denominations. The minimum, 
maximum and expected demand of each denomination is taken into account and a penalty 
for deviating from the expected demand of each denomination is considered while 
modelling. In the most recent work by Van der Heide et al. (2020), the aspect of the  
time-varying denomination mix is integrated with inventory management decisions. The 
decision is the number of bills of certain denominations to be included in a box, inventory 
of the box at each ATM and whether an ATM will be visited or not in a period. However, 
the routing aspect has not been explicitly covered in this work. 

There are some fundamental differences in our work with the existing literature. It 
can be seen that the proposed variants of IRP or VRP are based on the core inventory and 
routing aspects along with the complicating side constraints that arise due to distinct 
features of the problem at hand. Almost all the works are carried out, keeping in mind the 
logistic service provider companies. The service providers are making the replenishment 
decision. In the Indian context, such decisions are made by the bank authorities and only 
the logistics part is outsourced. Our work is intended to bridge the resulting gap and 
allow coordination in the decisions of banks and the cash logistics service providers. 
Secondly, majority of the ATMs in India are the conventional type that have different 
cassettes to hold for each denominations. Therefore, the denomination mix is an 
important decision while replenishing the ATM as well as while meeting the customer 
demands. We explicitly do consider these decisions in our model. Also, the uncertainty 
associated with customer demand and withdrawal patterns is tracked with an integrated 
optimisation-simulation approach. This is the novelty in the present work. 

3 Problem definition and mathematical model 

In this section, we formally define the inventory-routing problem for ATMs (IRP-A). The 
IRP-A is defined over a graph G = (V, A), where V is the set of all vertices and A = {(i, j): 
i, j ∈ V, i ≠ j} is the set of arcs. Further, set V consists of a depot O (which is the central 
currency chest/nodal bank with a sufficient stock of currency) and a set N = {1, 2, …, n}, 
which is the set of nodes (that is ATMs). Each ATM is compartmentalised into 
designated storage spaces named ‘cassettes’ to hold different types of currency notes. 
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Each cassette has a fixed capacity and it is dedicated to a specific denomination of 
currency notes. Further, currency notes have different face values/denominations. The 
customer services are usually offered at the ATMs round the clock. However, there is a 
significant variation in the customer demand faced at an ATM over time and location. 
For example, the demand for cash at an ATM is much higher during peak periods as 
compared to off-peak periods. A variation in the demand can also be visible during 
different days of the week. The demand patterns of an ATM that is installed at a 
marketplace may significantly vary as compared to the ATM installed inside a university 
campus. Furthermore, there are time windows associated with the replenishment of the 
ATMs. Therefore, for the planning purpose, the planning horizon can be divided into 
discrete time periods. Due to the discretisation of periods, we can consider available 
operational hours during each period. In addition to the dynamic nature, there is another 
interesting feature associated with the customer’s demand for cash. The same demand of 
a customer can be met in a variety of ways due to different types of currency notes and 
their face values. For example, the demand of ₹10,000 could be met with several 
denominations such as five notes of ₹2,000, 20 notes of ₹500, 100 notes of ₹100, or any 
possible combination of available currency notes. Additionally, if the cash available in an 
ATM is insufficient to meet a customer’s demand, it is assumed to be lost. To provide 
better customer service, an objective is to meet demand during each period at all the 
ATMs without occurrences of shortages. 

To ensure the availability of cash at the ATMs to meet the demands, one need to 
carry sufficient stock at the ATMs, or the ATMs should be replenished as and when 
required. However, as stated earlier, an ATM can carry only a limited number of 
currency notes due to the fixed capacity of the cassettes. Additionally, there are 
restrictions imposed by regulatory bodies on the aggregate amount of cash that can be 
stocked into an ATM at any instance. The logistics and replenishment of cash are 
typically outsourced to a third-party service provider who provides specialised and 
secured vehicles and human resources for the handling of cash from the depot to the 
ATMs. A set of capacitated vehicles is assumed to be available at the depot for the 
distribution of cash. In contrast to the typical volumetric or weight capacity, the capacity 
of a vehicle in this context refers to the maximum amount of cash that can be transported 
at a time. 

A fixed cost is incurred if an ATM is visited in a period, which is typically charged 
by the service provider. Each ATM ensures unit inventory holding cost per period for 
currency notes that are being carried. These two costs exhibit a traditional trade-off 
similar to the inventory systems. Additionally, it should be noted that due to several 
practical aspects such as variations in the demand, limited storage capacity at ATMs and 
restriction on vehicle capacity, it may be impossible to meet the entire demand at each 
ATM during each period. Therefore, shortages are allowed in the model. However, each 
occurrence of shortage is penalised for minimising them. Considering this, the objective 
of the problem is to determine an optimal plan for replenishment and managing cash 
inventory at each ATM to minimise the total relevant cost. Apparently, due to the 
outsourcing of the cash logistics part, it seems that the routing problem to visit the ATMs 
is beyond the scope of the decision makers in the bank. However, as it is already clarified 
that the fixed cost of visiting an ATM is being charged by the service provider. Further, 
due to the limited time and practical constraints, it is important to know that how many 
ATMs can possibly be visited in a day. For this, consideration of routing aspects in the 
work is absolutely important. Incorporating the routing aspects in the model also allows 
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decision maker to fully consider the possible solutions exploring optimal trade-off 
between visiting and inventory carrying costs. 

The problem is formulated as a mixed-integer programming problem using the 
following notation. 

3.1 Sets and indices 

O depot 

N = {1, 2, …, |N|} set of all ATMs (nodes) indexed by i, j 

V = N ∪ {O} set of all nodes indexed by i, j 

A set of all arcs i, j 

T = {1, 2, …, |T|} set of periods indexed by t 

P = {1, 2, …, |P|} set of currency notes indexed by p 

K = {1, 2, …, |K|} set of vehicles indexed by k. 

3.2 Parameters 

Ci cost of visiting node i ∈ N 

hip inventory holding cost of note type p at node i 

πi per unit shortage cost at node i ∈ N 

Fp face value of note type p 

Dit demand at node i ∈ N during period t 

τij travel time on the arc i, j ∈ A 

δi service time at node i 

θt the available time during period t 

Up maximum capacity of the cassette for holding notes of type p 

U maximum allowed cash in the ATMs 

Qk capacity of vehicle (maximum cash carried). 

