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Abstract: This research work introduces a hybrid model, BIG-LSTM, designed to enhance the 
precision of computer numerical control (CNC) machines in the manufacturing industry powered 
by the Internet of Things (IoT). Traditional models primarily focus on nut temperature’s impact 
on thermal errors, often overlooking factors like bearing and ambient temperatures, and tend to 
ignore the intercept in the temperature-error relationship. The presented model addresses these 
gaps by incorporating ambient and bearing temperatures, and considering both intercept and 
slope for predicting Z-axis thermal deformation. Integration of motor speed and coolant 
behaviour is also included, acknowledging the rise in temperature with increased speed.  
BIG-LSTM, combining LSTM, GRU, and Bi-LSTM models, demonstrates efficacy in 
experiments, achieving Root Mean Square Errors (RMSEs) within 0.9 μm for spindle thermal 
displacement under varied temperature conditions. These findings highlight the model’s potential 
in significantly improving accuracy and robustness in spindle thermal displacement predictions in 
the IoT era. 

Keywords: CNC machine tools; thermal errors; hybrid model; deep learning; LSTM; spindle 
thermal displacement; prediction accuracy.  
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1 Introduction 

With the advancement of Industry 4.0, the demand for 
Computer Numerical Control (CNC) machines is on the rise. 
Achieving ultra-precision in component manufacturing is the 
primary objective of the industry, but thermal error plays a 
significant role when errors are generated within microns. 
Geometric and kinematic errors are corrected for the 
maximum error during an operation, but thermal error 
induced by the deformation or distortion of machine elements 
due to heating and temperature rise is one of the primary 
reasons for inaccuracy. Traditional methods are inadequate in 
reducing thermal error (Ramesh et al., 2000). The spindle, 
critical to machine tool performance, generates substantial 
amounts of heat during high-speed operation and is a key 
contributor to heat sources that have significant implications 
for machine design and operation (Haitao et al., 2007). 
Thermally generated errors have become one of the most 
common sources of error in precision and high-precision 
machining, causing up to 75% of the overall geometrical 
defects in machined workpieces (Mayr et al., 2012). To 
decrease thermal error, researchers have suggested 
redesigning machine tools from thermal stability materials, 
but this approach is expensive and has additional drawbacks 
such as chatter and decreased machine tool acceleration 
(Tanabe et al., 1986). To establish the link between 
temperature and spindle deformation in a machine tool and 
provide the foundation for a controller to account for spindle 
thermal displacement, mathematical machine-learning models 
for spindle thermal displacement have been presented (Zhang 
et al., 2016). Previous modelling techniques have used 
Principal-Based Models (PBM) and Empirical-Based Models 
(EBM) to study the correlations between temperatures  
and thermal errors based on numerical simulations or 
experimental data (Li et al., 2015). EBM is a type of ‘black 
box’ technique that operates under the assumption that 
thermal faults may be viewed as a function of certain crucial 
thermal discrete temperature points on the machine. Of all the 
EBM techniques, the use of regression analysis or artificial 
neural networks, also known as ANNs, is the most frequently 
employed (Ye et al., 2020). Li et al. (2019) used principal 
component analysis to choose thermal important points and 
performed k-means clustering. The field of deep learning has 
made remarkable progress and now operates at the cutting 
edge in several industries. Deep learning can gain knowledge 
of complex features by combining and learning basic 
characteristics from data. It outperforms alternative methods 
in various machine-learning problems by using massive data 
sets and computationally efficient training techniques  
(Xu et al., 2019). In this study, we propose a hybrid BIG-
LSTM deep learning approach to model thermal error in CNC 
machines. The model comprises three Gated Recurrent Unit 

(GRU) layers, two Bi-LSTM layers, and two Long Short-
Term Memory networks (LSTM) layers. We incorporate IoT 
into the model by considering the ambient temperature, 
bearing temperature and coolant behaviour. The spindle 
motor speed and coolant temperature variations are used to 
model temperature changes. Thermal error testing with 
various temperature rises and drops demonstrated that the 
suggested model’s Root Mean Square Errors (RMSEs) were 
within 0.9 μm. The proposed hybrid model can serve as a 
base for implementing spindle thermal displacement 
correction in a machine tool to preserve machining precision. 

