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Abstract: Accurate cell counting in biomedical images is a fundamental yet challenging task for
disease diagnosis. The early manual cell counting methods are mainly based on detection and
regression, which are time-consuming and prone to errors. Benefiting from the advent of deep
learning, convolutional neural network (CNN)-based cell counting has become the mainstream
method. Despite the outstanding performance of CNN-based cell counting methods, the complex
tissue background in medical images still hinders the accuracy of cell counting. In this paper, to
solve the problem of complex tissue background and improve the performance of cell counting,
an attentive recognition network (ARNet) is built. Specifically, the ARNet is composed of
five convolution blocks and a channel attention (CA) module. The convolution blocks are
employed to extract the basic features, and the CA module is introduced to suppress the complex
background by recalibrating the weight of each channel to pay more attention to cells. Subjective
and objective experiments on synthetic bacterial cells (SBC) dataset and modified bone marrow
(MBM) dataset prove that the proposed ARNet outperforms the mainstream methods in accuracy
and stability.
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1 Introduction

The amount of cells could assist in the diagnosis of
blood diseases (Venkatalakshmi and Thilagavathi, 2013),
determining tumour types (Coates et al., 2015), and learning
cellular and molecular genetic mechanisms (Solnica-Krezel,
2005). Therefore, automatic cell counting is vital in
microscopy medical images analysis, and it has drawn
extensive attention in the domain of computer vision.

The early cell counting methods are mainly based on
detection and regression. The detection-based methods aim
to discover the centroid position of cells for counting
(Liu and Yang, 2015). These methods require a high
accuracy of centroid labelling, and perform unsatisfactory
in medical images with occlusions (Wan et al., 2022).
The regression-based methods (Marsden et al., 2018;
Xue et al., 2016) tend to learn a mapping from the
input image to cell count. These methods are proven
to outperform the detection-based methods in complex
scenes. Nevertheless, the regression-based methods only
output the cell counts, while cannot label the cell position
information, which is also very valuable for medical image
analysis (He et al., 2021). Due to the powerful feature
extraction and inferring ability of convolutional neural
networks (CNNs) in computer vision (Xing et al., 2022),
the density map-based counting has become mainstream
(Ciampi et al., 2022; He et al., 2020). Meanwhile, the
attention mechanism further promoted the development of
CNNs (Zhai et al., 2022a; Li et al., 2020; Zhang et al.,
2021). The attention-based counting methods minimises
the influence of irrelevant information by re-adjusting
parameters in different dimensions (Guo et al., 2021).

Although the aforementioned methods enhance the
performance of cell counting to some extent, the complex
tissue background in medical microscopic images still
hinder the further improvement of the counting accuracy.
To mitigate the adverse effects of the complex tissue
background, we propose the attentive recognition network
(ARNet). It consists of five convolution blocks for
extracting the low-level features. The first four blocks are
employed to extract the basic features, and the last block
adopts dilated convolution layers to enlarge the receptive
field. Followed that, a channel attention (CA) module is
introduced to suppress the background clutter. Specifically,

the CA module consists of three process, i.e., global average
pooling (GAP) for extruding 2D image to 1D sequence,
one dimension convolution operation to adjust the channel
weights and a sigmoid activate function to output the
optimised weights. In a nutshell, the contributions of this
paper are as follows.

1 An ARNet is proposed to enhance the counting
performance in cell images with complex tissue
background.

2 A CA module is introduced to adjust the weight along
the channel dimension, which aims to reduce the
background weight and increase the foreground
weight.

3 Extensive experiments are conducted to demonstrate
the performance of ARNet. Meanwhile, ablation study
is performed to prove the effectiveness of the
individual components in the proposed model.

The remainder of this paper is structured as follows.Related
work is reviewed in Section 2. Proposed method is
introduced in detail in Section 3. Details of the experiment
and conclusion of this paper are provided in Sections 4 and
5, respectively.

2 Related work

In this section we describe two traditional cell counting
methods, i.e., detection-based and regression-based method,
and the mainstream methods, i.e., density estimation-based
method.