3.3 Decision variable 

Iitp inventory of currency notes of type p at ATM i at the end of period t 

fitp number of currency notes of type p withdrawal to meet demand at ATM i during 
time period t 

qiktp number of currency notes of type p refilled at ATM i by vehicle k during the start of 
time period t 
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1, if vehicle  visits node  during period 
0, Otherwise                                              ikt

k i t
x 

= 


 

1, if vehicle  travels path  to  during period 
0, Otherwise                                                      ijkt

k i j t
y 

= 


 

zikt number of times node i is visited by vehicle k during period t 

Uikt variable for sub-tour elimination. 

3.4 Mathematical model 

Objective function 

p p itp i ikt i it
i N t T p P i N k K t T i N t T

Min h F I c x π S
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

+ +    (1) 

subject to 

( 1) , ,itp i t p iktp itp
k K

I I q f i N t T p P−
∈

= + − ∀ ∈ ∈ ∈  (2) 

,it it itp p
p P

S D f F i N t T
∈

= − ∀ ∈ ∈  (3) 

, ,itp pI U i N t T p P≤ ∀ ∈ ∈ ∈  (4) 

, , ,iktp p iktq U z i N k K t T p P≤ ∀ ∈ ∈ ∈ ∈  (5) 

( 1) , ,iktp i t p
k K

q I U i N t T p P−
∈

+ ≤ ∀ ∈ ∈ ∈  (6) 

,itp p
p

I F U i N t T≤ ∀ ∈ ∈  (7) 

0 ,iktp p k kt
i N p P

q F Q z k K t T
∈ ∈

≤ ∀ ∈ ∈  (8) 

, ,ijkt ikt
j V

y z i V k K t T
∈

= ∀ ∈ ∈ ∈  (9) 

, ,ijkt ikt
j V

y z i V k K t T
∈

= ∀ ∈ ∈ ∈  (10) 

, , ,ikt jkt kt ijkt kt jktp p
p P

U U Q y Q q F i N j V k K t T
∈

− + ≤ − ∀ ∈ ∈ ∈ ∈  (11) 

, ,kt ikt iktp p
p P

Q U q F i V t T k K
∈

≥ ≥ ∀ ∈ ∈ ∈  (12) 
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, , ,ijkt ikty x i V j N k K t T≤ ∀ ∈ ∈ ∈ ∈  (13) 

,ijkt ij i ikt tk
i V j V i V

y τ δ z θ k K t T
∈ ∈ ∈

+ ≤ ∀ ∈ ∈   (14) 

1 ,ikt
k

x i N t T≤ ∀ ∈ ∈  (15) 

, , , , 0 , , ,itp iktp itp it iktI q f S U i N k K t T p P≥ ∀ ∈ ∈ ∈ ∈  (16) 

{0, 1} ( , ) , ,ijkty i j N k K t T∈ ∀ ∈ ∈ ∈  (17) 

{0, 1} , ,iktz i N k K t T∈ ∀ ∈ ∈ ∈  (18) 

{0}, ,iktz i k K t T∈ ∀ ∈ ∈ ∈  (19) 

{0, 1} , ,iktx i N k K t T∈ ∀ ∈ ∈ ∈  (20) 

The objective function (1) minimises the total cost, including inventory holding cost, cost 
of visiting ATMs and the shortage cost at the ATMs. Constraint (2) is the cash flow 
conservation equation to balance the inventory carried from the previous period plus cash 
inflow (replenishment) to the cash outflow (withdrawal) at an ATM in each period. 
Constraint (3) defines shortage as the unmet demand which is the difference between the 
estimated demand and the actual withdrawal quantity at an ATM. Constraints (4)–(6) are 
due to the limited storage capacity of a cassette in an ATM. They ensure that the number 
of currency notes of each type stored in an ATM does not exceed the capacity of the 
ATM at any point of time during a period. Constraint (7) is to ensure that the total cash at 
an ATM does not exceed the overall cash limit. Constraint (8) guarantees that the total 
cash carried by a vehicle during a period does not exceed the permissible limit of the cash 
during its tour in the period. Constraints (9) and (10) are to make sure that arcs going into 
and emanating from a node are travelled only if a visit is planned to the node.  
Constraints (11) and (12) are sub-tour elimination constraints. Constraint (13) related the 
variables for visiting a node and path traversed through the node. Constraint (14) limits 
the total travel time and service time at ATMs by a vehicle with respect to the maximum 
available time to each vehicle in each period. Constraint (15) ensures that each ATM is 
visited by at most one vehicle in each period. Finally, constraints (16)–(20) define the 
nature of the variables. 

4 Solution approach 

It can be seen that the IRP-A is a variant of the IRP that has been a well-known NP-hard 
problem. Our computational experiments also confirm the fact that the computational 
time required to solve IRP-A increases exponentially with an increase in the problem size 
and it becomes computationally intractable. Therefore, it calls for a specialised solution 
approach that is computationally efficient and effective. In this work, we propose a 
decomposition-based iterative heuristic procedure to solve the IRP-A, as explained 
below. 
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It can be seen that IRP-A consists of two prominent decision phases – inventory 
management and vehicle routing. The first decision is the management of the inventory 
of cash at the ATMs over the entire planning horizon and the second decision is the 
optimal routing for the replenishment of ATMs in each period. Both the decisions are 
interrelated and considered in an integrated fashion in the IRP-A. However, there is a 
possibility to take these decisions sequentially. For example, initially, the decision-maker 
may decide which ATMs are to be visited and how much cash is to be delivered to the 
ATMs during each period to minimise the total cost of visiting ATMs and inventory 
holding costs. Then, having known the ATMs to be visited in each period, the plan for 
visiting them using different vehicles can be worked out. That is, inventory management 
decisions may preside over the routing decision. This allows the disintegration of the 
model into two parts and many small sub-problems that can be solved efficiently. Our 
proposed two-phase decomposition heuristic follows this very idea. Phase 1 of the 
heuristic deals with inventory management decisions for the entire planning horizon and 
phase 2 is to plan the routing of vehicles for the replenishment of ATMs in each period. 
The details of the heuristic are given in the following subsections. 