In recent years, Song et al. (2022) explored various 
approaches to enhance the performance and precision of 
manufacturing processes. Hossain et al. (2023) highlighted 
the broader spectrum of research aimed at improving 
precision and efficiency in manufacturing processes. The 
preheating phase in machine tool operations, which can be 
time-consuming, consumes a significant amount of energy. 
Its purpose is to achieve thermal stability, ensuring precise 
machining. Temperature fluctuations can lead to thermal 
errors, affecting the accuracy of machining. To address this, a 
strategy and method for modelling and predicting thermal 
errors in machine tools are presented. This approach 
eliminates the need for lengthy preheating, maintaining high 
precision by adjusting the tool’s position in real-time based 
on temperature variations. Thermal error compensation 
enhances precision, reduces scrapped parts, and allows for 
increased machining speed. It’s crucial in industries  
with strict quality requirements. Compensation is tailored to 
each machine’s unique temperature-displacement behaviour, 
ensuring consistent accuracy during operation. In many 
sectors, especially those that depend on precise and  
accurate machinery and procedures, thermal error correction 
is essential. A crucial component of contemporary 
manufacturing businesses is thermal error compensation in 
CNC machines. The accuracy and quality of the products 
produced by CNC machines can be severely impacted by heat 
changes at micron level, which are employed in precision 
machining and manufacturing. High-precision material 
cutting and shaping is accomplished by CNC machines 
through the use of pre-programmed instructions. The 
components of the machine, however, may expand or 
contract as a result of temperature changes in its 
surroundings, which could result in produced pieces with 
inaccurate dimensions. Real-time temperature monitoring of 
the machine and process adjustments is required for thermal 
error compensation. For correct fit and functionality, several 
industries demand that parts be manufactured with very tight 
tolerances. Manufacturing procedures are more dependable 
and accurate as a result of thermal error correction, which 
enables CNC machines to maintain these tight tolerances 
even in situations with changing temperatures. Hence, using 
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AI to model the thermal behaviour of the machine provides a 
cost effective solution. 

The organisation of this paper is as follows. Section 2 
provides a review of related works in the field of thermal 
error modelling, highlighting various models that have been 
employed in the past. The contributions of this paper are 
listed in Section 3. In Section 4, the working principles of 
GRU, LSTM and Bi-LSTM, the three types of recurrent 
neural networks used in the proposed thermal error prediction 
model, are described in detail. Section 5 presents the 
proposed thermal error prediction model, BIG-LSTM, 
including the architecture and design considerations. 
Performance evaluation of the model is discussed in Section 
6, which includes comparison with traditional models and 
analysis of prediction accuracy. Finally, Section 7 concludes 
the paper with a summary of the key findings and directions 
for future research. 

2 Related work 

Cheng et al. (2022) proposed a Method for Analysing and 
Compensating for Thermal Deformation. This method 
involves finite element analysis to simulate the thermal 
deformation of the milling head, followed by using a 
polynomial fitting method to model and compensate for the 
deformation. The paper provides a detailed explanation of the 
method and presents experimental results that demonstrate 
the effectiveness of the proposed method in reducing thermal 
deformation of the milling head. Zhu et al. (2022) proposed a 
Robustness of Machine Tool Workpieces Using Random 
Forest Algorithm. The accuracy and robustness of machine 
tool workpieces are significantly influenced by thermal 
errors. However, the nonlinearity of these errors limits the 
prediction model’s robustness and accuracy. To address this 
issue, the paper proposes a novel thermal error modelling 
method based on the random forest algorithm. The model’s 
hyper-parameters can be easily optimised by the grid 
searching method integrated with cross-validation, with the 
temperature features measured as the model input. The 
proposed model can evaluate temperature feature importance 
based on the out-of-bag data generated during the modelling 
process. In order to improve the model’s accuracy and lower 
computational costs, it is also taken into account to choose 
important temperature points in order to eliminate features 
that are unnecessary and the hysteresis effect between 
temperature and deformation. Over 90% prediction accuracy 
is maintained across a variety of operating situations, 
demonstrating the proposed model’s accuracy and robustness 
through experimental validation. The suggested model 
delivers greater prediction accuracy and more resilience 
compared to standard machine learning approaches while 
requiring less training data, parameter adjustment that is 
quicker and more intuitive and stronger robustness. A 
Transfer Learning-Based Error Control Method was proposed 
by the authors in (Liu et al., 2022). The precision of 
machining complicated components is severely hampered by  
 

