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Abstract: The past decade has seen tremendous interest in mixed criticality
systems research due to its exponential growth with inherent challenges
of effective resource utilisation and isolation. The pervasiveness of these
systems along with their certification needs, prompt for suitable task models
to perform the required analysis. Extensive usage scenarios and strict
certification requirements have spawned a broad spectrum of research and
evolved into several task models. In this work, a thematic survey of
task models for both uni-core and multi-core mixed criticality systems is
carried out. The work categorises task models based on attributes such
as resources, quality of service, operating system overheads, energy, fault
tolerance and parallel processing. After synthesising the state-of-the-art, the
work summarises task models by providing a visual aid and a ready reckoner
with traceability to mixed criticality challenges. This work serves as a
quintessential reference manual for researchers and academicians in the mixed
criticality domain.
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1 Introduction

The induction of mixed criticality systems (MCS) to industry is dawdling due to
deep-rooted certifiability issues, which in turn triggers inefficient usage of resources
and under utilisation of computing power. In MCS, a common platform is assigned to
functionalities with different degrees of significance. Industry wide initiatives such as
Automotive Open System Architecture (AUTOSAR) and Integrated Modular Avionics
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(IMA) focus on the co-existence of MCS (Guo and Baruah, 2016). The introduction of
multi-core systems aid in increasing performance and lowering energy consumption. It
also promises isolation and fault tolerance of safety critical and mission critical systems.
However, the phenomenal increase in MCS and their certification/implementation needs,
comes with its own challenges. Design of new technologies, tools and models are
required to meet the domain needs of modern MCS, which has to take care of size,
weight, power and certification of these complex systems. The mixed criticality task
models should accommodate complex scheduling schemes, effective usage of resources
and system mode changes along with certification needs of safety critical systems.

The Burns and Davis (2017) survey provides an elaborate description of MCS
that includes uniprocessor/multi-processor scheduling, shared resources, task allocation,
realistic models, formal treatments, system issues, industrial practices and related topics.
However, this paper delves into details on the current state-of-the-art task models for
uni-core and multi-core MCS with emphasis on attributes such as resources, quality
of service (QoS), operating system (OS) overheads, energy, fault tolerance and parallel
processing. It provides a detailed survey of the existing task models and serves as a
quintessential reference manual for the research and industry fraternity in the mixed
criticality domain.

This work is ordered along the following lines: Section 2 provides an overview of
MCS and includes MCS challenges. Section 3 analyses mixed criticality models for
uni-core systems. Section 4 extends to include multi-core systems. Section 5 provides an
unified view of the various task models surveyed in this work, and Section 6 concludes
the work with future directions.

2 Mixed criticality systems

Real-time systems (RTS) are time-constrained systems having jobs with deadlines to
meet (Liu and Layland, 1973). They can be classified as hard, weakly hard, soft, firm
or hybrid systems based on requirements and timeliness guarantees. In RTS, a job is
an active entity and a set of related jobs form a task. Tasks can be periodic, aperiodic
or sporadic in nature. A periodic task is defined by four-tuple with elements {ϕ, T , D,
C}, denoted by phase, period, relative deadline and worst case execution time (WCET).
Instead of period, a minimum inter arrival time between adjacent jobs of a task is used
in sporadic tasks. Aperiodic jobs are usually soft deadline or no deadline jobs with
arbitrary arrival times.

There exist RTS with varying significance among tasks. Significance or criticality
is not the same as priority. Priority refers to precedence or ordering among tasks/jobs
whereas criticality refers to importance among tasks/jobs. Burns and Davis (2013a)
defined criticality as “the designation of the level of assurance against failure needed
for a system component.” For example, in avionics, the flight cockpit system is more
critical than an in-flight entertainment system. MCS execute tasks of various criticality
levels on a single computing platform. These tasks are characterised as safety, mission
and non-critical according to the criticality impact on the system. The basic task model
of MCS is the same as RTS with addition of criticality as a parameter. A task τ in
MCS is usually defined by five-tuple with elements {ϕ, T , D, L,

−→
C } denoted by phase,

period, relative deadline, criticality level and WCET. The WCET is a vector whose size
is defined by the number of criticality levels. A task’s computational requirements are
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mapped to the differing behaviour of criticalities. This is achieved either by increasing
the WCET or by decreasing the period of the task with increase in criticality levels.
The variations in computation times or/and periodicity of tasks trigger the concept of
mode change in MCS (Burns, 2014). A system begins at a defined criticality level and
stays in the same level until all the jobs meet their current mode retention criteria, else
a criticality mode change occurs. In low criticality (LC) mode, the completion of jobs
take place by their low WCET. If any job executes beyond the WCET profiled for
LC mode, the system changes mode and executes in high mode (Baruah, 2009, 2014;
Baruah et al., 2010a,b,c, 2015a; Burns and Baruah, 2011; De Niz et al., 2009; Guan
et al., 2011; Li and Baruah, 2010a,b). In dual criticality systems, the consequence of
mode change is the suspension or delayed execution of LC jobs. For any criticality
level, if a job executes beyond the WCET of that level, all the jobs of that level and
lower are suspended or executed in degraded mode and the system changes its mode to
high for execution. The WCET parameter of task is a vector that contributes to mode
change due to the execution time. A mode change can also be triggered by change in
task periodicity (Baruah and Chattopadhyay, 2013). Here, the frequency of job arrivals
gives rise to mode change. The period parameter of task is a vector that contributes to
mode change due to frequency of job arrivals.

Mode change triggers either delayed execution/suspension of LC jobs (Burns, 2013),
retaining LC jobs based on importance (Fleming and Burns, 2014) or replacing HC jobs
that triggered mode change with a new set of high importance jobs (Bletsas et al., 2018).
The practical aspects of criticality mode switching like QoS improvement, industry
relevant modes like no-fail/fail-safe/fail recovery and mode-specific schedulability
analysis mechanisms require specific adaptations to task models.

2.1 Challenges in MCS

MCS have their own unique set of challenges to resolve. Some of the most vital ones
are listed below. These challenges can be categorised as MCS principles/framework,
industrial requirements and implementation details. These challenges are mapped to
features like resources, QoS, OS overheads, energy, fault tolerance, virtualisation and
parallel processing.

2.1.1 MCS framework

This section details the challenges with respect to criticality definition, mode switching,
WCET estimation guidelines and practical representations.

C1 Criticality definition (Esper et al., 2015) – In academic publications, criticality
refers to the modes of execution. Switching between these modes denotes the
increase or decrease in system criticality level. In industry, system criticality
refers to the level of assurance DAL/ASIL/SIL applied in software development
related to safety functions. Academic and industrial definitions of criticality
require convergence to have uniformity in task modelling, scheduling and design
and development of applications.
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C2 Mode switching – Mixed criticality introduces multiple modes of operations
based on dropping or delaying of LC jobs (Burns, 2013). The modes such as
no-fail/fail-safe/fail-recovery and the switching between these modes require
complex measurement and validation mechanisms.

C3 Critically-based WCET estimation – Theoretical model of MCS recommends
multiple values of WCETs – one per criticality level. The general notion is to
have larger WCET at higher criticality levels. But having an implementation
with varying degree of execution time at different confidence levels is not
practical. With existing WCET estimation techniques, the value of WCET for a
given criticality level cannot be known with complete certainty (Burns and
Davis, 2013a). The probabilistic approach of timing measurement is not matured
enough to deploy it into practical use. Moreover, in multi-core MCS, WCET
becomes a function of heterogeneous tasks, heterogeneous cores, shared
resources and task-to-core mapping.

C4 Practical representations – System designers require efficient practical notations
and design languages to represent industrial applications. In MCS, modes of
operations, mode relapse, resource reclaim, multiple deadline values and
many-core/multi-core deployment trigger additional complexities for system
representation. Graph-based notations are one of best suited tools for design.
Hence, there is need to incorporate graph-based task models in MCS. Another
research area is the probabilistic task models for timing estimation to incorporate
complex and stochastic system scenarios.

2.1.2 Industrial requirements

This section presents industry driven challenges on certifications, QoS, energy efficiency
and fault tolerance. The introduction of multi-core systems also gives rise to additional
challenges.

C5 Certification requirements – MCS are exposed to certification mandates due to
their safety critical needs. Certification related scheduling problems raise many
interesting challenges like – pessimistic WCET, resource over-reservation,
computing power under-utilisation, low QoS, etc. These challenges are not
addressed by conventional mixed criticality schedulers. To meet certification
needs, a certification authority makes conservative assumptions regarding the
WCET of safety critical tasks (Baruah et al., 2010a,b, 2011a). This results in
over allocation of resources to these tasks and a possible impact on QoS, as
lower mission critical tasks may not get sufficient resources or computing power.
In multi-core MCS, this results in under utilisation of cores and may increase
the power per productive work factor. Also, in MCS, deadline misses of high
criticality (HC) tasks are highly undesirable. A clear-cut definition that
determines the relationship between deadline miss and criticality failure ceases
to exist (Guan et al., 2017).

C6 QoS – In MCS, QoS improvement depends on the maximum possible
completions of LC jobs. QoS improvement mechanisms include dropping or
delaying of LC jobs, retaining LC jobs based on importance (Fleming and
Burns, 2014) and replacing existing HC jobs with a new set of high importance
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jobs (Bletsas et al., 2018) during mode change. To have an enhanced QoS, it is
required to analyse industry relevant usage scenarios, customer needs and system
configuration scalability. Extensive usage scenarios and complex features trigger
the need for QoS coherent task models, subject to system configuration
capability.

C7 Energy efficiency – MCS have inherent challenges of size weight and power
(SWAP). The introduction of multi-core systems presented novel ideas on energy
saving by using procrastination and core level shutdown and other dynamic
energy optimisation techniques. Energy optimisation techniques like
dynamic-voltage-and-frequency-scaling (DVFS) and dynamic-power-management
(DPM) are applied to improve energy performance in RTS. There is a need of
mixed criticality energy models to perform energy aware schedulability analysis.

C8 Fault tolerance – The acceptable failure rate of a system varies based on the
type of application/usage scenarios. To handle each of these usage scenarios,
varying failure in time (FIT) measurements are required. This triggers the need
for different mechanisms to improve the correctness of the system. For example,
Axer et al. (2011) provided reliability analysis for task allocation in a system on
chip (SoC) where only higher criticality tasks were duplicated for fault tolerant
functioning. Safety analyses such as failure mode effects and criticality analysis,
fault tree analysis, critical path analysis and freedom from interference analysis
(Pintard et al., 2015) create additional challenges.

C9 Multi-core systems – Multi-core MCS were introduced by Anderson et al. (2009)
and Mollison et al. (2010) for providing temporal isolation of mixed criticality
jobs. In MCS industry, there is tremendous push to integrate multi-core systems
due to their huge computing needs. This triggers the induction of fully/semi/no
partitioning of tasks and multi-core mixed criticality scheduling with task
migration capabilities. Beyond migration and load balancing capabilities, there
are challenges with respect to task allocation/partitioning, resource allocation and
management, time synchronisation, task-to-core mapping, computing/resource
utilisation and job scheduling. Designing efficient algorithms, task models and
simulation studies to suit multi-core MCS is an important research direction.