4.1 Phase 1: inventory management 

The inventory management phase deals with the decisions of replenishment quantity and 
frequency of visits for each ATM. These decisions are intertwined and exhibit the  
trade-off between the inventory holding cost and the fixed cost of visiting the ATMs. 
Therefore, the objective is to determine a policy that minimises the total relevant costs. 
This problem resembles the classical dynamic lot-sizing problem presented by Wagner 
and Whitin (1958) with some additional constraints that arise due to the problem setting. 
Further, when the vehicle routing phase is disjointed from the original model of IRP-A, 
the inventory management problem of each ATM becomes unique and can be solved 
independently. That is, the model naturally gets decomposed into one sub-problem for 
each ATM. Also, the replenishment decisions are based on the capacity of ATM and 
there is no point in considering multiple vehicles in this phase. Therefore, the relevant 
decision variables such as qiktp and xikt are modified by omitting the indices of vehicles as 
qitp and xit, respectively. Then the model for phase 1 takes the following form. 

Sub-problem 1: for each ATM i ∈ N 

p p itp i it i itt T p P t T t T
Min h F I C x π S

∈ ∈ ∈ ∈
∗ ∗ + ∗ + ∗     (21) 

subject to 

( 1) ,itp i t p itp itpI I q f t T p P−= + − ∀ ∈ ∈  (22) 

it it itp p
p P

S D f F t T
∈

= − ∗ ∀ ∈  (23) 

,itp pI U t T p P≤ ∀ ∈ ∈  (24) 

,itp p itq U x t T p P≤ ∗ ∀ ∈ ∈  (25) 
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( 1) ,itp i t p pq I U t T p P−+ ≤ ∀ ∈ ∈  (26) 

itp p
p

I F U i N∗ ≤ ∀ ∈  (27) 

it i tx M θ t T≤ ∀ ∈  (28) 

Equations (21)–(27) are analogous to equations (1)–(7) in the model IRP-A.  
Constraint (28) ensures that the ATM can be replenished in a period only if the available 
time during that period is non-zero. Here, Mi is a large positive number to ensure the 
sufficiency of the order quantity at ATM i. As the problem needs to be solved for one 
ATM at a time, this approach is highly efficient. The sub-problem 1 can be solved with a 
black box solver such as GUROBI within brisk computation time. Furthermore, a 
dynamic programming based approach can be followed for a very large size problem if 
the need be. 

4.2 Phase 2: vehicle routing 

Based on the output of phase 1, the next step is the optimal routing of vehicles. For each 
time period t, a subset of ATMs to be visited N′ ⊆ N and the number of each currency 
notes qitp to be replenished in ATM i ∈ N′ is known from Phase 1. This quantity is 
hereafter regarded as the demand of each ATM for the brevity and designated as ipD  for 
a specific period t. To meet the demands of the ATM i ∈ N′, it needs to be visited by one 
of the vehicles from a set of vehicles K and must receive the exact quantity equivalent to 

.ipD  Partial fulfilment of the demand of the ATMs is not allowed. If a planned ATM is 
not visited in a period, it leads to shortages and subsequent high penalty costs. Therefore, 
with the limited number of capacitated vehicles and available time for vehicle operations 
in each period, the objective is to produce a routing plan such that the maximum demand 
of the ATMs is met. This problem is equivalent to the capacitated vehicle routing 
problem (CVRP), with some complicating side constraints. However, unlike the 
traditional CVRP, the objective is not to minimise the travel cost. Also, it can be noted 
that this phase does not directly contribute to the objective function of IRP-A. Instead, the 
objective of this phase is to produce a feasible solution for each period based on the input 
from Phase 1. 

Considering ikpq  as an additional variable for the actual number of currency notes of 
type p replenished to ATM i by vehicle k, the mathematical model for phase 2 for each 
period (omitting the index for the period) is as follows. 

Sub-problem 2: for each period t ∈ T 

Maximise ip p ik
k K i N p P

D F x
′∈ ∈ ∈

∗ ∗  (29) 

subject to 

,ikp ip ikq D x i N k′≤ ∀ ∈  (30) 
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,ikp ip ik
p p

q D x i N k′= ∀ ∈   (31) 

1ik
k K

x i N
∈

′≤ ∀ ∈  (32) 

0ikp p kt k
i N p P

q F Q z k K
′∈ ∈

∗ ≤ ∗ ∀ ∈   (33) 

{ } ,ijt ik
j V

y z i o N k K
∈

′= ∀ ∈ + ∈  (34) 

{ } ,jik ik
j V

y z i o N k K
∈

′= ∀ ∈ + ∈  (35) 

, ,ik jk k ijk k ikp p
p P

U U Q y Q q F i N j V k K
∈

′− + ∗ ≤ − ∗ ∀ ∈ ∈ ∈   (36) 

{ } ,k ik ikp p
p P

Q U q F i o N k K
∈

′≥ ≥ ∗ ∀ ∈ + ∈   (37) 

{ } , ,ijk iky x i o N j N k K′≤ ∀ ∈ + ∈ ∈  (38) 

ijk ij i ik ki V j V i V
y τ δ z θ k K

∈ ∈ ∈
∗ + ∗ + ∀ ∈    (39) 

Constraints (30) ensure that the actual number of notes delivered to an ATM is less than 
or equal to its actual demand. This constraint imposes that the number of notes delivered 
to an ATM are positive only if the ATM is actually visited during the period.  
Constraint (31) lays the similar requirement and adds up a restriction on partial 
fulfilment. Constraint (32) ensures that that the entire demand of an ATM must be 
fulfilled by the same vehicle. The remaining constraints in the problem 2 are the blatant 
adoption of their equivalent constraints from the IRP-A. 

The sub-problem 2 can be seen as a CVRP with complicating side constraints which 
is NP-Hard and computationally intractable. Even the professional math programming 
solvers such as Lingo, LINDO, Cplex and GUROBI takes too long to produce an optimal 
or even a feasible solution to a medium/large size instance. Therefore, we propose a 
greedy heuristic reinforced with a local search to solve the VRP for each period. The 
greedy approach is a construction heuristic that develops a feasible solution by 
constructing a path for each vehicle. Given a set of ATMs to be visited in a period and 
the demand of these ATMS, the next node (ATM) to be visited by a vehicle is selected 
based on the ratio of demand and travel time. The visits of each vehicle are constructed 
such that the capacity of the vehicle and travel time restrictions are respected. The paths 
constructed using the greedy approach are further improved using 1-opt local search. The 
pseudo-code for the proposed construction and improvement heuristic is shown in  
Figure 1. 