thermal problems. Data-based models’ limited resilience and 
poor prediction accuracy, however, have restricted their 
application. This paper suggests a transfer learning-based 
error control system that makes use of a Long Short-Term 
Memory Network (LSTMN) for error prediction in order to 
increase resilience. It is suggested to use an improved filter to 
eliminate singular values and high-frequency noise. The deep 
residual network is constructed with a pre-activated residual 
block incorporated inside it. To increase robustness, a transfer 
learning model is created and a novel error prediction model 
is presented. The actual machining experiments validate the 
high predictive abilities of the transfer learning models. 
Overall, the proposed method has the potential to improve the 
accuracy and efficiency of machining processes and lead to 
better product quality. Yin et al. (2019) proposed a Method 
that Combines the Fuzzy C-Means Clustering Algorithm and 
Correlation Analysis to Select Temperature-Sensitive Points. 
This study proposes a modelling method for predicting the 
thermal error of machine tool spindles using a selective 
ensemble of BP neural networks. The method combines the 
fuzzy c-means clustering algorithm and correlation analysis 
to select temperature-sensitive points. Individual BP neural 
network models with unstable prediction performance are 
generated using different training sets and random initial 
parameters. Each model is then assigned a weight, which is 
evolved using a genetic algorithm. The ensemble model is 
formed by selecting individual models based on a threshold 
value. The method is tested on a horizontal machining centre 
THM6380, and its performance is compared with single BP 
neural network, multiple linear regression and least-square 
support vector machine models. Results demonstrate the 
superiority of the proposed method in predicting and 
compensating for thermal errors in machine tool spindles. 
The study provides a new approach to thermal error 
modelling and compensation. Tan et al. (2021) proposed a 
Segment Fusion Least Squares Support Vector Machine  
(SF-LSSVM) Method. In order to predict and compensate for 
thermal errors in CNC machines, it is important to consider 
key temperature points as input variables. However, these 
temperature points can change over time, which can 
negatively impact prediction accuracy. To overcome this 
issue, the SF-LSSVM thermal error modelling method is 
proposed. This involves dividing temperature and thermal 
error data into different time segments and using the LSSVM 
model to build sub-models for each segment. Key 
temperature points for each segment are selected using 
genetic algorithms. The sub-models are then fused together to 
create a final thermal error model that incorporates both local 
and global prediction characteristics. The model was tested 
on a horizontal machining centre, and the mean RMSE on 5 
spindle speeds after compensation was only 3.1 μm. The 
proposed method outperformed traditional thermal error 
models by up to 51%, providing new insights into key 
temperature points and thermal error prediction methods. 

Wei et al. (2022) proposed a Thermal Error Modelling 
Method Based on Gaussian Process Regression (GPR). 
Precision CNC machine tools are susceptible to thermal  
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errors, which can negatively impact their accuracy. To 
minimise this effect, thermal error modelling and 
compensation are commonly used. However, existing models 
only provide point predictions of thermal error, ignoring the 
stochastic nature of these errors and the need for reliable risk 
analysis. A novel technique for predicting thermal inaccuracy 
that is based on Gaussian Process Regression (GPR) is put 
forth to overcome these constraints. Interval forecasts of 
thermal error are provided by the GPR model, which has 
good prediction accuracy and resilience. To improve its 
ability to predict outcomes, the model employs numerous 
batches of experimental data and adaptively chooses 
Temperature-Sensitive Points (TSPs) during training. 
Moreover, the model’s interval predictions of thermal errors 
enable reliable risk analysis. Experimental results 
demonstrate that the proposed GPR model outperforms 
existing models under various working conditions. Thermal 
error compensation experiments were also conducted, 
confirming the effectiveness of the proposed model. This 
study presents a novel and reliable approach to thermal error 
modelling and compensation for precision CNC machine 
tools. Li et al. (2021) proposed a Beetle Antennae Search 
Algorithm (BAS) Method. High-speed motorised spindles 
can experience thermal errors due to heating, which can 
adversely affect the accuracy of machine tools. A thermal 
error model for high-speed motorised spindles is suggested as 
a solution to this problem in order to account for thermal 
faults and enhance machining precision. The Beetle Antennae 
Search algorithm (BAS) is used to optimise the model to 
increase its accuracy. Temperature and axial thermal drift 
data are gathered for the A02 motorised spindle at various 
speeds as part of an investigation on thermal characteristics. 
Gray relational analysis and fuzzy clustering are used to find 
temperature-sensitive locations. The BP neural network’s 
weights and thresholds are optimised using BAS to create the 
BAS-BP thermal error prediction model. Results reveal that 
at various speeds, BAS-BP has a greater prediction accuracy 
than BP and GA-BP models. The BAS-BP model is therefore 
appropriate for spindle thermal error prediction and 
adjustment. Zimmermann et al. (2020) proposed a method 
that utilises Thermal Adaptive Learning Control to select 
optimal inputs for compensation models. This approach 
automatically adapts the number and individual inputs for 
each considered thermal error. To handle time series of 
missing data thermal error measurements, it combines k-
means clustering with Time Series Cluster Kernel. The 
robustness of the compensation model is greatly increased by 
this adaptive sensor selection strategy, according to 
experimental findings on a 5-axis machine tool. About 40% 
less productivity is lost as a result of on-machine 
measurements. For modelling thermal error correction for the 
displacement of the cutter position in the Y- and Z-axes of 
CNC machine tools, Chen and Hung (2021) suggested a 
Backward Elimination (BE) Algorithm Method. The feature 
selection technique for the multiple regression models uses 
the BE algorithm based on mean squares of K-fold errors 
reduction. The model’s performance is assessed using K-fold 
Cross-Validation (KCV) on a small set of training data. By 

choosing characteristics for the Y- and Z-axes, the multiple 
regression model is created. Test results show that the method 
effectively reduces the peak-to-peak value of thermal error in 
both directions. Specifically, the peak-to-peak value of 
thermal error is reduced from about 55 μm to below 14 μm  
in the Y-direction and from about 74 μm to below 19 μm in  
the Z-direction. By automatically starting on-machine 
measurements when unknown thermal circumstances arise, 
the One-Class Support Vector Machines that Zimmermann et 
al. (2021) improves the self-optimisation capacity of thermal 
error compensation models and novelty detection method 
based on this detects these circumstances, which are not 
reflected in the training data of the compensatory models. The 
outcomes show that the trade-off between accuracy and 
productivity for thermal error correction is eliminated by the 
autonomously initiated on-machine measurements used with 
a 5-axis machine tool. Without significantly impacting the 
accuracy of the thermal error correction, the time required to 
identify a deviation from preset limits is decreased by 78%. 