Traditional methods deal with the cell counting by the
means of detection (Arteta et al., 2016; Ellouze et al., 2022)
and regression (Marsden et al., 2018; Gao et al., 2021).
The counting by detection methods employs a detector to
locate the cells and then sums up the cells as a count. Arteta
et al. (2016) proposed a tree-structured discrete graphical
model to detect all the cells in microscopy images. The
detection-based methods are difficult to deal with occlusion
and shape variations. The regression-based methods have
been proposed to enhance the counting performance, which
learn a mapping from the medical image to a count. For
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example, Lempitsky and Zisserman (2010) built a general
learning-based model for object counting tasks, i.e., crowd
counting and cell counting.

Recently, the development of CNN has further enhanced
the accuracy of cell counting. Cohen et al. (2017) built
a redundant counting method to predict the density
map, which is helpful to address the complicated object
counting task. Falk et al. (2018) employed the U-Net to
simultaneously complete the task of cell counting, detection
and morphometric. Xie et al. (2018a) developed two parallel
fully convolution regression networks, namely FCRN-A and
FCRN-B to improve efficiency in an end-to-end manner.
He et al. (2021) built an auxiliary CNN model to boost
the main regression model. Furthermore, the attention
mechanism (Guo et al., 2021, 2022b) has been adopted to
the deep learning to improve network performance. Guo
et al. (2019) incorporated a self-attention module to U-Net
to enhance cell detection accuracy in microscopic images.
Jiang and Yu (2020) built a weighted channel module to
tackle the occlusions in cell counting.

3 The proposed method

Given a medical microscopic image X ∈ RH×W×3, a
density map Y ∈ RH×W×1 can be regressed by the CNN.
The number of cells is obtained by integrating the pixels on
the density map. The process can be represented by,

N =

∫
Y =

∫
F (X; θ), (1)

where the F (X; θ) denotes a function of density regression,
in which θ represents the parameters to be learned by the
network.

3.1 Network design

The architecture of the proposed ARNet is depicted in
Figure 1. It consists of five convolution blocks for
extracting basic features and a CA module to cope with
the tissue background. Specifically, the first three blocks
are composed of convolution layers with dilated rate of
1 and max pooling layers to extract the cell features
with small size, while the fourth block only consists of
convolution layers without max pooling layer to suppress
the detrimental effects on output accuracy caused by the
pooling operation. The convolution layers with dilated rate
of 2 in the final block are employed to enlarge the receptive
field to ensure that the network can capture cells with
large scale. To address the problem of complex background
in medical image, the CA module is built. Lastly, a
convolution layer with kernel size of 1 × 1 is employed to
reduce the channels to 1 and output the density map. In a
nutshell, the proposed ARNet is formulated as,

M = Conv1×1(fca(Blocki(X))), i ∈ {1, 2, 3, 4, 5} , (2)

where the fca denotes a function of CA. Blocki represents
the operation of the five convolution blocks.

3.2 CA module

The purpose of CA is to select the targets (cells in this
paper) by recalibrating the weight of each channel (Guo
et al., 2021; Zhao et al., 2022; Hu et al., 2022) adaptively.
As shown in Figure 1, the CA module contains three
operations, i.e., GAP, one-dimensional convolution layer
and an activation function.

The GAP operation reduces the input 2D image to a
1D array for subsequent parameter adjustments. The fast
1D convolution operation is performed to produce the
channel weights. The size of the convolution kernel is an
adjustable parameter, which affects the final channel weight
generation (note: more details are referred in the ablation
study). The sigmoid activation function is adopted to output
the optimised weights. Last, element-wise multiplication is
performed between the weights and the initial input features
to generate the refined feature map. The map can suppress
the side effects of background clutter and emphasise the
areas where cells exist. Briefly, the CA module can be
formulated as (Wang et al., 2020),

P = M ⊗ Sig(Conv1d(GAP(M))), (3)

where P represents the refined feature map, and M
is the extracted basic feature map. Conv1d denotes a
fast 1-dimension convolutional operation. Sig denotes the
Sigmoid function.