 

 



   

 

   

   
 

   

   

 

   

   30 A. Kamthane et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Pscudocode of the greedy heuristic for phase 2 

Algorithm: Heuristic for Phase 2 

0: Given: Demand of ATM i for denomination p ipD  during time period t from Phase 1 

1: for each period t repeat Steps 2 to 7 
2:  Define Set { }N = ∅  for ATMs to be visited during period t. 

3:  for each ATM i 

4:   if 0, .ip
p
D i N> ∈  

5:  Sort the elements of N  in descending order of ip
p
D  

6:  Define {1, 2, ..., }K k=  as set of vehicles available for cash delivery. 

7:  For each vehicle k K∈  
8:   set time travelled by as Tk = 0 and cash carried as Ck = 0 
9:   Set current node of each vehicle j as depot {O}. 

10:  While { }N = ∅  

11:  do 

12:   Select ATM i N∈  with the largest value of ip
p
D  

13:   if { }:K = ∅ : 

14:    break 
15:   else 
16:    for vehicle k K∈  

17:     if Tk + tji ≤ θk and k ip p k
p

C D f Q+ ≤  

18:      Set xik = 1 

19:      Update Tk ← Tk + tji AND k k ip p
p

C C D f← +  

20:      if Tk == θk OR Ck == Qk 
21:       Remove k from K  
22:      break 
23:      else 
24:       continue with the next vehicle k from the set K  
25:   if 

26:    1ik
k
x =  remove i from N  and continue 

27:  else 
28:   break 
29: Apply local search to refine solutions 
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Commonly, the output of phase 2 is a routing plan in which all the ATMs to be visited in 
each period as determined in phase 1 are visited by the vehicles and there are no incidents 
of shortages. However, due to the limited number of vehicles, the capacity of each 
vehicle and available time during each period, there may be a possibility that some of the 
planned ATMs could not be visited in a period in-spite of the best possible routing. In 
such cases, there is a need to revisit the inventory management plan worked out in  
phase 2. If an ATM i remains unvisited in phase 2 during a time period t, then we assign 
Mi = 0 for the ATM i during period t while re-solving phase 1. As a result, the ATM i is 
made unavailable for a visit during period t and an alternate period for a visit of ATM i is 
worked out. Then, phase 2 is solved once again to generate a feasible routing plan. If 
none of the planned ATM remains unvisited in any period, then the procedure is stopped. 
Otherwise, the feedback is given to phase 1 and it is solved again. In this way, phase 1 
and phase 2 are implemented in an iterative fashion taking the output and feedback from 
one another. It is worth noting that in some of the cases, the shortages become inevitable 
due to the limited resources. In such cases, the solutions could not be improved even after 
several iterations of phases 1 and 2 and the algorithm can be terminated based on 
stopping criteria such as non-improvement in the solution, a fixed number of iterations or 
fixed solution time. The overall idea of the solution approach is depicted in Figure 2. 

Figure 2 Overview of proposed heuristic algorithm 
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5 An integrated optimisation-simulation framework 

Although the deterministic IRP-A proposed in Section 2 captures several realistic 
characteristics of the problem, the model has certain limitations and simplistic 
assumptions that are essential for the tractability. For example, the customer demand at 
all the ATMs in each time period is considered to be certain and deterministic. Further, 
for balancing the flow of cash, customer demand is considered to be a one-shot activity in 
a given period. To illustrate this point, consider an ATM facing certain demand in a 
period of length of 6 hours. Suppose the initial inventory at this ATM is just enough to 
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meet the demand equivalent to 1 hour. Now, if the ATM is replenished in the first hour, 
there will not be any shortages. On the contrary, if the ATM is replenished in the fifth 
hour, the demand between the first and fifth hour would be lost. However, this will not be 
taken into account in the present model. In the model, if the sum of the initial inventory 
and the replenishment quantity in a period exceeds demand in that period for an ATM, 
then there will not be any shortage. Thus, due to the aggregation of demand, the model 
fails to take into account the effect of individual and continuous customer demands at the 
ATMs. In addition to this, the number of currency notes withdrawal from an ATM is also 
considered at an aggregate level and the individual withdrawal patterns are ignored while 
developing in the model. There could be some scenarios where the demand of a customer 
cannot be fully satisfied due to the unavailability of certain types of notes. Under the 
presence of such uncertainty, the results of the deterministic model may not lead to the 
desired performance of the system. 

There are different ways to handle uncertainty while modelling the system, such as 
stochastic modelling or robust optimisation. However, given the complexity and size of 
the problem under consideration, it would be impossible to track all uncertain aspects 
using a robust/stochastic modelling approach. In such a scenario, simulation provides a 
convincing platform to deal with the uncertainties prevailing in the considered problem 
efficiently. Therefore, a discrete event simulation model is developed for considering 
uncertainty about the customer’s demand and withdrawal patterns at each ATM, as 
explained below. 