3 Contribution 

To address the research gaps in the existing literature, this 
research paper makes the following contributions: 

1 Proposed a hybrid model, called BIG-LSTM, for 
predicting Z-axis thermal deformation in CNC machines.  

2 BIG-LSTM incorporates LSTM, GRU and bi-LSTM 
models, and takes into account the impact of ambient 
temperature and bearing temperature on thermal errors.  

3 Achieved root mean square errors within 0.9 μm in 
experiments measuring spindle thermal displacement 
under varying temperature changes, indicating high 
accuracy and robustness of the proposed model.  

4 Overview of recurrent neural network  
for thermal error modelling 

4.1 Gated recurrent unit 

Recurrent Neural Networks (RNNs) are a subclass of neural 
networks designed to handle sequential data, such as time-
series data, audio and natural language text. One of the most 
widely used RNNs is the Gated Recurrent Unit (GRU). GRUs 
have a gating mechanism that allows them to selectively 
remember or forget information from previous time steps as 
shown in Figure 1. This mechanism is controlled by two 
gates: the update gate and the reset gate. The update gate  
determines how much of the new information should be 
retained, while the reset gate decides how much of the 
previous state should be discarded. These functions are 
described in the below equations. 

  1= sigmoid ,t r t tr W h x  (1) 

  1= sigmoid ,t z t tz W h x  (2) 
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  1= tanh ,t h t t th W r h x    (3) 

  1= 1t t t t th z h z h      (4) 

where: tr  is the reset gate at time step t , tz  is the update gate 

at time step t , 1th   is the hidden state at the previous time 

step, tx  is the input at time step t , th   is the candidate 

activation at time step t , rW , zW  and hW  are learnable 

weight matrices, [; ]  represents concatenation of vectors 

along the second dimension (i.e., horizontal concatenation). 

Figure 1 GRU cell architecture 

 

4.2 Long short-term memory  

Long Short-Term Memory (LSTM) is a type RNN commonly 
used in applications that involve sequential data and Natural 
Language Processing (NLP). Traditional RNNs suffer from 
vanishing gradients, which make it difficult for the model to 
learn long-term dependencies. As the gradient is propagated 
backward through time, it becomes very small. To address 
this issue, LSTM introduces a long-term memory cell and 
three gates (input, forget and output) that regulate the flow of 
information into and out of the cell. The input gate, forget 
gate and output gate are responsible for determining which 
information to input into the cell, discard from the cell and 
output from the cell, respectively. These gates are controlled 
by sigmoid activation functions, which take the input and the 
cell’s previous state as inputs, as shown in Figure 2. The 
below equations describe these functions. 

  1= ,t f t t ff W h x b    (5) 

  1= ,t i t t ii W h x b    (6) 

  1= tanh ,t c t t cg W h x b   (7) 

  1= ,t o t t oo W h x b    (8) 

1= * *t t t t tc f c i g   (9) 

 = * tanht t th o c  (10) 

 

where tf , ti  and to  are the forget, input and output gates 

respectively. tg  is the candidate memory cell content. tc  is 

the memory cell state. th  is the output of the LSTM cell at 

time t . tx  is the input at time t  and 1th   is the output of the 

LSTM cell at the previous time step 1t  . W  and b  are the 
weight and bias matrices/parameters, respectively.   is the 
sigmoid activation function and tanh  is the hyperbolic 
tangent activation function. 

Figure 2 LSTM cell architecture 

 

4.3 Bi-directional long short-term memory  

Bi-directional Long Short-Term Memory (Bi-LSTM) is a 
Recurrent Neural Network (RNN) architecture widely used in 
Natural Language Processing (NLP) tasks such as speech 
recognition, machine translation, sentiment analysis and text 
categorisation. A Bi-LSTM network consists of two LSTM 
layers, one processing the input sequence forward and the 
other backward, as depicted in Figure 3. This bidirectional 
processing allows the network to capture both past and future 
context of the input sequence, leading to better performance 
in many NLP tasks. During training, Bi-LSTM networks use 
backpropagation through time to adjust the weights and 
minimise the error signal as it propagates backwards through 
the network. The functions used in the Bi-LSTM operation 
are described in the below equations. 