2.1.3 Implementation details

This section provides an overview on the implementation challenges in-terms of resource
handling, OS overheads and parallel processing.

C10 Resources – Pellizzoni et al. (2010) measured the effect of resource
interference in a eight-core system and observed that a task shows 300%
increase in its execution time. Achieving predictive timing is one of the
fascinating research areas in MCS and it includes proper allocation of shared
resources and effective resource synchronisation. Though there is no scarcity of
research (Lakshmanan et al., 2011; Zhao et al., 2014, 2015; Burns and Davis,
2013b; Zhao et al., 2018; Giannopoulou et al., 2013; Li and Wang, 2016;
Hassan and Patel, 2016; Nair et al., 2019) in this domain, more specific and in
depth research is still required to cope with changing MCS usage scenarios.
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C11 OS overheads – A proper timing model considering OS overheads like context
switching, page fault, queue waiting, etc. is mandatory for appropriate MCS
schedulability analysis. There is a requirement for an accurate WCET
measurement. Static WCET analysis techniques have inherent challenges
(Abella et al., 2015; Hassan, 2017) such as lack of trustworthiness of timing
models, incomplete documentation of register transfer level and fragility of
program flow facts. Analysing hierarchical scheduling either with or without
flattening has known limitations of over-provisioning. Hence, there is need for
elaborate task models that consider OS overheads with normal and virtualised
scenarios.

C12 Parallel processing – Increase in computational power requirements because of
the growing software complexities lead to parallel processing systems in MCS.
This brings the challenge of having task models related to parallel processing
to perform schedulability analysis of parallel systems.

There are many task models and techniques in literature based on the need and type
of analysis to overcome many of the listed challenges. The state-of-the-art indicates
that challenges on industrial requirements and implementation are partially addressed
by certain task models. It is also indicated that strengthening of research is required
to overcome challenges especially related to MCS frameworks and principles. Burns
postulated in Dagstuhl report (Baruah et al., 2015b) the need of an MCS framework
with formal languages, models, techniques, protocols and analysis to allow trade-off for
effective utilisation and isolation. These frameworks should depend on usage scenarios
and application domains.

After analysing these challenges, it is decided to categorise task models based
on specific attributes. Although diversity in task models is required, the research
fraternity and industrial designers require a ready reckoner of apt task models that
consider parameters in terms of attributes like resources, mode change, QoS, OS
overheads, energy, fault tolerance and parallel processing. There is also need to
deliberate on industry proven task representation schemes like parametric, graph-based
and probabilistic task models. This survey is an attempt to provide the same.

2.2 Outline notes

The notations with uniform nomenclature are summarised in Table 1. Task models in
Tables 2 to 3 are coded as UTx and MTx. Uni-core task models are coded with UTx
and multi-core task models are coded with MTx, where x denotes a positive integer.
The arrow over a parameter indicates that it is a vector. The number of elements in the
vector is two for a dual criticality system indicating its value in low and high modes. The
elements in the vector will have values in each mode of operation in a multi-criticality
system. Sections 3 and 4 provide a thematic study on uni-core and multi-core mixed
criticality task models with emphasis on attributes like resources, QoS, OS overheads,
energy, fault tolerance virtualisation and parallel processing. Each subsections also detail
the inadequacies and requirements with respect to each task model.
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Table 1 Notation

Symbol used in this
work Interpretation Symbols used in other

works

Basic parameters

i Task/job index i, j
τ Task τ

J Job J

T /
−→
T Period T , T [L], Π, π, p, P ,

pmax, W
ϕ Job release time/phase r, R, O, A
D/

−→
D Relative deadline D, D[L], d

D Absolute deadline D

L Criticality level L, χ, ζ, l, κ, Crit, β, Z
C/

−→
C WCET

−→
C , Cl, C[L], e−→ϵ , E, cL,

Cl, Cu, −→c
−→
C deg WCET in degraded mode Cdeg−→
C L WCET in low mode

−→
C L,

−→
C (L)

−→
CH WCET in high mode

−→
CH ,

−→
C (H)

−→¢ Computation time C, Ce

Resource parameters

b/
−→
b Intra-core blocking time B[L], B, b

P /
−→
P Fixed priority P , p, −→η , γ, pr

p Active priority p

l Active criticality l

σ Set of semaphores (vector) σ

λ Preemption level (vector) λ, yu
Worst case stack space usage ϕ

−→
J Release time jitter J

∧min Minimum number of memory accesses µmin

∧max Maximum number of memory accesses µmax, ∧
execL Lower bound on computation time execL

execU Upper bound on computation time execU

CM Worst case number of cache misses CM

Θ Message size NA
−→
M Worst case memory access time M , Cm

−→
I Worst case latency due to task interference I
−−→
M1 Worst case number of L1 cache misses M1
−−→
M2 Worst case number of shared LLC misses M2
−→
B Inter-core blocking time B
−→ϖ Number of frequently used pages by a task

in LLC
σL

Q/
−→
Q Number of memory accesses QL/H

−→
C WCCT C[M ]
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Table 1 Notation (continued)

Symbol used in this
work Interpretation Symbols used in other

works

Context switching parameters

Ccs Context switching time (scalar/vector)
−→
C cs, CC , CS

A Address space A

Energy parameters

E/
−→
E Energy/power consumption E, Pow,

−→
E

−→
f Processor frequency level fL

ρ Voltage and frequency scaling factor ρ

α Success ratio constraint α

Fault tolerance parameters

f Failure probability f

B WCET of backups B
−→n Number of executions of a task n[L]

R Reliability constraint R

d Dropping factor d

Od Fault detection overhead Od

Or Roll-back overhead Or

Ov Voting overhead Ov

u Relative task utility u

m Replication requirement m

r Distribution requirement r

Probabilistic task parameters
−→
fe Execution time probability mass function fe

Ψ Execution demand random variable ζ

Ω Execution scenarios (vector) Ω

M Set of events (vector) M
P Probability measure of Ω (vector) P

Graph-based parameters

β Block in a synchronous program B

G Graph/DAG G, g, Dep

V Vertices in a graph (vector) V , V
ϵ Edges in a graph (vector) E, E
ϵcf Directed edge that defines task control flow Ecf

ϵms Directed edge that defines mode switch Ems

µ Mode of the job µ

ς Function of allowed interference between
tasks

σ

TFE Timing failure event TFE
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Table 1 Notation (continued)

Symbol used in this
work Interpretation Symbols used in other

works

QoS parameters

xL Non-uniform deadline scaling factor at
criticality level L

xl

PER Early release points (vector) PER

I Importance I , λ, V , S
C Component C
W Tasks assigned to a component (vector) W
TL Tolerance limit TL

TM Task mode M , B, Ω
S Stretching factor S, E
V /

−→
V QoS Values V , qos

αu (∆) Upper limit on task activations over a time
interval ∆

αu (∆)

δ (q) Minimum time interval of q + 1 activations δi (q)

Virtualisation parameters

Rmin Minimum resource requirements ϕmin

Rmax Maximum resource requirements ϕmax

Q Quality Q

F Set of functions enter, main, leave
S Subset of task/virtual machine profiles NA

Parallel task parameters

≈ Number of threads m!/
−→! Number of cores m

−−−→
work Work for parallel tasks workO/N , C
−−→span Span for parallel tasks spanO/N , L

3 Uni-core MCS task models

Vestal’s (2007) model is the basis of many significant works published in mixed
criticality research. He used a periodic task model with four criticality levels. A task
in Vestal’s model is characterised by four-tuple with elements: period (T ), deadline
(D), criticality (L) and WCET vector (

−→
C ), where the WCETs are non-decreasing with

increase in criticality. Vestal’s seminal work influenced the evolution of many task
models in the mixed criticality domain. This section provides a thematic survey on
uni-core mixed criticality task models with emphasis on resources, mode change, energy,
fault tolerance and OS overheads.
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Table 2 Task models for uni-core MCS

Code Task τi Usage scenario Ref

UT1 (Ti; Di; Li;−→
C i)

−→
C i is vector that has minimum of
two levels and can extend to N

levels

Baruah et al. (2010b, 2010a,
2010c, 2011b, 2011a), Baruah and
Burns (2011), Burns and Baruah
(2011), Dorin et al. (2010),

Ekberg and Yi (2014), Gettings
et al. (2015), Guan et al. (2011),
Li and Baruah (2010a, 2010b),

Santy et al. (2012), Vestal (2007),
Chwa et al. (2018), Gu and
Easwaran (2017), Guo et al.

(2018), Gupta et al. (2018), Kahil
et al. (2018), Mahdiani and
Masrur (2018), Agrawal et al.
(2019) and Baruah and Burns

(2020)
UT2 (Ti;

−→
D i; Li;−→
C i)

Virtual deadline is estimated and is
used for improving schedulability
of HC jobs in MCS.

−→
D i is a

vector with virtual and actual
deadlines

Baruah et al. (2015a)

UT3 (
−→
T i; Di; Li;

Ci)
Criticality is proportional to

frequency. Mode change results in
increase in frequency.

−→
T i is a

vector with two to N elements

Baruah and Chattopadhyay (2013)

UT4 τi = (Ti; Di;
Li;

−→
C i;

−→
b i)

Incorporates criticality specific
blocking times for resource
synchronisation and deadlock

avoidance

Burns (2013)

UT5 τi = (Ti; Di;
Li;

−→
C i)

Considers WCET under
non-overloaded (C) and overloaded
(Co) conditions. C and Co are
equivalent to low and high values

of WCET in a dual MCS.
Incorporates resource

synchronisation by extending zero
slack scheduler

Lakshmanan et al. (2011)

UT6 τi = (Ti; Di;
Li;

−→
C i; Pi, pi,
li, σi)

Provides resource synchronisation
with nominal/active priority,
nominal/active criticality and

semaphores

Zhao et al. (2014)

UT7 τi = (Ti;
−→
D i;

Li;
−→
C i;

−→
λ i)

Provides resource synchronisation
with low and high values of

preemption thresholds

Zhao et al. (2015)

UT8 τi = (Ti; Di;
Li;

−→
C i; Pi; λi;u

i
)

Improves schedulability by using
preemption thresholds and reducing

stack space

Zhao et al. (2018)
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Table 2 Task models for uni-core MCS (continued)

Code Task τi Usage scenario Ref

UT9 τi = (
−→
T i; Di;

Li;
−→
C i; bi;−→
J i)

Message passing by considering
blocking times and jitters

Burns and Davis (2013b)

UT10 τi = (
−→
T i; Li;−→

C i;
−→
P i)

A vector-based model to improve
QoS and safeguard scheduling of

LC jobs

Su et al. (2016) and Boudjadar
et al. (2019)

UT11 τi = (
−→
T i; Li,−→

C i; PER
i )

An elastic task model with variable
periods to improve QoS of LC jobs

Su and Zhu (2013)

UT12 τi = (Ti; Di;
Li;