The simulation of customer visits and cash withdrawal for each ATM for the entire 
planning horizon can be thought of as a single server queuing system. The arrival rate of 
the customers, service time required, specific demand of the customers, the initial status 
of the currency notes and replenishment policy are the key input to this queuing model 
for simulation. The customer arrivals are assumed to occur singly and from an infinite 
population. The inter-arrival time and service time are assumed to be exponentially 
distributed. Further, the mean rate of arrival is varied depending upon the location of the 
ATM. The customer demands, in this case, are peculiar. There is a maximum limit for 
withdrawal from an ATM. Further, most of the ATMs provide an option for withdrawing 
a predefined amount of cash (e.g., 500, 1,000, 2,000, 5,000 or 10,000) popularly known 
as fast cash option) from the ATM. Customers can opt for this option or she may specify 
the withdrawal quantity of her choice. Therefore, upon the arrival of the customer, the 
desired pattern of the demand and the withdrawal quantity are decided randomly. At this 
juncture, it is also important to understand the mechanism of meeting the customer’s 
demand. Let us assume three denominations of currency notes as ₹100, 500 and 2,000 
that are prevalent in the Indian context. Any customer demand can be expressed as a 
linear combination of these currency notes. However, for a given demand, there are a 
large number of possible alternatives. For example, a demand of ₹3,000 can be met with 
30 notes of ₹100 or six notes of ₹500 or one note of ₹2,000 and two notes of ₹500 or one 
note of ₹2,000 and ten notes of ₹100 or different combinations of ₹100 and 500 notes. 
This necessitates a uniform policy for withdrawal to meet the demands during the 
simulation run. We adopt a policy to give preference to the currency notes with larger 
face values to meet the demand. This means that the maximum portion of the customer’s 
demand is met with the largest currency notes subject to availability and feasibility. In 
case the demand is unmet, the next largest currency note is selected and the maximum 
possible share of the unmet demand is met out of that. This process continues until the 
entire demand is met. Therefore, in the above-cited example, the demand of ₹3,000 is met 
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with one note of ₹2,000 and two notes of ₹500, under the assumption that these notes are 
available in the ATM. It should be noted that if the entire demand cannot be met with the 
available inventory of currency notes, then it is considered to be unmet. That is a partial 
fulfilment of demand is not allowed. 

An additional concern for the simulation model is the replenishment of the ATMs. 
The replenishment schedule (i.e., the frequency of visit and replenishment quantity) for 
all the ATMs that can be obtained by solving model IRP-A using the solution approach 
proposed in Section 3 can be incorporated into the simulation model. For the purpose, a 
set of homogenous vehicles is assumed to be available at the depot and used for the 
currency notes distribution as per the given schedule. The simulation environment gives 
an opportunity to consider uncertainties associated with the travel time and service time 
at the ATMs. Also, the replenishment quantity obtained may not be feasible in some 
cases due to the uncertainty in demand. In particular, if the estimated demand is less than 
the actual demand in a period, the remaining capacity in the ATM might not be sufficient 
enough to accommodate the indented replenishment quantity. In such cases, the 
replenishment quantity can be adjusted to the maximum allowed quantity by respecting 
the capacity constraint in the ATM. In this way, the simulation model is developed and 
run in the given problem environment. 

It should be noted that the simulation model generates useful statistics regarding the 
customer arrival, demand rate, utilisation and service level at the ATMs by capturing the 
uncertainties in the real world. It also uses the replenishment schedule generated from the 
optimisation model that works with the estimated values of parameters such as customer 
demand. Now, if both approaches are coupled together, it would lead to an effective 
decision-making tool. For the purpose, we first run the optimisation model and generate 
the best possible replenishment schedule for the ATMs. Then the simulation model is run 
for a certain number of iterations. The performance of the simulation model and the 
values of the key parameter that is average aggregate demand during each period is given 
as an input to the optimisation model. Having known better estimates of the demand, the 
optimisation model tries to produce a better replenishment schedule. Based on that, the 
simulation model is re-run. Thus, the optimisation and simulation are run in an integrated 
fashion for a predefined number of iterations or till the achievement of a satisfactory level 
of performance measures. This leads to an integrated optimisation-simulation framework, 
as shown in Figure 3. 

Figure 3 Proposed integrated optimisation-simulation approach (see online version for colours) 
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6 Computational experiment 

The purpose of our computational experiments is multi-fold, as given below. 

1 To validate the proposed mathematical model 

2 To evaluate the computational efficiency of the proposed decomposition heuristic 

3 To understand the effect of uncertainty in the selected parameters with the help of 
the simulation model 

4 To judge the efficacy of the proposed simulation-optimisation framework. 

The computational experiments are carried in two phases. In the first phase, random 
problem instances are generated to analyse the performance proposed decomposition 
heuristic approach. In the second phase, a case of a network of ATMs of a nationalised 
bank in Varanasi city in India is considered and the results of the proposed optimisation 
and simulation framework are discussed. The details of these experiments are given in the 
following sub-sections. 

6.1 Computational experiments on random test instances 

6.1.1 Dataset 
For computational experiments, we generate ten different problem instances. Each 
problem instance is characterised by the number of nodes that include a single depot 
representing the central currency chest/nodal bank and different number of ATMs. The 
smallest instance has 10 ATMs and the largest has 100 ATMs. For the remaining 
instances, the number of ATMs is increased in the steps of 10. For each problem instance, 
locations of the depot and ATMs are generated randomly on a grid of 100 by 100. The 
distance between the nodes is assumed to be Euclidian and the travel time between them 
is calculated by dividing the distance with the average speed of the vehicle. The planning 
horizon is assumed to be of one, two and three days and the length of each period in the 
planning horizon is assumed to be three hours. With the three-different lengths of 
planning horizon under consideration, the total number of problem instances becomes  
10 × 3 = 30. Then, for each ATM, the aggregate level demand is generated for each time 
period uniformly between 500 and 10,000. Further, three vehicles are assumed to 
available for cash replenishment in case of the smallest problem instance having ten 
ATMs. For each of the next instances, three more vehicles are added to the fleet. 

6.1.2 Experimental settings 
Each problem instance is first solved with the exact method using GUROBI 8.0 math 
programming solver with a python interface to get the optimal solution wherever 
possible. The decomposition-heuristic is also coded in Python and uses GUROBI 8.0 
solver for the first phase of inventory management. A time limit of 3600 seconds is 
imposed on the instances for GUROBI as well as for the heuristic. If an optimal solution 
is not obtained, the upper bound and its gap from the best known lower bound is reported. 
These computational experiments are performed on a Laptop having specification Intel 
Core i7 9th generation processor running at 2.6 GHz with 8 GB RAM, Microsoft 
Window 10 and 64-bit operating system. 
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Table 1 Summary of results of the computational experiments for 8 periods, 16 periods and  
24 periods before planning 
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6.1.3 Results of computational experiments 
Table 1 enlists the results of computational experiments for both GUROBI and the 
proposed decomposition heuristic. As stated earlier, the experiments are conducted for all 
the varieties of the length of the planning horizon and the number of ATMs that are given 
in columns 2 and 3, respectively. The results of GUROBI are summarised in columns 4 
to 6. 