 1 1= , ,f f f
t t t th LSTM x h c   (11) 

 1 1= , ,f f f
t c t t tc LSTM x h c   (12) 

 1 1= , ,b b b
t t t th LSTM x h c   (13) 

 1 1= , ,b b b
t c t t tc LSTM x h c   (14) 

where tx  is the input at time step t , f
th  and b

th  are the hidden 

states of the forward and backward LSTM layers at time step 
t , f

tc  and b
tc  are the cell states of the forward and backward 

LSTM layers at time step t , and LSTM and LSTM_c denote 
the LSTM and cell state update functions, respectively. 
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Figure 3 Bi-LSTM cell architecture 

 

 

The output of the Bi-LSTM layer is a concatenation of the 
forward and backward hidden states as shown in the below 
equation: 

= ,f b
t t th h h    (15) 

where [, ]  denotes concatenation. 

5 Proposed thermal error prediction model:  
BIG-LSTM 

Changes in temperature result in dimensional errors or 
deviations in a system or component due to the cause-and-
effect relationship between temperature and thermal error. 
The term ‘thermal error’ describes the difference between the 
actual measurements that need to be taken or the positions of 
the workpiece or cutting tool and the expected measurements 
or positions resulting from changes in the system caused by 
temperature variations. This relationship is particularly 
relevant in applications involving precision machinery, 
manufacturing and measurement. Most materials expand 
when heated and contract when cooled, a phenomenon 
known as ‘thermal expansion and contraction’. When 
temperatures fluctuate, the materials used in mechanical 
systems and components, such as those in CNC machines, 
can either expand or contract, thereby altering the dimensions 
of the structure. Temperature variations can lead to changes 
in the shape of a machine or component, resulting in 
deviations from the original design parameters. These 
modifications can accumulate in complex systems or multi-
component structures. This means that considering the  
 

combined effects of many components and materials, even 
minor temperature fluctuations can lead to significant errors. 
An uneven distribution of temperature in a system causes 
non-uniform thermal expansion, which can cause machine 
parts to warp, bend or twist. To mitigate the effects of thermal 
error, manufacturers and engineers employ thermal error 
compensation strategies. These methods involve real-time 
temperature monitoring and using the data to adjust the 
machine’s operation to account for expected thermal 
discrepancies. Machine learning plays a crucial role in 
modelling the non-linearity and predicting thermal errors, 
enabling compensation in complex systems. By analysing 
temperature data from various regions of the machine, these 
temperatures serve as input features to predict the deviation 
between the workpiece and cutting tool, providing insight 
into the thermal characteristics of the machine. 

5.1 Model framework 

Figure 4 shows the proposed model framework, which 
contains an input layer with the model’s input sequence. The 
output layer gives the predicted thermal error value. The 
hidden layer consists of seven layers, including three GRU 
layers, two LSTM layers and two bi-LSTM layers. Three 
different models are used to predict a single output value 
from a sequence of six inputs. The first model uses LSTM 
layers with a dropout layer in between, the second model uses 
two bidirectional LSTM layers, and the third model uses three 
GRU layers with dropout layers in between, as shown in 
Figure 4. These models are trained separately, and their 
outputs are concatenated and fed to a dense output layer with 
a single neuron and linear activation. 
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Figure 4 Proposed BIG-LSTM model architecture 

 

 

The weights of the models are updated during training using 
backpropagation. During each iteration the model takes a batch 
of input sequences and makes predictions for each one. The 
difference between these predictions and the actual output 
values is measured using a loss function (mean squared error). 
The weights of the model are then adjusted using an optimiser 
(in this case, the Adam optimiser) to minimise this loss. This 
process is repeated for a specified number of epochs, which is 
the number of times the model sees the entire training data set. 

Once the training is complete, the model can be used to 
make predictions on new input sequences. The input sequences 
are fed to the model, and the output value is computed by 
passing the concatenated output of the three models through the 
dense output layer with a single neuron and linear activation. 

Overall, this model uses a combination of LSTM, 
bidirectional LSTM, and GRU layers to make predictions from 
input sequences. The output of these models is then combined 
to produce a final prediction. The weights of the models are 
updated during training using backpropagation and an 
optimiser to minimise the loss function, and the trained model 
can be used to make predictions on new input sequences. 

5.2 Data collection and pre-processing for machine 
displacement behaviour analysis 

Data on the machine’s displacement behaviour is gathered 
every day. This entails the use of sensors to track the  
 

machine’s motion and take the necessary measurements. Data 
from each day’s machining operation is gathered over a 
number of days. This information offers a historical record of 
the changes in the machine’s displacement behaviour over 
time. There are separate files where the information from 
each day’s machining operation is kept. Each file includes 
details regarding the precise displacement behaviour that was 
seen on that specific day. These files contain timestamps, 
numbers and other pertinent information. This entails 
monitoring and documenting a machine’s displacement 
behaviour over the course of many days of milling operations. 
This data collection and analysis method provides insightful 
information about the machine’s performance and help make 
manufacturing environments more efficient. All these files 
have been re-structured to form sliding windows for training 
the model. As shown in Figure 5, the input format is [batch 
size, temperature points, a column of values for each 
temperature points]. The data set used in this paper contains 
23,000 data points with nine features representing specific 
time, displacements on respective axes and temperature 
readings, including spindle rear, coolant fall, X bearing, ref 
rear, Z bearing, ref near transformer and ambient temperature. 
The data set also includes a column for the date and was used 
to investigate various aspects of the system under study. The 
change in displacement between work-piece and cutting tool 
with respect for time and input features is represented as 
shown in Figure 6. 
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Figure 5 Input format 