3.3 Loss function

The MSE function is adopted as the loss function to
optimise the network. It can minimise the Euclidean
distance between the ground truth and the prediction. The
function is formulated as,

Loss =
1

N
∥y − ŷ∥22 , (4)

where N denotes the number of test images. y and ŷ denote
the estimated and the ground truth values, respectively.

3.4 Ground truth generation

The ground truth map Mgt is generated by adopting a
Gaussian kernel Gσi convolving a delta function (Zhang
et al., 2016; Zhai et al., 2022c).

Mgt =
H∑
i=1

δ(x− xi) ∗Gσi(x), σi = βd̄i, (5)

where H denotes the number of cell annotations and x
refers to the position pixel. σi represents the variance of the
kernel. β is a hyperparameter which is set to 0.3. δ(x− xi)
depicts a target cell.
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Figure 1 Architecture of the proposed ARNet for cell counting (see online version for colours)
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Figure 2 Examples of SBC and MBM datasets (see online version for colours)

Note: The left two images are from SBC dataset, while the right two images are selected from MBM dataset.

4 Experiment and analysis

4.1 Datasets

4.1.1 Synthetic bacterial cells

The synthetic bacterial cells (SBC) dataset was established
by Visual Geometry Group (VGG) (Lempitsky and
Zisserman, 2010). It includes 200 fluorescent microscopy
images with resolution of 256 × 256. Because the dataset
is synthetic, the cells almost have the same size, but they
cluster together and are heavily obscured. Annotations are
automatically executed during the data construction process,
which makes the labels error-free. Samples of SBC dataset
are present in Figure 2.

4.1.2 Modified bone marrow cells

The modified bone marrow (MBM) cell counting dataset
contains 44 RGB microscopy images (600 × 600), which
are collected from Kainz et al. (2015). Specifically, the
images are obtained from 11 Hematoxylin-Eosin images

(1,200 × 1,200) of bone marrow tissue. Each image is
cut into four images with the same size. The labelled cells
have large-scale variation and non-uniform background,
which make the counting task more troublesome. Figure 2
provides some examples of the MBM dataset. More details
of the two cell datasets are reported in Table 1.

Table 1 Details of the SBC and MBM datasets

Dataset SBC MBM
Resolution 256 × 256 600 × 600
Train/validation/test 50/50/100 15/15/14
Number of cell 174 ± 64 126 ± 33
Image type Synthetic Real

4.2 Implementation details

All experiments are performed based on the PyTorch
framework and are implemented on two NVIDIA 3080
GPUs. For data augmentation, we adopt random cropping,
horizontal and vertical flipped. To avoid the overfitting, we



Cell counting via attentive recognition network 5

set several dropout layers in the end of the network. At
the training stage, Adam optimiser (Kingma and Ba, 2015)
with a learning rate of 1e-5 is employed to optimise the
network. The weight decay is set as 1e-3. The batch size
is set as 8 for SBC dataset, and 4 for MBM dataset. The
maximum number of training epochs is set as 1,000. During
the test phase, 100 and 14 images are randomly selected as
the samples for generating experimental results.

4.3 Evaluation metrics

The mean absolute error (MAE) and its related standard
deviations (STD) are adopted as the evaluation metrics
(Huan et al., 2020; Guo et al., 2022a; Zhai et al., 2022b)
which are formulated as,

MAE =
1

S

S∑
i=1

|Cgti − Cesti | , (6)

STD =

√√√√ 1

S − 1

S∑
i=1

(|Cgti − Cesti | −MAE)
2
, (7)

where S represents the number of test samples. Cgti and
Cesti denote the ground truth and estimated cell counts of
the i-th images, respectively. The lower MAE and STD
value indicate that the model has better counting accuracy
and counting stability.

4.4 Comparative analysis

We compare and analyse the proposed ARNet with other
cell counting methods. The objective comparison results are
depicted in Table 2.