For each problem instance, the best known objective function value (upper bound in 
this case) found within the imposed computational limit is reported in Column 4. The 
percentage difference between the best known upper bound and an established lower 
bound for each instance is expressed in column 5 and the solution time is recorded in 
column 6. Similarly, the best known objective function value and the solution time in 
seconds for the proposed decomposition heuristic is shown in columns 7 and 8, 
respectively. The last column of Table 1 indicates the solution gap which is a percentage 
difference between the best-known solutions between GUROBI (say fG) and the proposed 
heuristic (say fH). The gap is calculated using the following formula. 

(%) 100G H

G

f fGap
f
−= ×  

It is evident from Table 1 that GUROBI can solve a very few problem instances to 
optimality within the imposed time limit of 3600 seconds. Out of 30, it has solved only 
11 instances to optimality or near-optimality. The performance of GUROBI deteriorates 
with an increase in the number of ATMs as well as number of periods in the planning 
horizon. For several large size problems, GUROBI was not able to even produce upper or 
lower bounds. On the contrary, the proposed decomposition heuristic exhibit both 
computational efficiency and quality of the solutions produced. It has produced the same 
solution as that of GUROBI for the small sized instances. For the medium and large size 
instances, the solution gap is negative which indicates that the proposed heuristic has 
produced a better solution as compared to GUROBI. Also, the proposed heuristic is 
characterised with the very small computational time as compared to GUROBI. The CPU 
times in seconds are single or double digit for most of the problem instances with a 
maximum recorded time of 116 seconds. Although, the CPU time for the proposed 
heuristic increases with increase in the problem size, this increase is found to be 
polynomial and not exponential. Thus, based on the results of the computational 
experiments we conclude that the proposed decomposition heuristic outperforms 
GUROBI. 

6.2 An illustrative example from Varanasi City in India 

For the face validation of our model, we opt to present an example inspired by practical 
settings in the Indian context. For the purpose, we identify a network of ATMs and a 
nodal branch of a major public sector bank in India in the city of Varanasi, Uttar Pradesh. 
Specifically, 19 ATMs and a nodal branch are considered, as shown in Figure 4. 

The location of these ATMs is obtained using Google maps and the actual distance 
between them is calculated. The travel time between the ATMs is calculated considering 
the actual distance between them and the average speed of vehicles as 30 kmph. The 
length of the planning horizon is considered to be three days. Each day is further divided 
into eight time periods, each of length three hours. The rationale of such refinement is to 
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account for the variations in the demand more precisely. Therefore, a total 24 periods are 
considered in the given planning horizon with the assumption that the first period starts at 
12.00 AM on the first day. The replenishment of ATMs from 9 PM to 9 AM is restricted. 

Figure 4 Location of selected ATMs in Varanasi city (see online version for colours) 

 

The customer demand at the ATMs varies according to its location and the time period 
based on the estimates provided by the bank officials. The overall demand is varied in the 
range of ₹10,000 to ₹300,000. In each ATM, there are four cassettes out of which one 
cassette each is dedicated to currency notes of ₹2,000 and ₹500 and two cassettes are 
considered for ₹100. Each cassette can hold up to 2000 currency notes. Thus, the 
maximum capacity of an ATM is assumed to be ₹5,400,000. However, as per the 
directives from the governing bodies, an ATM is not supposed to stock more than 
₹1,200,000 at any instance. It is assumed that the initial inventory of denominations of 
₹2,000, 500 and 100 are in the range of 0–50, 50–500 and 500–1,000 notes, respectively. 

On the logistics side, five vehicles are considered to be available for distribution of 
cash and each vehicle cannot carry cash more than ₹5,000,000 in a single visit. The fixed 
cost of visiting an ATM is set as ₹2,000 and the inventory carrying charges and shortages 
costs are considered to be 0.2% of the face value of denomination per period and 0.2 per 
unit of shortage, respectively. The data set is prepared in consultation with the bank 
officials and existing norms and the suitable changes are made for the illustration 
purpose. 

The IRP-A model is for the considered example is solved using GUROBI as well as 
the proposed decomposition heuristic. GUROBI could not produce a feasible solution for 
it within the execution time of 3,600 hours. The example can be solved with the proposed 
heuristic approach within 18.94 seconds. The objective function value obtained by the 
heuristic is ₹358,015. As the demand is estimated beforehand, there are no incidence of 
shortages and hence no penalty cost is incurred. The major share in the cost component is 
the cost of visiting the ATM. It is ₹228,000, which is 63.8% of the total cost and the 
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remaining is the cost of carrying the inventory. The replenishment of ATMs takes place 
in periods 4, 6, 12, 14, 20 and 22. Periods 4, 12 and 20 refer to the time slots 9–12 AM 
while periods 6, 14 and 22 refer to the time slot of 3–6 PM of the respective days. There 
are six paths formed in each of these periods and interestingly, the paths are identical. 
One such path formed by vehicle 2 in period 4 is shown in Figure 5. 

Figure 5 Path formed by vehicle 2 in period 4 (see online version for colours) 

 

Figure 6 Inventory position of currency notes 
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It starts from the nodal bank and visits the ATMs 8-7-10-11 in this sequence. The same 
path is repeated for the remaining periods of visit as well. However, the replenishment 
quantities are different. For example, consider the ATM number 2 for illustration 
purposes. This ATM has an initial inventory of 10, 15 and 855 number of notes of 
denominations ₹2,000, 500 and 100, respectively. The inventory position of currency 
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notes at this ATM over the period is shown in Figure 6. There are some interesting 
observations regarding the pattern of replenishment and withdrawal of the currency notes. 
The denomination of ₹100 is replenished in periods 4, 12 and 20, whereas the notes of 
denominations ₹500 and 2,000 are replenished in periods 6, 14 and 22. That means the 
replenishment and the use of the denominations are complementary to each other. The 
inventory of ₹100 bills is more than the other higher valued bills. It is also observed that 
the inventory pattern for ₹100 bills are sporadic in nature. These bills are consumed to 
meet the customer’s demand in the period of replenishment and its subsequent period and 
then its inventory comes down to zero. 

As the demand during each period is assumed to be known, the replenishment 
quantities are sufficient to meet the entire demand and there are no shortages observed. 
Further, due to the aggregation of the demand, the effect of individual customer orders 
and varied withdrawal patterns could not be posturised from the results of the model. For 
the purpose, the simulation model is developed, which as explained in the following. 