−→
C i; xLi

i )
Non-uniform deadline scaling to

improve QoS
Chen et al. (2018)

UT13 τi = (
−→
T i;

−→
D i;

Li;
−→
C i)

Minimises service degradation for
LC jobs by using adaptive task

profile

Huang et al. (2014c)

UT14 τi = (Ti; Li;−→
C i; TMi)

Adaptive task-based mode change
to improve schedulability of LC

jobs

Lee et al. (2017) and Sundar and
Easwaran (2019)

UT15 τi = (Ti; Di;
Li;

−→
C i; Pi; Ii)

Job dropping based on predefined
importance factor applied to LC

jobs

Fleming and Burns (2014)

UT16 τi = (Ti; Di;
Li;

−→
C i; Ii)

Job dropping based on importance
factor applied to all jobs

Bletsas et al. (2018)

UT17 τi = (Ti; Di;
Li;

−→
C i), C =

(W , TL)

Job dropping based on predefined
tolerance limit

Gu et al. (2015)

UT18 τi = (
−→
T i, Di;

Li;
−→
C i;

−→
P i)

Adaptive task profile to improve
QoS of LC jobs

Burns and Baruah (2013)

UT19 τi = (
−→
T i; Li;−→

C i;
−→
P i;

−→
C cs1

i ;−→
C cs2

i )

Minimises latency of
event-triggered tasks, while
ensuring schedulability of

time-triggered tasks. The model
incorporates virtualised systems

and the impact of context
switching

Evripidou (2016)

UT20 τi = (Ti; Di;
Li;

−→
C i; Ccs1

i ,
Ccs2

i ; Ai)

Considers context switching
overhead between tasks of the
same criticality that share the

address space (Ccs1
i ) and those of

different criticalities that do not
(Ccs2

i )

Davis et al. (2018)

UT21 τi = (Ti; Li;−→
C i;

−→
E i)

Incorporates energy consumption
vector to improve schedulability

Völp et al. (2014)

UT22 τi = (Ti; Di;
Li;

−→
C i;

−→
f i)

Includes processor frequency
vector to reduce energy
consumption and improve

schedulability

Huang et al. (2014a)



Task models for mixed criticality systems 299

Table 2 Task models for uni-core MCS (continued)

Code Task τi Usage scenario Ref

UT23 τi = (Ti; Li;−→
C i; Ei; αi)

Probabilistic framework for
addressing the uncertainty in power

management

Asyaban et al. (2016)

UT24 τi = (Ti; Di;
Li;

−→
C i; fi)

A probabilistic framework to avoid
over-provisioning of resources and
improve schedulability of the

system

Guo et al. (2015) and Huang
et al. (2014b)

UT25 τi = (Ti; Di;
Li;

−→
C L

i ;
−→
CH

i )
where

−→
C L

i =
<Ci,p, Bi,1, ...,
Bi,f> and

−→
CH

i

= <Ĉi,p, B̂i,1,
..., B̂i,f , ...,

B̂i,F>

Incorporates back up tasks to
achieve fault tolerance and
guaranteed schedulability

Pathan (2014)

UT26 τi = (Ti; Di;
Li;

−→
C i; Pi)

Fail operational or fail robust,
redundancy system using priority

Burns et al. (2018) and
Abdeddäım (2020)

UT27 βi = (Ti;
−→
C i) Represents synchronous reactive

execution of tasks
Baruah (2014)

UT28 τi = (V (τ );
ϵcf (τ ); ϵms(τ )),
V (τ ) = (C(v);
D(v); µ(v))

Represents dependencies such a
job arrival, mode switching and

control flow

Ekberg et al. (2013)

UT29 G(V ; ϵ; ς), V
= (Ti; Di; Li;−→

C i)

Represents interference among
tasks

Huang et al. (2013)

UT30 Ji = (ϕi; Li;
Di;

−→
fei)

Uses probability mass function Alahmad et al. (2011)

UT31 Ji = (Di; Li;−→
C i; Ψi(Ωi,
Mi, Pi))

Performs risk analysis Alahmad and Gopalakrishnan
(2018)

3.1 Basic task model

The works in Baruah et al. (2010c, 2010b, 2010a), Dorin et al. (2010), Li and Baruah
(2010a, 2010b), Baruah et al. (2011a), Baruah and Burns (2011), Burns and Baruah
(2011), Guan et al. (2011), Santy et al. (2012), Ekberg and Yi (2014), Baruah et al.
(2015a), Gu and Easwaran (2017), Kahil et al. (2018), Mahdiani and Masrur (2018),
Agrawal et al. (2019) and Baruah and Burns (2020) use the same task model as Vestal.
Although Vestal’s (2007) model considered multiple levels of criticalities, most of the
works that followed Baruah and Chattopadhyay (2013), Baruah et al. (2010a, 2010b,
2011a, 2010c), Burns and Baruah (2011), De Niz et al. (2009), Ekberg and Yi (2014),
Guan et al. (2011), Li and Baruah (2010a, 2010b), Agrawal et al. (2019) and Baruah
and Burns (2020) considered only two criticality levels. This dual criticality task model
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was used to explore the schedulability and complexity of mixed criticality workloads
consisting of periodic and sporadic tasks.

Table 2 presents the basic task models (UT1, UT2 and UT3) and their usage
scenarios. Using UT1, scheduling schemes like own criticality-based priority (OCBP)
(Baruah et al., 2010a), extended OCBP (Li and Baruah, 2010a), priority list reuse
scheduling (PLRS) (Guan et al., 2011), partitioned criticality (PC), static mixed
criticality (SMC), adaptive mixed criticality (AMC) (Baruah et al., 2011a) and AMC
with criticality aware assignment of priorities (CAAP) (Burns and Baruah, 2011) were
implemented along with their schedulability analyses. Li and Baruah (2010b) performed
load-based schedulability analysis and Dorin et al. (2010) furnished sensitivity analysis
using UT1.

Baruah et al. (2015a) (UT2) proposed EDF with virtual deadlines (EDF-VD) and
evaluated its performance with the help of the processor speedup metric. The analysis
was extended upto thirteen criticality levels. In this task model, deadline is interpreted
as a vector having two values – virtual and actual deadlines. Gu and Easwaran (2017)
proposed a demand bound-based schedulability test for EDF-VD and presented a new
method to calculate virtual deadlines. The work in Agrawal et al. (2019) presented the
superiority of semi-clairvoyant scheduling over mixed criticality scheduling in terms of
speed up factor (1.5 v/s 1.618). Baruah et al. extended EDF-VD and fluid algorithms to
incorporate robustness and resilience in Baruah and Burns (2020).

Baruah and Chattopadhyay (2013) proposed a variant of the basic task model (UT3)
for MCS where instead of varying computation times, period of the task is varied
with criticality. In this model, period of the task decreases with increase in criticality.
Schedulability analysis shows that UT3 is more suitable for AMC than PC and SMC.

Most of these works (Baruah et al., 2011a; Dorin et al., 2010; Ekberg and Yi, 2014;
Gettings et al., 2015; Santy et al., 2012; Chwa et al., 2018; Gu and Easwaran, 2017;
Guo et al., 2018; Mahdiani and Masrur, 2018; Baruah and Chattopadhyay, 2013) are
evaluated using synthetic task sets, though Vestal (2007) in his seminal work used task
sets from the avionic industry.

Though the basic task model serves as a stepping stone to carry out research and
analysis, it lacks consideration of practical factors. The factors like resources, I/O, fault
tolerance, energy consumption, context switching and OS related overheads need to be
considered for obtaining a real world timing scenario from design phase to deployment
phase. Also, there is a need to map the criticality aspect of task model to the industry
standard. There exist works that extended the basic models with factors like overload
execution time (De Niz et al., 2009), blocking time (Burns, 2013), failure probability
(Guo et al., 2015), power (Asyaban et al., 2016), context switching time (Evripidou,
2016), etc. The next subsections survey extensions to the basic task model.

3.2 Resource related task models

The impact on resource sharing among critical tasks is one of the fascinating
research problems (Lakshmanan et al., 2011; Zhao et al., 2014). Modelling of MCS
requires careful selection of task parameters related to shared resource usage, resource
synchronisation and communication.

Table 2 presents resource-based task models (UT4–UT9) with their usage scenarios.
Burns (2013) (UT4) proposed priority ceiling protocol (PCP) for dual MCS where
only tasks of the same criticality could access shared resources. The work extended
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the basic task model to accommodate blocking times (b) and WCET is computed by
considering the resource access time. Resource synchronisation techniques like priority
and criticality inheritance protocol (PCIP) and priority and criticality ceiling protocol
(PCCP) (Lakshmanan et al., 2011), highest-locker criticality priority ceiling protocol
(HLCPCP) (Zhao et al., 2014) and mixed-criticality stack resource policy (Zhao et al.,
2015) are proposed in literature. Lakshmanan et al. (2011) (UT5) considered the issues
of criticality and priority inversion due to shared resources in dual MCS. In this model,
the low and high values of WCET are labelled as WCET under non-overloaded and
WCET under overloaded conditions respectively. Blocking time experienced by a job
due to a low priority job under non-overload condition and LC jobs under overloaded
condition is computed. Zhao et al. (2014) (UT6) considers additional parameters like
active/nominal priority, active criticality and semaphores. The nominal values of priority
(P ) and criticality (L) are assigned initially at design time while the active values (p
and l) are assigned dynamically according to PCP and highest-locker criticality (HLC)
protocol. These nominal/active values are used to dispatch or drop jobs during execution.
Zhao et al. (2015, 2018) combined preemption threshold scheduling and MCS for
optimising stack usage. Zhao et al. (2015) (UT7) considered the additional parameter
of preemption levels in high and low mode. These values are inversely proportional to
their relative deadlines. The preemption levels are used to ensure that a task does not
block more than once in each mode of execution. In UT8 (Zhao et al., 2018), the basic
task model is augmented with priority, preemption threshold and worst case stack space
usage as parameters. Preemption thresholds and priority are used to control the number
of preemptions per job and the worst case stack space usage per task. The work aimed
at enhancing schedulability and reducing stack space usage.

Message passing is used extensively for data transfer in MCS. Burns and Davis
(2013b) (UT9) characterised the task model for message passing with additional
parameters of blocking time and jitter. The work also states that a message passing task
model can be represented with vectors for period, jitter and WCET. A mixed criticality
protocol for message passing over controller area network (CAN) is presented and a
schedulability analysis is derived. Brandenburg (2014) also proposed a mixed criticality
IPC (MC-IPC) scheme with shared resources stationed on resource servers. The works
in Lakshmanan et al. (2011), Zhao et al. (2014, 2015), Burns and Davis (2013b) and
Zhao et al. (2018) are evaluated using synthetic task sets.

Certification requirements in MCS compel resource over-provisioning for complete
isolation. But, for efficient utilisation of resources, a tighter upper bound on WCET
including blocking due to resources need to be estimated. The impact of resource types
like memory/displays/pipes/signals, synchronisation resources like sequence numbers/
mutex/database locks/monitors and communication protocols need to be considered for
achieving a realistic upper bound. Task models that contemplate on these resources and
communication aspects need to be consolidated.