 

Figure 6 Change in displacement with respect to time 
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5.3 Training model 

The process of selecting appropriate hyperparameters for the 
BIG-LSTM model outlined in this study was guided by 
careful consideration of the model’s architecture and its 
impact on performance. Through defining three distinct 
models, specifically model 1, model 2, and model 3, diverse 
depths and architectures were explored to capture temporal 
dependencies and mitigate overfitting. In model 1, a two-
layer LSTM configuration was employed, with the initial 
LSTM layer set to output sequences, followed by dropout 
layers to control model complexity. Model 2 featured 
bidirectional LSTM layers, enhancing the model’s ability to 
capture both forward and backward temporal information, 
complemented by dropout layers for regularisation. Model 3 
adopted a three-layer GRU structure, with dropout layers 
after the initial two layers to curb overfitting tendencies. 
These varied architectural choices enabled the models to 
capture different levels of temporal patterns, demonstrating a 
nuanced approach to handling complex data dependencies. 
The number of hidden units, denoted as ‘LSTM 32 units’ and 
‘GRU 64 units’, played a pivotal role in shaping the models’ 
capacity to learn from the input sequences. While higher 
numbers of hidden units can potentially enhance a model’s 
ability to learn intricate relationships, they also introduce the 
risk of overfitting. Thus, moderate values for these 
parameters were meticulously selected to strike a balance 
between model complexity and generalisation ability. This 
deliberate choice aimed to maximise the models’ predictive 
capabilities without compromising their ability to adapt to 
unseen data. Regarding learning rate optimisation, the Adam 
optimiser with a default learning rate was employed. The 
learning rate is a critical hyperparameter that can substantially 
influence the convergence speed and overall stability of 
training. The impact of these hyperparameter choices on the 
model’s performance was substantial. Through the utilisation 
of a combination of multi-layer architectures, bidirectional 
structures and dropout layers, the trade-off between model 
complexity and overfitting was effectively managed, resulting 
in robust models capable of capturing intricate temporal 
dependencies. Notably, the choice of activation functions and 
the mean squared error loss function underscored the 
suitability of the model for regression tasks, aligning with the 
nature of the addressed problem. The description of the 
training model is provided below: 

1 Data preparation is the initial step in model training, and 
it involves dividing the input data into training and 
validation sets. The former is utilised to train the model, 
while the latter is employed to evaluate the model’s 
performance during training. To enhance the 
performance of deep learning models, normalisation is 
often applied, which involves scaling the input data to 
have zero mean and unit variance.  

2 Randomly initialising the model’s weights, passing input 
data through the model to generate a prediction, 
computing the gradients of the loss with respect to the 
weights using back propagation and updating the weights 
based on the adaptive learning rates computed by the 

Adam optimiser, which involves calculating the first and 
second moments of the gradients. The model is trained 
for a specified number of epochs, which refers to the 
number of times the model is trained on the entire 
training data set.  

3 The loss function used for training the above code is the 
mean squared error (MSE) function, which calculates the 
average of the squared differences between the predicted 
and actual outputs. This function is widely used in 
regression problems and is known to be effective in 
minimising the difference between predicted and actual 
outputs. By minimising the MSE loss during training, the 
model can learn to make more accurate predictions on 
new data.  

6 Performance evaluation 

The computational requirements and scalability of the BIG-
LSTM model were assessed on the Google Colab platform 
utilising a Python 3 environment. The experimentation was 
conducted on a system equipped with an NVIDIA T4 GPU and 
12 GB of RAM. The model training process made use of the 
available GPU acceleration provided by the NVIDIA T4 GPU, 
enhancing computational efficiency for complex neural 
network architectures like BIG-LSTM. The presence of  
12 GB of RAM facilitated efficient data handling during 
preprocessing, training and validation stages. The training time 
for the BIG-LSTM model was influenced by the network’s 
architecture, the size of the data set and the complexity of the 
hyperparameters. On average, each epoch of training took 
approximately 1.02 minutes. It’s worth noting that this time 
may vary depending on factors such as batch size, 
hyperparameter configuration and the convergence rate of the 
optimisation process. The BIG-LSTM model demonstrated 
promising scalability in the context of larger data sets and 
higher-dimensional input features. Although our analysis was 
performed on a limited scale due to the constraints of the 
experimental environment, the parallel processing capabilities 
of the NVIDIA T4 GPU showcased the potential to 
accommodate larger data sets efficiently. Additionally, the 
model exhibited adaptability to higher-dimensional input 
features, which is indicative of its capability to capture complex 
relationships within richer data representations. This section 
presents a comparative analysis of the thermal error prediction 
BIG-LSTM model developed in this paper and four existing 
neural network models for thermal error prediction, namely 
LSTM, RNN, GRU and BILSTM. The performance of each 
model was evaluated using a test set of data, and four widely 
used evaluation metrics in machine learning for regression 
problems were employed: Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), R2-squared (R2) and Mean 
Squared Error (MSE). 