As explained in Section 5, each ATM is envisioned as a single-serve and a simulation 
of the queuing model is developed for that. The inter-arrival times of the customers are 
varied according to the time slots. For the rush hours, they are considered in the range of 
[2–10] minutes, while for the odd hours, they are considered in the range of [20–40] 
minutes. The inter-arrival times are also varied depending upon the location of the 
ATMs. The service times, however, are considered to be uniformly varying across the 
ATMs and assumed to be in the range of [2–5] minutes for each customer. The demand 
of each customer is generated in the range of ₹500 to 10,000, which is the maximum limit 
of withdrawal from the ATMs. The simulation model is integrated with the optimisation 
model (the proposed decomposition heuristic in particular) to get the replenishment 
schedule of the ATMs. In each iteration, keeping the delivery schedule the same, the 
simulation is run ten times and its results are compiled. A total of five iterations of the 
simulation are carried out with different initial inventory values and the consequent 
delivery schedules. A sample result of simulation for one iteration for ATM number 2 
and day 1 is presented in Table 2. 

The results are shown only for a few customers for the brevity. The table indicates 
service start and end time for each customer along with the customer demand. The 
inventory position of the currency notes as a result of withdrawal and replenishment after 
each transaction is also presented in the table. The results of the simulation instantly 
highlight the imitation of IRP-A model in terms of fulfilment of the customer’s demand. 
The first replenishment of currency notes is realised at 615th minute. Till then, 
customer’s demand is met out of the initial inventory. As the initial inventory is 
insufficient to meet the entire customer’s demand until the first shipment, the shortages 
are inevitable. However, there are instances of shortages (e.g., customer number 130, 150 
and so on) where in spite of the sufficient quantity of cash, the customer’s demand cannot 
be satisfied completely due to the unavailability of an appropriate number of currency 
bills. Service level is the metric used to account for the number of shortages in this 
context, which is defined as the ratio of the total number of customers whose demand 
cannot be fulfilled completely to the total number of customers visiting the ATM. The 
average service level of the ATMs for the five iterations of simulations is given in  
Table 3. 
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Table 2 Sample result of simulation for one iteration for ATM number 2 and day 1 
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Table 3 Average service levels (%) for the ATMs  

ATM 
number 

Simulation iteration number Average of 
averages 1 2 3 4 5 

2 90.35 91.21 93.20 74.32 82.45 86.31 
3 71.85 92.51 93.94 89.49 39.43 77.44 
4 93.23 73.05 81.99 90.40 90.88 85.91 
5 89.59 71.78 74.61 88.56 91.75 83.26 
6 96.52 89.69 89.88 94.97 75.47 89.31 
7 92.19 83.59 44.34 94.12 90.76 81.00 
8 91.92 92.00 48.58 92.22 89.06 82.76 
9 90.15 91.35 94.39 96.36 90.54 92.56 
10 89.85 67.53 88.31 90.01 88.48 84.84 
11 87.85 89.07 90.56 78.64 91.99 87.62 
12 49.76 90.83 95.09 94.71 98.96 85.87 
13 94.92 90.41 91.25 91.84 80.64 89.81 
14 70.70 70.00 86.73 98.38 90.35 83.23 
15 88.43 90.74 91.16 87.57 93.95 90.37 
16 88.37 92.93 91.73 89.25 86.88 89.83 
17 88.78 87.07 87.85 91.82 94.18 89.94 
18 92.81 90.88 91.50 93.94 82.96 90.42 
19 80.16 89.91 97.26 94.41 99.20 92.19 
20 97.83 87.18 86.06 77.65 57.49 81.24 

The objective function value obtained for different iterations of simulation is summarised 
in Table 4. For each iteration, ten simulations runs are worked out. The objective values 
of the individuals run and the average of all ten runs is indicated in Table 4. The best 
known objective function value obtained by solving the IRP-A using the proposed 
heuristic is also given in the last row of Table 4 for the comparison. These values exhibit 
a sharp contrast. The total cost (objective function value) of maintaining the inventory 
and replenishment of the ATMs in the simulation model is approximately ten times 
higher than its deterministic counterpart. Although the inventory carrying cost and the 
cost of visiting the ATMs is the same in both the approaches, the shortage costs arising 
due to unmet demands are much higher in the simulation model. Nevertheless, the 
simulation model helped in understanding the possible real-life scenarios and is helpful in 
estimating the level of services for the ATMs. 

The output of the simulation model can further be used to improve the performance of 
the system. A ready use would be in determining the denomination mix strategies. As 
explained earlier, it is observed from the simulation mere a ‘sufficient’ amount of cash in 
the ATMs does not guaranty the 100% service level. A proper denomination mix can 
alleviate the problem. For example, consider the results of the first simulation run of 
ATM number 2. During the sixth period, the number of currency notes of ₹2,000, 500 
and 100 replenished is 405, 42 and 11, respectively. This is the net worth of ₹832,100. 
The next replenishment is due in period 12. During this period, total 145 customers visit 
the ATM. Out of this, the demand of 118 customers could not be met, which lead to a 



   

 

   

   
 

   

   

 

   

   42 A. Kamthane et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

service level of just 18.92% during this period. Moreover, 330 bills of ₹2,000 remains 
unused in the ATM. If following the approach of prioritising the higher bills for 
withdrawal is followed and the denomination mix is changing to 299 bills of ₹2,000, 230 
bills of ₹500 and 327 bills of ₹100, then 100% of service level can be achieved during 
this period. The net worth of the modified denomination mix is ₹745,700, which is lower 
than the one determined from the IRP-A. In this case, the actual demand is lower than 
anticipated and the appropriate denomination mix leads to a higher level of service. In 
general, the different demands generated during different simulation runs can be averaged 
out to determine the appropriate denomination mix. 
Table 4 Objective function values of 10 runs and 5 iterations  