3.3 QoS related task models

Burns (2014) surveyed various mode switching models and outlined different aspects of
mode switching. This section surveys mechanisms for improving QoS along with their
task models.

The acceptance of more LC jobs improve the QoS of the system. Guo et al. (2018)
used EDF-VD and improved the schedulability of LC jobs by limiting the number of
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HC jobs that could exceed their low WCET values. The limiting factor was based on
offline computations. Santy et al. (2012) presented latest completion time to improve the
QoS. They achieved 24% to 32% reduction in LC task suspensions. Instead of dropping
LC jobs during a mode change, Baruah and Burns (2011) proposed to reduce their
priorities, thus ensuring schedulability of HC jobs. The work in Gettings et al. (2015)
introduced a method that allowed graceful degradation of the system during a mode
change. They proposed AMC-weakly hard to guarantee HC job completions by skipping
limited number of successive LC jobs. The task models for the above QoS mechanisms
use UT1.

Tables 2 (UT4, UT10–UT19, UT23, UT26, UT29, UT31) presents task models
related to improving QoS. Burns (2013) (UT4) allowed LC jobs to continue execution in
best effort as long as the HC jobs did not miss their deadlines. Su et al. (2016) (UT10)
proposed a mode switched fixed priority scheduler to provide guaranteed service for
LC jobs. Here, scheduling of jobs is carried out using fixed priority, where priorities
are calculated by employing nonlinear optimisation and branch and bound search tree
techniques. In this work, LC jobs are not suspended but continue to perform in high
mode. To facilitate this, the task model is modified to have low and high values of
periods and priorities in both modes. The values of periods vary in low and high modes
only for LC tasks. When mode change occurs, the LC tasks execute using their high
value of periods. The low and high values of priorities of LC jobs are used to improve
schedulability of HC jobs.

Another method based on elastic task model was proposed by Su and Zhu (2013)
(UT11). The work also assigns low and high values of periods to LC jobs. If mode
change takes place, LC jobs are executed to use their low WCET and high value of
period. A set of early release points (PER) are also associated with LC jobs to ensure
their early release in order to utilise the slack of HC jobs and ensure the schedulability of
more number of LC jobs. This work proposed early-release EDF (ER-EDF) and showed
it performs better than EDF-VD with respect to accommodation of more LC jobs.

Chen et al. (2018) (UT12) extended EDF-VD with non-uniform deadlines in each
mode thus allowing fine grained transitions and improving QoS for LC jobs. Huang
et al. (2014c) (UT13) extended EDF-VD to guarantee service to LC jobs whenever HC
jobs executed beyond their low WCETs. A minimum service degradation factor for LC
jobs and a deadline tuning factor for HC jobs is computed such that schedulability is
guaranteed in all modes. Lee et al. (2017) (UT14) also extended EDF-VD and presented
a mode change mechanism at the task level rather than system level. In this work, HC
tasks are augmented with a task mode (TM) parameter that defines the criticality mode
at each level. An adaptive online mechanism is presented to minimally drop LC jobs
based on their decreasing order of utilisations. More recently, Boudjadar et al. (2019)
proposed a dynamic online mode change mechanism at both the task level and system
level. The work uses the same task model as UT10 with the addition of TM parameter
updating dynamically based on the current task execution time. To improve QoS for
LC jobs, a context-aware flexible degradation task model is proposed in Sundar and
Easwaran (2019) where

−→
C represents low WCET, high WCET and n – 1 degraded

execution times for a system with n tasks. The TM parameter is used used to define
three modes, namely normal, safe and degraded. The work uses UT14. Fleming and
Burns (2014) (UT15) added an importance parameter to all except the highest criticality
jobs. This importance information is used to drop jobs during a mode change. The
jobs are dropped according to their increasing order of importance. Audsley’s priority
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assignment mechanism was modified to allocate low priority to lower importance tasks.
A similar model was proposed by Bletsas et al. (2018) (UT16). Here, the importance
parameter is added to all jobs and job dropping is based on importance not criticality.
Gu et al. (2015) (UT17) used a tolerance parameter to decide whether to drop LC
jobs or not. Here, tasks are divided into components (C) and each component has a
defined tolerance threshold (TL). Two types of mode switches are defined – internal
and external. In an internal mode switch, if a HC job within a component exceeds
its low WCET, all the LC jobs within that component are dropped. All jobs in other
components are not affected. But, if the number of HC jobs overrunning the low WCET
exceed TL, then all the LC jobs in other components are also dropped. Burns and
Baruah (2013) (UT18) presented three mechanisms that allowed non-interfering LC jobs
to continue execution during a mode change. The first method aimed at reducing the
priorities of LC jobs, the second focused on reducing the computation time and the third
considered increasing the job periods. The work also defines the circumstances under
which a system can return to LC mode. Evripidou (2016) (UT19) considered a three
criticality level system and recommended two degraded modes. When a job executes
beyond the low WCET, the system enters the first degraded mode where no jobs are
dropped. An entry to the next degraded mode results in LC jobs being dropped. Asyaban
et al. (2016) (UT23) put forth a scheduling mechanism for a battery less system that
restarted all pending LC jobs when it switched from high to low mode to improve QoS.
A fault mode mechanism was presented by Abdeddäım (2020) (UT26) where the task
model adopted a priority parameter to decide on the number and type of LC jobs to
be suspended. Huang et al. (2013) (UT29) presented an interference constraint graph
(ICG) mechanism and declared that it may not be necessary to drop all LC jobs, as not
all these jobs interfere with HC jobs. The interference edges from the graph were used
for improving schedulability of LC jobs. Alahmad and Gopalakrishnan (2018) (UT31)
examined the probability of a job’s deadline miss and accommodated LC jobs based on
this probabilistic measure.

Most of these works (Guo et al., 2018; Santy et al., 2012; Gettings et al., 2015; Su
and Zhu, 2013; Chen et al., 2018; Lee et al., 2017; Fleming and Burns, 2014; Gu et al.,
2015; Asyaban et al., 2016; Huang et al., 2013; Alahmad and Gopalakrishnan, 2018)
are evaluated using synthetic task sets, however Huang et al. (2014c), Evripidou (2016),
Sundar and Easwaran (2019) and Boudjadar et al. (2019) used practical task sets from
the avionic industry and automotive industry respectively.

It is observed that most works exist on mode change from low to high, whereas
returning back to low mode – mode relapse, also needs attention. There are conditions
under which the system can return back to low mode, the most common being when the
system is idle (Burns and Baruah, 2013; Baruah et al., 2015a). Future auto-correcting
MCS mandates mode relapse in a staged manner to have seamless connect and
(re)functioning of the system.

3.4 OS overheads related task models

Often, OS overheads are ignored during schedulability analysis. These overheads can
have substantial impact on the overall schedulability of tasks. Table 2 (UT19, UT20)
provides task models related to OS overheads. The work by Evripidou (2016) (UT19)
considered three criticality levels and added parameters of context switching vectors
and a priority vector to their task model.

−→
C cs1

i and
−→
C cs2

i account for context switching
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overheads before and after execution of the task in each mode of operation. The
work aims at scheduling event-driven tasks with minimum latency while ensuring the
overall schedulability of the system. They use virtualisation with periodic and deferrable
servers to schedule time-triggered and event-triggered tasks respectively. Davis et al.
(2018) (UT20) considered the impact of spatial isolation on WCET estimation. They
use parameters

−→
C cs1

i and
−→
C cs2

i for context switching between processes/tasks having
distinct criticalities and switching between threads within the same process/tasks of
the same criticality respectively. The work proposes a heuristic approach for allocating
priorities with an aim to decrease large context switching costs. Davis et al. (2018) used
synthetic task sets to evaluate their work while Evripidou (2016) used practical task sets
from the automotive industry.

A realistic timing model in MCS is estimated using WCET, recovery time and OS
overheads. OS overheads such as queuing time, sleep timer, interrupt/task suppression
time, interrupt latency, blocking, page fault, etc. need to be considered. These factors
will provide a practical upper bound on WCET suitable for industrial applications.

3.5 Energy related task models

In MCS, high computing volume with increasing energy demands elicit the need for
efficient energy optimisation techniques. This necessitates amendments in task modelling
related to energy parameters. Table 2 (UT21–UT23) provides task models that consider
energy related parameters. Völp et al. (2014) (UT21) proposed an energy constrained
task model. The work focused on the importance of dynamic energy consideration in
MCS and showed an improvement in schedulability by 17%. The basic task model is
enhanced with an dynamic energy consumption vector (

−→
E ). Huang et al. (2014a) (UT22)

considered energy consumption and its impact on MCS. The objective was to reduce
dynamic power by decreasing processor frequency. To facilitate this, the task model is
extended with a processor frequency parameter (

−→
f ) in high and low modes of execution.

The work combines DVFS and EDF-VD. Asyaban et al. (2016) (UT23) put forward
a scheduling mechanism for a battery less dual criticality uni-core system. Besides the
basic parameters, the task model considers two additional parameters – one for power
consumption (E) and the other for success ratio constraint (α). Power consumption
denotes the power consumed by a task independent of the mode. The success ratio
constraint conveys the probability with which the system must guarantee enough energy
for a job of a task to complete execution. Though the traditional MCS model focuses
on adhering to timeliness guarantees, the MCS model with energy constraints focus on
schedulability of LC and HC jobs by considering their success ratio constraints. The
works (Asyaban et al., 2016; Völp et al., 2014) were evaluated using synthetic task sets
and Huang et al. (2014a) was evaluated using both synthetic and practical task sets from
the avionic domain.

Energy efficiency and deadline honoring are conflicting requirements. The usage
of procrastination and energy optimisation techniques in practical applications without
hampering certification is an emerging domain of MCS research and requires an
elaborate framework with apt task parameters.
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3.6 Fault tolerance related task models

There is a distinct relationship between fault tolerance and MCS. By providing
spatial/temporal/fault isolation in MCS, a high degree of fault tolerance can be achieved.
Table 2 (UT24–UT26) presents task models with fault tolerance. Guo et al. (2015)
(UT24) considered a sporadic dual criticality task model where a HC task is augmented
with parameter f – the failure probability where 1 – f indicates the probability of
a mode change in an hour. The work assumes C[High] to be deterministic but the
combination of (C[Low], f ) to be probabilistic for HC tasks. The work proposed
EDF with clustering and they claimed through experimental evaluation a schedulability
improvement of 21% over traditional MCS with UT1 and EDF-VD. Guo et al. (2021)
extended Guo et al. (2015) with a system failure probability threshold and presented a
schedulability analysis for both uni-core and multi-core systems. Huang et al. (2014b)
(UT24) extended the task model with a failure probability parameter for all tasks. The
work defines failure probability as the likeliness that a job may not complete by its
deadline. A criticality-based re-execution profile using failure probability is computed
so as to ensure safety and schedulability guarantees.