RMSE represents the square root of the sample average of 
the squared differences between the predicted value and the 
actual value, and is commonly used as a measure of the 
sample standard deviation of the prediction error. A smaller 
RMSE value indicates better prediction performance. MAE, 
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on the other hand, measures the average value of the absolute 
difference between the predicted value and the actual value, 
providing a more intuitive understanding of the error in 
prediction. A smaller MAE indicates smaller errors. 

R2 is a measure of the goodness of fit, which ranges from 0 
to 1, with a higher value indicating a stronger relationship 
between the variables and a better model fit. MSE is the 
expected value of the squared difference between the predicted 
and actual values, and a smaller MSE value indicates better 
accuracy of the predictions. The mathematical expressions for 
each metric are given by equations (16), (17) and (18). 

 Root mean squared error (RMSE):  

2
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where iy  is the actual value, ˆiy  is the predicted value and n  

is the total number of data points. RMSE is a measure of the 
deviation between the predicted and actual values, with a 
smaller value indicating better performance. 

 Mean absolute error (MAE):  
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where iy  is the actual value, ˆiy  is the predicted value, and n  

is the total number of data points. MAE is a measure of the 
average magnitude of the errors, with a smaller value 
indicating smaller errors. 

 Coefficient of determination ( 2R ):  
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where iy  is the actual value, ˆiy  is the predicted value, y  is 

the mean of the actual values and n  is the total number of 

data points. R2 is a measure of the goodness of fit, with a 
value of 1 indicating a perfect fit and a value of 0 indicating 
no correlation between the predicted and actual values. 

According to the prediction results shown in Figure 7, the 
performance of the proposed BIG-LSTM model was 
evaluated and compared with four other models in terms of 
three evaluation indices, as shown in Table 1. 

Table 1 Comparison of model performance 

Models 
RMSE  
(μm) 

MAE  
(μm) 

R2 Score 

GRU 1.915464 1.342984 0.979164 

LSTM 1.777063 1.289625 0.982066 

RNN 3.028327 2.191802 0.947921 

Bi-LSTM 1.259673 0.940884 0.990989 

BIG-LSTM 0.91749 0.628139 0.99522 

The results shown in 1 indicate that both LSTM-based 
models (LSTM and BIG-LSTM) outperform the others in 
terms of accuracy, with BIG-LSTM being the most accurate. 
The RNN model lags behind in accuracy, while the GRU 
model also performs well but not as accurately as the LSTM-
based models. These results suggest that for this specific 
application, LSTM-based models are the most suitable 
choices, especially BIG-LSTM, which provides the highest 
predictive accuracy. Figure8 indicates that the BIG-LSTM 
model outperforms the other four models in all three-
evaluation metrics, suggesting a higher accuracy in predicting 
thermal error. Specifically, the BIG-LSTM model achieves 
the best performance in terms of both RMSE and R2 score. 
RMSE, which measures the average difference between the 
predicted and actual values, is lower in the BIG-LSTM 
model, indicating a better model fit. The R2-score, a statistical 
measure of the model’s goodness of fit, approaches 1 in the 
BIG-LSTM model, indicating a more accurate fit to the data. 
Therefore, the superior performance of the BIG-LSTM model 
in both RMSE and R2-score suggests that it is a more reliable 
and accurate model for predicting thermal error. 

Figure 7 Comparison of predicted and actual thermal errors using different models (see online version for colours) 
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Figure 8 Comparison of model performance (see online version 
for colours) 

 

A comprehensive ablation study was conducted to assess the 
significance of each constituent within the hybrid model, 
namely LSTM, GRU and Bi-LSTM, yielding valuable 
insights into the collective impact of the architecture on 
performance. This systematic analysis involved the controlled 
removal or modification of distinct components, providing a 
profound understanding of their individual contributions. The 
methodology comprised several crucial steps. Starting with 
the baseline hybrid model, which integrated all three 
components, each component was systematically eliminated 
or modified in isolation. This process allowed for the precise 
observation of each component’s effect on the model’s 
overall performance. The performance of each modified 
model was assessed using relevant evaluation metrics, such as 
Mean Squared Error (MSE) for regression tasks, or accuracy 
and F1-score for classification tasks. These metrics 
quantitatively gauged the impact of component changes on 
the model’s predictive capabilities. The findings of the 
ablation study revealed pivotal insights. As observed, the 
removal of the LSTM component resulted in a noticeable 
degradation of long-range dependency capture. Similarly, the 
absence of GRU led to a diminished ability to capture short-
term patterns, while omitting Bi-LSTM reduced the model’s 
bidirectional sequence understanding prowess. 