Table 2 Objective comparison results on SBC and MBM datasets

Methods SBC MBM
MAE STD MAE STD

U-Net (Falk et al., 2018) 27.8 25.5 48.0 19.0
ResNet-152 (Xue et al., 2016) 7.5 2.2 - -
StructRegNet (Xie et al., 2018b) 9.8 8.7 12.8 8.6
Mask R-CNN (He et al., 2020) 36.9 19.7 44.4 14.2
Marsden et al. (2018) method - - 20.5 3.5
FCRN-A (Xie et al., 2018a) 2.9 0.2 21.3 9.4
FCRN (Saxe et al., 2014) 2.8 2.5 8.5 7.6
ARNet (ours) 2.7 2.2 5.0 3.2

Notes: Italic indicates the best performance.
On the SBC dataset, one can see that the ARNet ranks
first with a score of 2.7 in MAE, and it achieves 6.8%
gains compared with the second-best method, i.e., FCRN-A
(Xie et al., 2018a). Meanwhile, the ARNet achieves a
competitive score of 2.2 in STD which ranks the second
place. Specifically, compared with ResNet-152 (Xue et al.,
2016) which also score 2.2 in STD, the proposed method
improve the MAE score by 64%. Figure 3 provides some
visualised results on SBC dataset.

On the MBM dataset, the proposed ARNet scores 5.0
and 3.2 in MAE and STD, which outperform all the

reported methods. Compared with FCRN (Saxe et al.,
2014), it improves by 41.1% and 57.9%, respectively.
Furthermore, the (Marsden et al., 2018) method also adopts
the GAP operation to compress the image to generate new
weights. However, there is still a big gap compared with the
proposed method in MAE (75.6%). Figure 4 shows some
visualised results on MBM dataset.

4.5 Ablation study

Ablation studies are carried out on MBM dataset to
explore the benefits of the CA module. The experimental
configuration items are as follows.

• ‘Baseline’ represents only five convolution blocks are
employed as the basic network.

• ‘Baseline + CA (k = n)’ means adding the CA
module to the baseline, and the kernel size of the 1D
convolution is set to n.

The ablation experimental results with four configurations
are tabulated in Table 3. The item ‘baseline‘ scores 9.6 and
7.6 in MAE and STD, respectively. It obtains the worst
performance compared with other items. One can observe
that the CA module is beneficial to boosting the counting
accuracy and stability. Specifically, the score of item 2 (k
= 3) is better than the item 3 (k = 5) in MAE, while the
opposite is true for STD. By contrast, the item 4 (k = 1)
achieves the best performance in both MAE and STD. The
reason is that the size of cells in medical images is generally
small, and thus a large convolution kernel would lead to the
loss of detail.

Table 3 Comparative results with different configurations on
MBM dataset

Methods MAE STD
Baseline 9.6 7.6
Baseline + CA (k = 3) 6.6 5.1
Baseline + CA (k = 5) 5.8 5.9
Baseline + CA (k = 1) 5.0 3.2

Note: Italic indicates the best performance.

5 Conclusions

In this paper, we propose an ARNet to suppress the
complex tissue background problem so as to improve
the performance of cell counting in biomedical images.
The ARNet consists of five basic convolution blocks to
extract low-level features, and a CA module to deal with
the complex tissue background. The CA module aims to
re-adjust the weight along the channel dimension through
GAP, 1D convolution and activation function. The feature
map refined by the CA module can minimise the weights
of background and improve the weight of foreground.
Experimental results prove that the ARNet outperforms the
mainstream methods in cell images with complex tissue
background clutter.
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Figure 3 Subjective comparison results on SBC datasets (see online version for colours)

Gt: 86.0 Gt: 115.0

Est: 83.4 Est: 114.0

Gt: 168.0 Gt: 195.0

Est: 195.0Est: 166.2

Note: ‘Gt’ and ‘Est’ denote the ground truth and estimated counts.

Figure 4 Subjective comparison results on MBM datasets (see online version for colours)

Gt: 163.0 Gt: 111.0

Est: 161.8 Est: 112.9

Gt: 157.0 Gt: 105.0

Est: 158.8 Est: 104.1

Note: ‘Gt’ and ‘Est’ denote the ground truth and estimated counts.
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