A distinct model for fault tolerant scheduling in MCS was presented by Pathan
(2014) (UT25). The work proposes backup tasks to compensate for faults in primary
tasks. The low/high WCET values of the task are expanded as WCET of the primary
task and WCET of the backups. The cumulative values of primary and all the backups
account for the total WCET in each mode. A fault tolerant scheduling algorithm was
designed to guarantee schedulability of the system by considering backup tasks in case
of fault in the primary task. To make the system more robust, Burns et al. (2018) (UT26)
proposed a robust MCS. Robustness is attained by performing fail-operational and
fail-robust analysis. The task model is augmented with priority and a robust/non-robust
boolean parameter. Audsley’s algorithm is used to assign unique priorities and AMC
is used for scheduling. A task was termed robust if its job could be abandoned. A
nominal/verification friendly fault tolerant approach was presented by Schmidt and
Garćıa-Ortiz (2022). UT1 was used as the task model and an enhanced EDF-VD with
non-uniform deadlines was proposed to handle errors and QoS. The works (Guo et al.,
2015; Pathan, 2014; Burns et al., 2018; Guo et al., 2021) are evaluated using synthetic
task sets and Huang et al. (2014b) is evaluated using both synthetic and practical task
sets from the avionic domain.

Schedulability analysis with task parameters for temporal/spatial/fault isolation and
the FIT requirements are mandated in industrial applications. An overall framework with
these additional parameters needs to be consolidated.

3.7 Graph-based task models

Graph-based task models articulate dependencies and constraints in a system. There
exist MCS task models where tasks are represented using graphs. Table 2 (UT27–UT29)
presents graph-based task models. In Baruah (2014) (UT27), resource-efficient
synchronous execution of tasks is shown using a dependency graph, where each vertex
represents a block and each edge represents inter-block dependency. A block (β) is
a fundamental unit of a synchronous program and is characterised by period, low
WCET and high WCET. Ekberg et al. (2013) (UT28) presented a directed acyclic
graph (DAG)-based model to support complex job arrivals, mode switching and
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synchronisation patterns. A task in DAG is defined by vertices and directed edges. Edges
are further categorised as mode switching edges (ϵms) and control-flow edges (ϵcf ).
Edges are labelled with period and vertices are defined with WCET, relative deadline
and mode of the job. Huang et al. (2013) (UT29) put forth an ICG mechanism to capture
the interference among tasks. ICG is a directed graph where vertices specify tasks and
an edge exists form task τi to task τj if and only if τi interferes with τj . A parameter ς is
used to define the allowable interference between tasks. A task is defined by parameters
of UT1. The interference information from the graph is used to improve schedulability
of the system. The work was evaluated using synthetic task sets.

Graph-based models provide clarity for designing systems and are most suitable for
practical implementations. MCS research needs to evolve towards constructing realistic
graph models that suit industrial MCS applications.

3.8 Probabilistic task models

The task models discussed so far are deterministic in nature and make pessimistic
assumptions regarding the WCET of the system. Table 2 (UT24, UT30, UT31) presents
probabilistic task models. To reduce the gap between the actual and pessimistic
execution time, Guo et al. (2015) (UT24) considered a sporadic dual criticality task
model for uni-core systems. LC jobs were scheduled using failure probability parameter
of HC jobs to improve their schedulability. Alahmad et al. (2011) (UT30) presented
a probabilistic model and provided a probability analysis for mixed criticality uni-core
systems. The work identified deficiencies with regards to pessimistic timing behaviour
of the deterministic model and proposed a probabilistic model to solve them. In
a probabilistic task model, a job is defined by four-tuple with elements: release
time, criticality, deadline and execution time probability mass function (fe) at each
criticality level. A similar model that considered a probabilistic execution time matrix
was proposed by Bhuiyan et al. (2020) for energy optimisation. The work reported
energy savings of upto 46%. Subsequently, Alahmad and Gopalakrishnan (2018) (UT31)
devised an online scheduling mechanisms and proposed a probabilistic task model
framework. In this work, the job is extended with parameters of execution scenarios
(Ωi), events (Mi), probability measure (Pi) on Ωi and demand random variable (ζi).
These parameters were added for providing probabilistic schedulability guarantees. The
works (Alahmad and Gopalakrishnan, 2018; Guo et al., 2015; Bhuiyan et al., 2020)
were evaluated using synthetic task sets.

4 Multi-core MCS models

Over the last few decades, massive computing and certification requirements motivated
the need for multi-core architectures in MCS. Multi-core systems are classified
as homogeneous and heterogeneous architectures based on types of cores in use
(Davis and Burns, 2011). The important factors for consideration in multi-core
MCS are task assignment/task-to-core mapping, scheduling and migration. Efficient
task allocation/task assignment/task-to-core mapping mechanisms consider utilisation,
isolation, migration, energy efficiency and fault tolerance features.
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Table 3 Task models for multi-core MCS

Code Task τi Usage scenario Ref

MT1 τi = (Ti; Di; Li;−→
C i)

−→
C is a vector that has a
minimum of two levels
and can extend to N

levels

Li and Baruah (2012), Baruah
et al. (2014), Pathan (2012), Lee

et al. (2014), Baruah et al.
(2015c), Gratia et al. (2014),

Ramanathan and Easwaran (2015),
Ren and Phan (2015), Xu and

Burns (2015), Behera and Bhaduri
(2018), Huang et al. (2018), Xu
and Burns (2019), Lee et al.

(2017), Ramanathan et al. (2018),
Nagalakshmi and Gomathi (2018),
Han et al. (2017), Kim et al.
(2018), Baek and Lee (2020)

MT2 Superblock =
(∧min

i,j ; ∧max
i,j ;

execLi,j ; execUi,j)

Includes shared memory
and cache profiles

Pellizzoni et al. (2010)

MT3 τi = (Ti; Di; Li;−→
C i; CMi)

Includes throttling to
prevent memory
interference

Yun et al. (2012)

MT4 τi = (Ti; Li;
−→
C i;−→

C i,deg; Dep)
Incorporates dependency

to offer temporal
isolation

Giannopoulou et al. (2013) and
Trüb et al. (2017)

MT5 τi = (Ti; Di; Li;−→
C i;

−→¢ i;
−→
M i)

Includes shared memory
with memory access
profile of computation
phase and execution

phase

Li and Wang (2016), Awan et al.
(2018a) and Li and He (2017)

MT6 τi = (Ti; Di; Li;−→
C i;

−→¢ i;
−→
I i;

∧max
i )

Controls interference
because of shared bus
with hardware-based
hierarchical arbiter

Hassan and Patel (2016)

MT7 τi = (ϕi; Ti; Di;
Li;

−→
C i;

−−→
M1i;−−→

M2i;
−→
b i;

−→
B i)

Controls interference
because of shared bus
with hardware-based

arbiter

Nair et al. (2019)

MT8 τi = (Ti; Di; Li;−→
C i; −→ϖ i

Includes page locking
and reassignment of
pages during mode

change

Awan et al. (2017)

MT9 τi = (Ti; Di; Li;−→
C i;

−→
Q i)

Regulates core-wise
access using dynamic
memory access budgets

Awan et al. (2018b)

MT10 MessageF lowi=
(ϕi; Ti; Li;

−→
C i)

Message passing on NoC Dridi et al. (2019)

MT11 τi critical = (Ti;
Di; Ci),

τi non−critical =
(Ti; Di; Ci; Ii;

Si)

Elastic model to improve
schedulability of
non-critical tasks

Jan et al. (2013)
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Table 3 Task models for multi-core MCS (continued)

Code Task τi Usage scenario Ref

MT12 τi LO = (
−→
T i; Li;−→

C i PER
i ), τi HI

= (Ti; Li;
−→
C i)

Elastic model to provide
minimum guarantee
service for LC tasks

Su et al. (2013)

MT13 τi = (Ti; Di; Li;−→
C i)

Improves QoS with the
help of zero slack

scheduler

De Niz and Phan (2014)

MT14 τi = (
−→
T i; Li;−→
C i)

Incorporates multiple
execution times and

periods to facilitate job
migration during mode

change

Al-Bayati et al. (2015)

MT15 τi = (Ti; Li;
−→
C i;−→

V i)
Incorporates QoS values
for each LC tasks to

improve their
schedulability

Pathan (2017)

MT16 τi = (αu(∆) or
δi(q);

−→
C i; Li)

Employs slack to
improve QoS

Hu et al. (2018)

MT17 τi = (Ti; Di;
−→
C i) Hierarchical scheduling

approach with five
containers for five

criticality levels on each
core

Anderson et al. (2009), Herman
et al. (2012) and Chisholm et al.

(2016)

MT18 Profileτi =
(Rmin; Rmax; Q; F;

S),
V irtual Machine
Profile = (L;

Rmin; Rmax; Q; F;
S)

Hierarchical scheduling
with dynamic resource

management

Groesbrink et al. (2013)

MT19 τi = (Ti; Di; Li;−→
C L

i ;
−→
CH

i ;
−→
E i)

Incorporates parameters
for heterogeneity and
energy factors for task

allocation

Awan et al. (2015, 2016a, 2016b)

MT20 τi = (
−→
T i; Li;−→

C i; PER
i ; ρi)

Incorporates voltage and
frequency scaling factor

to provide energy
management

Taherin et al. (2018)

MT21 τi = (Ti; Di; Li;−→
C i; mi; ri)

MCS model with fault
tolerance

Thekkilakattil et al. (2014)

MT22 τi = (Ti; Di; Li;−→
C i; Pi; −→n i)

Incorporates multi-modes
to provide fault tolerance

and QoS

Caplan et al. (2017)

MT23 G = (VG; ϵG; TG;
DG; LG; RG; IG;

dG; VG) τi =
(
−→
C i; mapi; Pi;

Od
i ; Or

i ; Ov
i ; G)

DAG model with fault
tolerance and QoS

Choi et al. (2018)
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Table 3 Task models for multi-core MCS (continued)

Code Task τi Usage scenario Ref
MT24 τi = (Ti; Di; Li;−→

C i; ui)
Criticality and utility
aware adaptation to

provide fault tolerance
and QoS

Iacovelli et al. (2018)

MT25 Gi = (Vi; ϵi), τj
∈ Vi, τj = (

−→
C j),

ϵj = (Θj) and
(TGi ; DGi ; LGi )

∈ Gi

DAG for cost aware
partitioning

Tamas-Selicean and Pop (2011)

MT26 G = (V ; ϵ) Jj ∈
V , Jj = (

−→
C j) and

(DG) ∈ G

Represents synchronous
reactive execution of

tasks

Baruah (2013)

MT27 Gi = (Vi; ϵi) τj
∈ Vi, τj = (Lj ;−→
C j ; TFEj)

DAG for increasing LC
task availability

Medina et al. (2018)

MT28 Ji = (ϕi; Di; Li;
(J1

i , J2
i , ..., JSi

i )),
Jk
i = (

−→
C k

i ; ≈k
i )

Accommodates parallel
jobs with varying
execution times

Liu et al. (2014)

MT29 τi = (Ti; Di; Li;−→
C i; !i)

Accommodates parallel
tasks with varying
execution times

Bhuiyan et al. (2019)

MT30 τi = (Di;
−−−→
worki;−−→spani)

Execution times are
represented as work and
span in overloaded and
non-overload conditions

Agrawal and Baruah (2018)

MT31 τi = (Ti; Di; Li;−−−→
worki; −−→spani)

Parallel tasks with
slack-based QoS

Pathan (2018)

MT32 τi = (Di; Li;−−−→
worki; −−→spani;−→!i; Si)

Parallel tasks with
elasticity to improve

QoS

Gill et al. (2018)

The following subsections review multi-core MCS by considering various task models
with emphasis on resources and communications, mode change, virtualisation, energy,
fault tolerance and parallel processing.