Simulation run 
Simulation iteration number 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 
1 2,859,777 2,624,189 2,747,666 2,747,666 3,113,548 
2 2,940,711 2,986,912 3,087,977 3,087,977 3,264,765 
3 2,836,995 2,512,029 2,900,589 2,900,589 3,209,901 
4 2,650,387 2,754,403 3,025,289 3,025,289 2,721,548 
5 2,641,793 2,572,406 2,936,068 2,936,068 2,807,380 
6 2,488,010 2,435,433 2,978,140 2,978,140 3,161,272 
7 2,857,246 2,605,710 2,887,842 2,887,842 3,228,510 
8 2,456,970 2,467,549 3,214,740 3,214,740 3,070,556 
9 2,639,698 2,861,644 2,879,861 2,879,861 3,270,449 
10 2,620,788 2,663,479 2,773,610 2,773,610 3,008,587 
Average 26,99,238 26,48,375 29,43,178 29,43,178 30,85,652 
Optimal objective 
value of IRP-A 

3,64,229 3,73,785 3,80,607 3,74,655 3,61,603 

Figure 7 Results of continuous review order up to policy 
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Next, the outcomes of the proposed optimisation-simulation framework are compared 
with the existing continuous review order up to policy and periodic replenishments such 
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as one, two or three days replenishment policies for each ATMs. For the continuous 
review policy, the reorder point is set as ₹50,000. Thus, when the net worth of cash in the 
inventory falls below the reorder point, the replenishment process is initiated and the 
ATM is refilled to reach the maximum allowed quantity of cash that is set as ₹1,200,000. 
The logistics service provider carries out the necessary steps towards the replenishment 
of the concerned ATM. This policy becomes interesting due to the hard time windows 
available for replenishment and lead time associated. The lead time includes order 
preparation, processing, cash collection, transportation and actual replenishment of 
ATMs. In practice, this lead time is also highly uncertain that may vary from a couple of 
hours to days. Therefore, for the given reorder point and the same level of initial 
inventory and demand, we consider five different variations in the lead time as 3, 6, 9, 12 
and more than 12 hours. The results of the continuous review order up to policy are as 
shown in Figure 7. 

Figure 8 Performance of periodic replenishment policies 
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It is evident from Figure 7 that the continuous review order up to policy is effective only 
if the leads time are considerably short (scenario 1 and 2 that implies the replenishment 
of the ATMs within six hours of reaching to the reorder level). In this case, the objective 
function values are the lowest and the average service levels of all the ATMs are above 
60%. With the increase in lead times up to 12 hours, the objective function value doubles 
and the average service level deteriorates up to 50%. In the last scenario, where the lead 
times are more than 12 hours indicates the worst results with a tri-fold increase in the 
objective value and drop in the service levels up to 35%. 

The order up to policies can also be implemented with periodic replenishment, such 
as every day replenishment, once in two days and once in three days replenishment 
policies for suitability in practice. The uncertainty associated with the lead time also 
prevails in these replenishment practices. The results are depicted in Figure 8. It clearly 
indicates that everyday replenishment policy outperforms the once in two and three days 
replenishment policies in terms of lower objective function value and higher service 
levels. Service levels of this policy are almost 100% in the first four scenarios, where the 
lead time is less than 12 hours. The higher inventory carrying cost is compensated with 
the improved level of service and consequently, the reduced shortage costs. It can also be 
seen that there is no significant difference in the cost or service levels for a policy if the 
lead time is varied within 12 hours. The only practical difficulty associated with this 
policy is a strict requirement of visiting all the ATMs on the designated periods. With the 
limited number of vehicles available and the hard time windows for replenishment 
imposes hurdles for this policy and the competitive advantage could not be obtained. This 
is evident from scenario 5 for all the variations of the policy. 

When the results of the reorder point order up to policy and the periodic 
replenishment policies are compared with that of the proposed model, it can be seen that 
the result of the proposed model is quite robust. As an inventory replenishment plan for 
the entire planning horizon can be worked out beforehand, it eases the replenishment 
procedure that involves a third party. The proposed model results in a lower cost and an 
improved average service level as compared to the scenario 4 and 5 of the order up to 
policy and the periodic replenishment policies that are close to the reality. The order up to 
policy and the periodic replenishment policies are only effective with the shorter lead 
times and with the sufficient number of vehicles to visit all ATMs at the stipulated time. 

7 Conclusions and future scope of work 

This paper has presented a rich variant of IRP that is motivated from the problem of cash 
management and replenishment of ATMs in India. A mixed-integer programming model 
is presented and solved using a two-phase iterative decomposition heuristic. It is 
observed that the proposed heuristic approach outperforms the state of the art math 
programming solver GUROBI for medium and large size problem instances. To take into 
account the uncertainties associated with the customer’s arrival and demand, a single 
server queuing model is also developed for each ATM over the entire planning horizon. 
The output of the optimisation model (replenishment plans) are given as an input to the 
simulation model. The simulation model is useful in understanding the impact of 
replenishment quantity and denomination mix on the service level. It is observed that the 
denomination mix plays a crucial role in the service level as due to unavailability of 
certain denominations may lead to unfulfilment of the demands. The data gathered from 
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different simulation runs is useful in estimating the aggregate demand during a period as 
well as the appropriate denomination mix. Further, the proposed optimisation-simulation 
approach seems to be practical and it outperform the conventional continuous review-
order up to policy and the periodic replenishment policies. 

There are several possible extensions to the present work. The present work has been 
from the point of view of the public sector banks in India. A totally different perspective 
can be adopted if the problem is considered from the viewpoint of a thirds party service 
provider. 

Instead of considering only conventional ATMs, a mix of conventional and recycle 
ATMs that allows both withdrawal and deposits can be considered. The problem would 
be considerably complex due to the different denomination mix and pick-up and 
deliveries in this hybrid system. The present work suggest the optimal policy for the 
existing system that is the use of third party service provider for cash logistics. It would 
be interesting to see the results if the bank owns the vehicles or carries out the cash 
handling part on its own. Other practical considerations such as non-repetitive routes for 
the safety considerations and the use of real time geospatial data would enrich the present 
work. On the modelling side, use of a scenario based robust optimisation approach and 
consideration of value at risk or conditional value of risk would be another avenues to 
extend the present work. Further, to boost the cashless transactions, banks are trying to 
reduce the number of ATMs. On the other hand, use of ATMs in the country is 
continuously increasing. This scenario demands a study on network design and inventory 
policies. We plan to take these issues as a future work. 
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