4.1 Basic task model

The basic task model (MT1) for multi-core MCS is the same as uni-core MCS. The task
model is defined by four-tuple elements namely, period (T ), deadline (D), criticality
(L) and WCET vector (

−→
C ). Table 3 presents MT1 for multi-core MCS with its usage

scenario. Some of the works that use MT1 are (Li and Baruah, 2012; Baruah et al., 2014;
Pathan, 2012; Lee et al., 2014; Baruah et al., 2015c; Gratia et al., 2014; Ramanathan
and Easwaran, 2015; Ren and Phan, 2015; Xu and Burns, 2015; Behera and Bhaduri,
2018; Huang et al., 2018; Xu and Burns, 2019; Lee et al., 2017; Ramanathan et al.,
2018; Nagalakshmi and Gomathi, 2018; Baek and Lee, 2020). Li and Baruah (2012)
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proposed global EDF-VD for multi-processor MCS and derived a schedulability analysis
and speed up factor. Subsequently, Baruah et al. (2014) compared global EDF-VD with
partitioned EDF-VD and found through simulation analysis that in the context of MCS,
partitioned EDF-VD outperforms global EDF-VD. Partitioned EDF-VD is also superior
in terms of speed up factor. Pathan (2012) proposed a global fixed priority scheduling
algorithm and furnished schedulability analysis for a multi-processor MCS with multiple
levels. A fluid-based approach along with schedulability analysis and speed up factor
was presented by Lee et al. (2014). Baruah et al. (2015c) extended the work with an
improved run time complexity and speed up factor. Ramanathan and Easwaran (2015)
further extended the work and proposed two fluid mechanisms – sort and slope, and
showed that they provide better schedulability than Baruah et al. (2015c) at the cost
of a slight increase in time complexity. Lee et al. (2017) extended (Lee et al., 2014;
Ramanathan and Easwaran, 2015) with a new optimal rate assignment and scheduling
mechanism. Ramanathan et al. (2018) extended Lee et al. (2014) to incorporate multiple
execution rates for HC carry over jobs to guarantee their completions. Gratia et al.
(2014) proposed modification of the RUN scheduling algorithm for multi-core MCS.
A different approach using partitioned scheduling and task grouping was proposed
by Ren and Phan (2015). The work presented mixed-integer-nonlinear-programming
(MINLP) for creating task groups. To schedule jobs, they used a server-based strategy
within a group and EDF between groups. A similar task grouping using MINLP
was proposed by Nagalakshmi and Gomathi (2018). In this work, scheduling within
a group is implemented using an enhanced version of EDF. Xu and Burns (2015)
proposed a semi-partitioned scheduling approach for a dual-core MCS and presented
definite response time analysis. Behera and Bhaduri (2018) proposed a time-triggered
scheduling mechanism – low-criticality-based-priority (LoCBP) for dependent and
independent jobs and proved its dominance in terms of run time complexity over
time-triggered mixed-criticality-priority-improvement (MCPI) algorithm. Baek and Lee
(2020) presented a contention free scheduling mechanism for dual MCS. The works (Li
and Baruah, 2012; Baruah et al., 2015c, 2014; Pathan, 2012; Lee et al., 2014; Baruah
et al., 2015c; Ramanathan and Easwaran, 2015; Ren and Phan, 2015; Xu and Burns,
2015; Behera and Bhaduri, 2018; Lee et al., 2017; Nagalakshmi and Gomathi, 2018;
Ramanathan et al., 2018; Baek and Lee, 2020) used synthetic task sets for evaluation.

Ward et al. (2013) perceived the importance of predictive computation for safety
critical certification needs. The verification complexity/certification efforts increase
aggressively with the number of applications in a multi-core system. To simplify the
analysis, apt task models with parameters relating to resources and communication,
OS overheads and parallel processing factors are required. The next subsections survey
extensions to the multi-core MCS basic task model.

4.2 Resource related task models

In multi-core MCS, access to shared memory by concurrently running jobs lead to
contention, which may result in increase of WCET. Table 3 (MT2–MT10) provides
the list of existing resource related task models in literature. Pellizzoni et al. (2010)
(MT2) observed that WCET of a task inflates by 2.96 times due to shared write
request. The work computed arrival curves and performed delay analysis for a periodic
task model. To facilitate this, a task is split into a series of sequential superblocks
and each superblock is defined by a cache profile, which comprises of four elements:
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minimum/maximum main memory requests and minimum/maximum computation time.
Yun et al. (2012) (MT3) devised a regulation mechanism to control access to shared
memory and prevent interference in a multi-core dual criticality system. To achieve
this, the basic task model is augmented with worst-case number of cache misses
(CM). Giannopoulou et al. (2013) (MT4) implemented scheduling using time-triggered
criticality monotonic approach wherein only tasks of the same criticality could interfere
on shared resources. The WCET in this work considers the min/max number of memory
accesses and min/max computation times. Besides, two additional parameters are added
to the task model – WCET vector in degraded mode (

−→
C deg) and DAG (G) representing

dependencies among tasks. Degraded mode is the minimum execution profile for lower
criticality tasks during a mode change. Trüb et al. (2017) (MT4) used the same task
model as Giannopoulou et al. (2013) but with two differences:

1 WCET considers only number of memory accesses and computation times in low
and high modes

2 DAG is omitted.

The work confers an exhaustive timing analysis by considering run-time overheads and
interference due to shared memory. Li and Wang (2016) (MT5) examined both memory
access time and computation time of a task. The WCET of this model is computed as the
sum of memory access time and computation time. Li and He (2017) (MT5) extended
Li and Wang (2016) where to enhance schedulability, priorities were assigned in two
stages. First, based on memory access and next based on computation needs. To control
access from various cores and prevent interference on shared bus, Hassan and Patel
(2016) (MT6) used a bus arbitration mechanism. The WCET of tasks were supervised
to dynamically control access to shared bus. In this work, tasks are grouped based on
criticality and each task is augmented with task interference delay (I) and maximum
number of memory access requests (∧max). Another arbitration mechanism to control
access to shared last level cache (LLC) was proposed by Nair et al. (2019) (MT7).
The task model is enhanced with additional parameters of L1 cache misses (

−−→
M1), LLC

misses (
−−→
M2), intra-core (b) and inter-core blocking times (B). To have an upper bound

on the number of LLC misses, Awan et al. (2017) (MT8) partitioned LLC and assigned
to each task. Each task maintains the number of lock down pages (ϖ) in their partition.
The WCET is a function of ϖ. Awan et al. (2018a) (MT5) used the same task model
as Li and Wang (2016) to regulate memory bandwidth in order to prevent interference
due to main memory access. The work was extended in Awan et al. (2018b) (MT9) to
allow dynamic memory access control.

Dridi et al. (2019) (MT10) proposed improving worst case communication time
(WCCT) of HC messages using network on chip (NoC) router. The task model is
adapted to suit message transfers. A message flow is defined with parameters of ϕ –
for the first message released, T – between consecutive messages,

−→
C – of a message

in a flow in each mode of operation and L – for each flow. Resource synchronisation
in multi-core systems is more challenging than uni-core systems as both tasks and
resources are distributed. Priority/criticality inversion in multi-core systems further
increases the blocking time of high priority/critical jobs. In view of this, Han et al.
(2017) proposed a resource synchronisation mechanism for multi-core systems using
partitioned EDF and multi-processor-stack-resource-policy (MSRP) to have a tighter
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upper bound on utilisations and reduced blocking times. The work used MT1 and
considered factors such as number of critical sections and their sizes, blocking times,
utilisation and synchronisation overheads. OS supports functionalities like IPC and
device I/O management. This results in OS becoming a central point of conflict. Kim
et al. (2018) presented a hardware isolation framework and examined conflicts due to
OS sharing. The work also used MT1. Most of the works (Pellizzoni et al., 2010; Yun
et al., 2012; Giannopoulou et al., 2013; Li and Wang, 2016; Hassan and Patel, 2016;
Nair et al., 2019; Awan et al., 2017, 2018b; Dridi et al., 2019; Han et al., 2017; Li and
He, 2017; Kim et al., 2018; Trüb et al., 2017) are evaluated using synthetic task sets,
however Giannopoulou et al. (2013), Hassan and Patel (2016) and Trüb et al. (2017)
used practical task sets from the avionic industry. Dridi et al. (2019), Kim et al. (2018)
and Trüb et al. (2017) evaluated the work using benchmark programs like Rosace,
Matrix, Framecopy, etc.

One of the widely addressed topics in multi-core MCS is resource provisioning.
However, effective and efficient utilisation of resources without hampering certification
requirement continues to be a fascinating challenge in MCS. Therefore, future works
on resource and communication related parameters for different usage scenarios such as
cache/resource synchronisation/message passing are expected to thrive.

4.3 QoS related task models

In MCS, mode switching takes place either by observing execution time of the currently
running job or by observing the rate of arrival of the newly arriving job. This
section surveys multi-core MCS task models which support various mode switching
mechanisms. It also surveys mechanisms to improve schedulability of LC tasks in
multi-core MCS along with their task models.

The effectiveness of a system depends on how many LC tasks are getting
accommodated along with HC tasks. Various methods have been proposed to improve
the QoS of the system. The four commonly used techniques are elastic scheduling which
stretches the periods/execution times of LC jobs in high mode, priority reduction of
LC jobs, imprecise computing which allows LC jobs to execute with lower computing
times and variable precision scheduling which uses slack for LC job completions in high
mode. Table 3 (MT4, MT6, MT11–MT16, MT21–MT24, MT27, MT31, MT32) presents
task models with QoS parameters and their usage scenarios. To provide an enhanced
service to LC tasks in high mode, Xu and Burns (2015) explored the possibility of
migrating LC jobs to other cores that have not undergone a mode change in a dual-core
system. Xu and Burns (2019) extended the migration capability to log2n cores, where n
is the number of cores. Ren and Phan (2015) grouped one HC task with many LC tasks
to provide best effort service to LC tasks during mode change. They also proposed mode
relapse if all HC jobs displayed LC behaviour. Huang et al. (2018) compared global
and partitioned scheduling and found that partitioned scheduling with variable precision
accommodates more LC jobs thus improved QoS. Xu and Burns (2015), Ren and Phan
(2015), Huang et al. (2018) and Xu and Burns (2019) used the basic task model (MT1).

Another approach to improve schedulability of LC jobs was proposed by
Giannopoulou et al. (2013) and Trüb et al. (2017) (MT4). A degraded WCET parameter
is appended to the task model to allow lower criticality jobs to continue execution in
degraded mode, hence improving their schedulability. Hassan and Patel (2016) (MT6)
used dynamic run time control for delaying the switching to degraded mode. This
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resulted in accepting more LC jobs into the system. Jan et al. (2013) (MT11) used an
elastic model for stretching periods of LC jobs when they were about to miss their
deadlines. Two parameters namely, importance level (I) and stretching factor (S) are
added to the basic task model of LC tasks. A similar approach for handling LC tasks
during a mode change was proposed in Su et al. (2013) (MT12). Besides stretching
the period, a set of early release points are associated with LC jobs to improve their
schedulability. Gill et al. (2018) (MT32) also used the elastic task model for parallel
tasks to improve LC job schedulability. The work used VD to detect task overruns rather
than computation times. In this model, utilisations are regulated to achieve elasticity.
De Niz and Phan (2014) (MT13) computed ZERO slack instant of tasks in each mode
and during mode change. During a mode change, LC jobs continue executing until they
reach the zero slack instant of HC jobs. In this task model WCET is considered under
non-overloaded and overloaded conditions. Al-Bayati et al. (2015) (MT14) proposed
a twin partitioning algorithm. One task assignment is provided for low mode and
another for high mode. Before a mode change, tasks are fully partitioned based on the
assignment in low mode. During a mode change, LC tasks are allowed to have restricted
migration based on the assignment in high mode. Pathan (2017) (MT15) used QoS
vector (

−→
V ) during mode change to determine whether LC jobs will execute in normal

manner or degraded manner. Hu et al. (2018) (MT16) suggested a semi-slack approach
to guarantee service to LC jobs during HC overruns. Thekkilakattil et al. (2014) (MT21)
proposed a slack-based approach to improve the feasibility of LC tasks. Caplan et al.
(2017) (MT22) introduced low/overrun/transient-fault/high modes to handle faults and
pre-configured a subset of LC tasks which are allowed to run in each mode. Choi et al.
(2018) (MT23) represented graph-based task model and categorised droppable LC tasks
based on importance (I), dropping factor (d) and QoS (V ) parameters. This task model
considered the number of task activations per interval (αu(∆)) or time interval (δ(q))
for slack computation. Iacovelli et al. (2018) (MT24) proposed utility (u) and tolerance
aware LC jobs dropping based on core failure. On recovery, dropped tasks were
reassigned based on core utility. In Medina et al. (2018) (MT27), DAG representation
of task model for a schedule table was presented. The work proposes the following QoS
improvements: successor-only dropping due to LC job overruns, LC mode relapse at the
beginning of each schedule table execution and allow few HC overruns, while keeping
the system intact. Pathan (2018) (MT31) proposed improvement of QoS by reassigning
HC jobs to unused processors. LC jobs are classified as droppable and non-droppable
using integer linear programming approach. The works (Jan et al., 2013; Su et al., 2013;
De Niz and Phan, 2014; Pathan, 2017; Al-Bayati et al., 2015; Giannopoulou et al., 2013;
Hassan and Patel, 2016; Xu and Burns, 2015; Caplan et al., 2017; Hu et al., 2018; Choi
et al., 2018; Pathan, 2018; Medina et al., 2018) were evaluated using synthetic task sets
while Giannopoulou et al. (2013), Hassan and Patel (2016) and Choi et al. (2018) were
evaluated using practical task sets from the automotive and avionic industries.

Multi-core systems provide a clear advantage of implementing QoS improvement
mechanisms by utilising high computing power with isolation. Industry relevant QoS
mechanisms like symmetric clustering, LC mode relapses by importance, etc. are not
clearly known to academia due to its intellectual property constraints. There exist a dire
need to have domain relevant studies to overcome this gap.
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4.4 Virtualisation related task models

One of the initial works for limiting interference and providing isolation in multi-core
MCS was proposed by Anderson et al. (2009) (MT17). They put forth a hierarchical
scheduling mechanism to carry out temporal isolation on multi-core MCS. They used
a periodic task model with harmonic periods and five criticality levels. Each core
uses five containers with varying criticality levels and higher criticality tasks are
statically assigned higher priority. Each task is represented by parameters: period,
relative deadline and WCET vector. An allocation window and a budget characterises
each container. Table 3 (MT17, MT18) presents virtualisation related task models with
their usage scenarios. Herman et al. (2012) extended the work using MT17 to consider
OS overheads related to scheduling and release of jobs. Chisholm et al. (2016) proposed
data sharing among criticality levels. The work also used MT17. An overhead cognisant
schedulability study was presented. Lackorzyński et al. (2012) proposed improving
performance in a hierarchical system by dynamically adjusting virtual machine (VM)
budgets based on needs. Völp et al. (2013) proposed integration of existing mixed
criticality scheduling algorithms like PC, SMC and variants, AMC and variants, OCBP
and EDF-VD to schedule OS contexts in the hypervisor. To guarantee safety and
security in MCS, Woolley et al. (2020) proposed combining hierarchical scheduling and
genetic algorithms to uniformly distribute tasks in a multi-core scenario. The works
(Lackorzyński et al., 2012; Völp et al., 2013; Woolley et al., 2020) used MT1 as the
task model. Groesbrink et al. (2013) (MT18) combined virtualisation, mixed criticality
and heterogeneous systems to provide an adaptive resource management approach. In
this work, the system is partitioned into criticality-based VMs. Each VM is defined by
a VM profile consisting of criticality, min/max number of resources, quality, functions
activate/main/leave and a set of switching profiles. Each task is also characterised by
a set of profiles. Each task profile is defined by same set of VM profile parameters
excluding criticality, as criticality is assigned to each VM. The works (Chisholm et al.,
2016; Herman et al., 2012; Woolley et al., 2020) were evaluated using synthetic
task sets. Lackorzyński et al. (2012) provided two case studies using FreeRTOS and
Linux-RT.

Multi-core with hypervisor provides an integrated system that utilises computing
resources effectively and additionally provides isolation capabilities required by MCS.
They need extension with practical implementations of OS level virtualisation or
real-time container techniques like Docker or Linux containers. Task models/profiles
that suit real-time container techniques is a prime area of research.

4.5 Energy related task models

To take energy consumption into consideration Awan et al. (2015, 2016a) (MT19)
augmented the basic task model with an energy consumption vector, with core-wise
information of all tasks in low mode. The WCET in low and high modes are also
represented as vectors with core-wise information. The work proposed partitioning tasks
such that energy consumption is minimised. Table 3 (MT19, MT20) presents energy
related task models with their usage scenarios. Awan et al. (2016b) (MT19) adopted a
two step approach to reduce energy consumption. The first step proposed partitioning
tasks to minimise dynamic energy consumption. The second step proposed re-assigning
tasks so as to attain improved sleep states. Digalwar et al. (2017) presented an energy
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efficient scheduler for periodic and aperiodic tasks. The work aims at reducing static
and dynamic energy consumption by using techniques like procrastination and DVFS.
The analysis used MT1 for periodic tasks and arrival time and WCET for aperiodic
tasks. A scheduler for reducing static energy consumption was presented by Legout
et al. (2013) using MT1. Taherin et al. (2018) (MT20) enhanced the elastic task model
(Su and Zhu, 2013) with a voltage and frequency scaling factor (ρ). The work extended
early release EDF and evenly distributed slack time to provide energy management. The
works (Awan et al., 2016a; Digalwar et al., 2017; Taherin et al., 2018; Legout et al.,
2013; Awan et al., 2016b) were evaluated using synthetic task sets.

There is a huge potential to have energy optimisation/procrastination solutions with
multi-core systems. The optimised leakage/standby/static/dynamic power is of prime
importance in energy starving battery-less MCS. The positive steps in this direction
require apt task parameters to carry out offline energy-aware schedulability analysis.

4.6 Fault tolerance related task models

For multi-core dual criticality systems, Thekkilakattil et al. (2014) (MT21) provided a
fault tolerant task scheduling mechanism by extending MT1 with replication (r) and
distribution (m) parameters. r and m are used to specify the amount of replication
required and the distribution of replicas on different nodes respectively. The work
provided fault tolerance and certification for HC tasks with graceful degradation of
LC tasks. Table 3 (MT21–MT24) presents fault tolerance related task models with
their usage scenarios. Caplan et al. (2017) (MT22) presented a mechanism for handling
transient faults using a reliability parameter (n) that defined the number re-executions of
a HC task. They extended AMC-rtb to accommodate low/overrun/transient/high modes
with apt LC task configurations. Choi et al. (2018) (MT23) proposed an optimistic
fault tolerant multi-core MCS and presented a worst-case response time analysis. The
goal was to provide a tighter upper bound on response times by keeping track of
the number of faults that can be tolerated. In this work, reliability constraint (R),
fault detection (Od), roll-back (Or) and voting (Ov) parameters contribute to achieve
fault tolerance in critical applications. Iacovelli et al. (2018) (MT24) proposed an
adaptive task model to achieve fault tolerance. The basic task model is augmented
with utility (u) parameter. In case of core failures, tasks are re-assigned to available
cores using u and their frequencies are adjusted in order to ensure schedulability.
Naghavi et al. (2021) addressed both fault tolerance and energy savings. They
proposed semi-partitioned/partitioned mechanisms with/without job migrations, HC job
replications and QOS for LC jobs. The work used MT1. The works in Caplan et al.
(2017), Choi et al. (2018) and Naghavi et al. (2021) were evaluated using synthetic task
sets.

The increase in autonomy of MCS results in fault tolerance being an important
tenet. This triggers enhanced research and certification requirements. In turn, it requires
additional validation and offline analysis of autonomous systems such as autonomous
driving systems. To perform these domain specific schedulability analysis, additional
task parameters related to fault tolerance are required.
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4.7 Graph-based task models

Graph-based task models are well suited to illustrate inter/intra dependencies between
tasks on different cores. Table 3 (MT23, MT25–MT27) presents DAG-based task
models with their usage scenarios. Tamas-Selicean and Pop (2011) (MT25) presented
a mechanism to optimally combine and schedule tasks of different criticalities on a
heterogeneous system such that development costs were reduced. Each application is
designed as a DAG where vertices represent tasks and edges represent precedence
among tasks. Each task is characterised by core level WCET, each edge is denoted
by the size of messages transmitted and each application DAG is denoted by a
period, deadline and criticality. Baruah (2013) (MT26) represented a resource- efficient
synchronous execution of tasks using a DAG, where vertices represented jobs and edges
represented inter-job dependencies. Each job was characterised by a WCET vector and
it had deadline associated with it. Medina et al. (2018) (MT27) used a DAG-based
model to depict task dependencies and limit fault propagation due to task overruns. In
this model, vertices represented tasks with criticality, WCET and overrun probability
(TFE) as parameters. The same task model was used in Medina et al. (2020) where a
safe transition meta heuristic was defined to improve QoS in a multi-level criticality
scenario. The task model in Choi et al. (2018) (MT23) is also represented by a DAG.
Each graph is associated with a period, relative deadline, criticality, reliability constraint
(R), importance (I), dropping factor (d) and QoS (V ) as parameters. Each task in the
graph has priority (P ), WCET vector, fault detection overhead (Od), roll-back overhead
(Or), voting overhead (Ov), the core (map) the task is assigned and the graph (G) it
belongs as parameters.

The works in Medina et al. (2018), Choi et al. (2018), Tamas-Selicean
and Pop (2011) and Medina et al. (2020) were evaluated using synthetic
task sets. Additionally, Tamas-Selicean and Pop (2011) evaluated their model
using consumer/networking/telecom-cords practical benchmarks. The representational
graph-based models existing in literature are fork-join model (Lakshmanan et al.,
2010) and sporadic/multi/conditional (Baruah et al., 2012; Fonseca et al., 2015; Melani
et al., 2015) DAG tasks models. Graph-based representations depict module interactions
between tasks within and between cores. They are also suitable for representing shared
resources, migration mechanisms, task overruns, OS overheads, mode changes, and fault
tolerance. The availability of such graph-based task models that consider real world
applications ease the job of MCS designers.

4.8 Parallel task models

The introduction of multi-core architecture brings ample opportunities to implement
parallel processing. Table 3 (MT28–MT32) presents parallel task models with their
usage scenarios. Liu et al. (2014) (MT28) put forward an approach to schedule jobs
of same task across cores simultaneously. In this work, jobs were characterised by
release time, criticality, absolute deadline and a sequence of segments (J1, J2, ...,
JSi). Each job segment is defined by the number of threads and WCET vector.
Bhuiyan et al. (2019) (MT29) proposed global EDF-VD to schedule parallel tasks. The
basic task model is augmented with number of cores (!) required for task execution.
Subsequently, Bhuiyan et al. (2021) extended this task model for global EDF-VD where
the number of cores considered is a vector

−→! that defines the core requirement at
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each criticality level. Agrawal and Baruah (2018) and Pathan (2018) (MT30, MT31)
proposed work and span parameters to represent parallel tasks. Work parameter is
a vector with overload/non-overload values that indicate the total WCET of parallel
threads executing on all cores. Span vector is the critical path length of execution times
in overload/non-overload conditions. Agrawal and Baruah (2018) considered an implicit
deadline system whereas Pathan (2018) also considered criticality parameter. Gill et al.
(2018) (MT32) proposed a task model for parallel tasks by considering a super set of
parameters, namely criticality, work, span and number of cores (

−→!). Unlike Bhuiyan
et al. (2019) and Gill et al. (2018) considered

−→! and extended the task model with a
stretch factor (S) to facilitate elasticity to improve QoS of LC tasks.

The works (Liu et al., 2014; Bhuiyan et al., 2019; Agrawal and Baruah, 2018;
Pathan, 2018; Bhuiyan et al., 2021) were evaluated using synthetic task sets. To achieve
high performance computing in MCS, as much parallelism as possible needs to be
facilitated. The analysis and validation of parallel systems is a complex endeavour and
requires apt task models to make it feasible.

5 Grouping of task models

Based on the study of numerous task models, we present a ready reckoner and graphical
representation of task models for both uni-core and multi-core MCS.

5.1 Grouping task models – attributes wise

Tables 4 and 5 present a ready reckoner on uni-core and multi-core task models.
Each column in the table indicates attributes, application domains and challenges
addressed. Table 4 has uni-core task models coded from UT1 to UT31 and Table 5
has multi-core task models coded from MT1 to MT32. The attributes in Table 4
include resources, QoS, OS overheads, energy and fault tolerance. Table 5 has additional
features of parallel processing and virtualisation for multi-core models. Application
domains like avionics (avi), automotives (auto), cyber physical systems (CPS), wireless
sensor networks (WSN), internet of things (IoT), components of the shelf (COTS),
railways (rail), medical and robotics are the listed domains in literature for which
the task models were designed. These application domains are tabulated as part of
both uni-core and multi-core task models. Even though certification requirements vary
among these application domains, there are many similarities in terms of their functional
attributes. Hence, these task models are applicable across all domains.

Tables 4 and 5 also provide challenges (Section 2.1) that are partially addressed with
respect to specific task models. Though attempts have been made by Esper et al. (2015)
and Ekberg et al. (2013), challenge [C1] on criticality definition continues to remain
majorly unresolved. The tabular ready reckoner is an useful asset for researchers and
designers in MCS domain. It provides a feasible mechanism to search appropriate task
models that suit given usage scenarios like resources, QoS, OS overheads, energy, fault
tolerance, virtualisation and parallel systems. A designer/academician can identify task
parameters or task models that are required for a given specifications from the extensive
task models presented in Tables 4 and 5.
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Table 4 Grouping of uni-core task models

Code
Attributes Domains

Challenges
Resources QoS OS Energy Fault addressed

overheads tolerance

UT1 -
√

- - - Avi, auto C3, C5, C6
UT2

√ √
- - - Avi C3, C5

UT3 -
√

- - - Avi C3, C5
UT4

√ √
- - - Avi C3, C5, C6, C10

UT5
√

- - - - General C3, C5, C10
UT6

√
- - - - Avi, auto C3, C5, C10

UT7
√

- - - - Avi, auto C3, C5, C10
UT8

√
- - - - Avi, auto C3, C5, C10

UT9
√

- - - - Auto C3, C5, C10
UT10 -

√
- - - CPS, avi C3, C5, C6

UT11 -
√

- - - CPS C3, C5, C6
UT12 -

√
- - - Avi, auto C3, C5, C6

UT13 -
√

- - - Avi, auto C3, C5, C6
UT14 -

√
- - - Avi, auto C3, C5, C6

UT15 -
√

- - - Avi, auto C3, C5, C6
UT16 -

√
- - - Avi, auto C3, C5, C6

UT17 -
√

- - Avi C3, C5, C6
UT18 -

√
- - - Avi C3, C5, C6

UT19 -
√ √

- - Auto C3, C5, C6, C11
UT20 - -

√
- - Avi, auto C3, C5, C11

UT21 - - -
√

- Avi C3, C5, C7
UT22 - - -

√
- Avi C3, C5, C7

UT23 -
√

-
√

- WSN, IoT C3, C5, C6, C9
UT24 - - - -

√
Avi C3, C4, C5, C8

UT25 - - - -
√

Avi C3, C5, C8
UT26 - - - -

√
Avi, auto C3, C5, C8

UT27
√

- - - - Avi, auto C3, C4, C5
UT28 -

√
- - - General C3, C4, C5

UT29 -
√

- - - Avi C3, C4, C5
UT30 - -

√
- - Auto C3, C4, C5

UT31 -
√

- - - Avi C3, C4, C5

5.2 Grouping of task models – graphical view

The graphical representation of all task models in uni-core and multi-core systems are
shown in Figures 1 and 2 respectively. The vertex in the graph represents the task model
and directed edges indicate parameters that are included in the subsequent model. Each
vertex is colour coded depending on the functional features and representation. This
graphical representation provides a pictorial view and displays the relationship between
available task models. For example, in Figure 1, UT1 is the basic task model with
parameters T ; D; L;

−→
C . It is extended to UT2 by modifying the deadline parameter to
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−→
D . It is further extended with parameter

−→
λ to form UT7. Similarly in Figure 2, MT1

is extended to MT14 with
−→
T . It is further extended to MT12 by adding parameter PER

and finally to MT20 by adding ρ.

Table 5 Grouping of multi-core task models

Code
Attributes Domain

Challenges
Resource QoS Virtualisation Energy Fault Parallel addressed

tolerance

MT1
√ √ √ √

- - Avi, auto C5, C6, C9, C10, C11
MT2

√
- - - - - COTS C3, C5, C9, C10

MT3
√

- - - - - Avi C3, C5, C9, C10
MT4

√ √
- - - - Avi, auto C3, C5, C6, C9, C10

MT5
√

- - - - - Avi, auto C3, C5, C9, C10
MT6

√ √
- - - - Avi C3, C5, C6, C9, C10

MT7
√

- - - - - Auto C3, C5, C9, C10
MT8

√
- - - - - Avi, auto C3, C5, C9, C10

MT9
√

- - - - - Avi, auto, rail C3, C5, C9, C10
MT10

√
- - - - - Auto C3, C5, C9, C10

MT11 -
√

- - - - Auto C3, C5, C6, C9
MT12 -

√
- - - - Avi C3, C5, C6, C9

MT13 -
√

- - - - Avi, auto, CPS C3, C5, C6, C9
MT14 -

√
- - - - Avi, auto C3, C5, C6, C9

MT15 -
√

- - - - Auto C3, C5, C6, C9
MT16 -

√
- - - - Auto, robotics C3, C5, C6, C9

MT17 - -
√

- - - Avi C3, C5, C9, C11
MT18 - -

√
- - - CPS C3, C5, C9, C11

MT19 - - -
√

- - Avi, auto C3, C5, C7, C9
MT20 - - -

√
- - Avi, auto C3, C5, C7, C9

MT21 -
√

- -
√

- General C3, C5, C6, C8, C9
MT22 -

√
- -

√
- Avi, auto C3, C5, C6, C8, C9

MT23 -
√

- -
√

- Auto C3, C4, C5, C6, C7, C8
MT24 -

√
- -

√
- Rail, medical C3, C5, C6, C8, C9

MT25
√

- - - -
√

Avi C3, C4, C5, C9
MT26

√
- - - -

√
Avi, auto C3, C4, C5, C9

MT27 -
√

- - -
√

Avi C3, C4, C5, C6, C9
MT28 - - - - -

√
Avi, auto, robotics C3, C5, C9, C12

MT29 - - - - -
√

Avi C3, C5, C9, C12
MT30 - - - - -

√
Avi, auto C3, C5, C9, C12

MT31 -
√

- - -
√

Avi, auto C3, C5, C6, C9, C12
MT32 -

√
- - -

√
CPS C3, C5, C6, C9, C12

6 Conclusions and future directions

This work consolidates existing task models in literature and provides insights and future
trends based on attributes such as resources, QoS, OS overheads, energy, fault tolerance
and parallel processing. It also presents a ready reckoner and a graphical representation
an easy visual aid for future researchers and industrial designers in the MCS domain.
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By archiving and analysing MCS task models, it is observed that there is need of a
collaboration and research dissemination framework in MCS research. The framework
should consist of tools for archiving, generating and comparing task models/task sets.
It should also have a mechanism to generate schedules and perform analysis, thereby
aiding as a decision support system.

Figure 1 Uni-core task model (see online version for colours)

Figure 2 Multi-core task model (see online version for colours)

A careful scrutiny of existing task models also indicates lack of task models with
certain combinations. Few missing entries include combination of fault tolerance
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and parallel task models, combination of probabilistic and graph tasks models in
tandem with functional specific attributes like resources, energy and QoS. It is also
observed that certification of MCS for pioneering features like parallel computing,
fault tolerance and energy efficiency are complex endeavours. Likewise, the analysis
of OS-level-virtualisation/real-time-container techniques and real world task models that
consider realistic factors found in industrial applications add another dimension to the
complexity of MCS.
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