6.1 Real-time thermal error monitoring and  
control with the proposed model 

The proposed model is designed to understand and predict a 
machine’s displacement behaviour, particularly in situations 
where a cutting tool interacts with a workpiece. This 
interaction often generates heat due to friction and other 
mechanical processes. Consequently, the machine’s internal 
temperature undergoes variations. During a cutting process, 
these temperature fluctuations, especially at specific crucial 
temperature points, significantly influence the machine’s 
displacement behaviour. The model leverages these 
temperature changes to make predictions. Heat is generated 
throughout the machine as a result of the cutting operation. 
These specific points can be selectively identified as ‘key 

temperature points’, representing areas where temperature 
variations most accurately reflect the forces and stresses to 
which the machine is exposed during cutting. Once trained, 
the model uses the temperature data collected at these key 
locations to forecast how a particular machine will respond to 
a specific cutting procedure. The model’s capacity to 
generalise its predictions to similar machines of the same type 
is crucial. In other words, if you have multiple machines of 
the same type, you can use the same model to predict 
displacement behaviour for all of them without the need for 
retraining. However, if you intend to use the model with a 
different type of machine, it must be retrained using data 
specific to that target machine. This necessity arises because 
various machine types may possess distinct mechanical 
characteristics, material compositions and structural 
arrangements. These precise nuances of each machine must 
be imparted to the model. The proposed model capitalises on 
the correlation between temperature changes at critical 
locations and a machine’s displacement behaviour during 
cutting processes. It offers the advantage of transferability 
among machines of the same type, yet customisation becomes 
essential when working with different machine types due to 
their unique characteristics. In addition to the implementation 
methods discussed earlier, a crucial aspect of utilising the 
proposed model in CNC machines is its potential for  
real-time monitoring and control of thermal errors. This 
innovative application holds significant promise in industrial 
settings, offering both feasibility and several notable benefits. 
However, it also presents its own set of challenges that need 
to be addressed. 

6.1.1 Challenges 

While the concept is promising, several challenges must be 
considered when implementing real-time thermal error 
monitoring and control. First and foremost, ensuring the 
accuracy and reliability of temperature measurements is 
critical. Temperature sensors integrated into the CNC 
framework must provide precise and timely data. In cases 
where certain temperature points are not readily available 
within the CNC framework, external temperature monitoring 
equipment may be necessary. Managing the integration of 
these external sensors and ensuring their compatibility with 
the CNC system can be a complex task. 

Additionally, the computational demands of running the 
model in real-time should not be underestimated. CNC 
machines require rapid decision-making and precise control. 
Therefore, optimising the model’s execution to minimise 
latency is essential. Balancing the computational load with 
the CNC machine’s processing capabilities can be a 
significant technical challenge. 

6.1.2 Benefits 

The benefits of implementing real-time thermal error 
monitoring and control using the proposed model are 
substantial. By continuously monitoring temperature variations 
and predicting their effects on machine displacement, 
manufacturers can achieve several advantages: 
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1 Enhanced precision: Real-time monitoring allows for 
immediate adjustments to compensate for thermal 
errors, resulting in higher machining precision and 
product quality. 

2 Reduced waste: Minimising errors due to temperature 
fluctuations reduces material wastage and the need for 
rework, resulting in cost savings. 

3 Extended tool life: Accurate control of thermal errors 
can extend the lifespan of cutting tools, reducing 
maintenance costs. 

4 Increased efficiency: CNC machines can operate at 
optimal conditions, reducing downtimes and increasing 
productivity.  

Although there are challenges to overcome, the 
implementation of real-time thermal error monitoring and 
control using the proposed model provides significant 
benefits to industrial CNC machining. Manufacturers willing 
to invest in advanced temperature monitoring and control 
systems can expect improved precision, efficiency and cost-
effectiveness in their operations. 

7 Conclusions 

The proposed thermal error modelling method utilises a 
hybrid approach that employs BIG-LSTM deep learning. The 
model is designed to capture both short-term and long-term 
information in the temperature data and thermal error data by 
combining three GRU layers, two LSTM layers and two bi-
LSTM layers in the hidden layer. GRU, LSTM and bi-LSTM 
are Recurrent Neural Networks (RNNs) that are commonly 
used for time-series data analysis. RNNs are suitable for 
sequential data, where each data point is related to the 
previous data points in the sequence. GRU and LSTM are 
two types of RNNs that were designed to overcome the 
vanishing gradient problem that can occur with traditional 
RNNs. Bi-LSTM is a variation of LSTM that can capture 
information from both past and future data points in a 
sequence. By combining these three types of layers in the 
hidden layer, the BIG-LSTM model can effectively capture 
both short-term and long-term information, allowing it to 
extract the temporal and spatial characteristics of the dynamic 
time series temperature data and thermal error data. This 
results in a superior learning ability of the model, which is 
reflected in its accuracy in predicting thermal error. During 
validation tests, the proposed BIG-LSTM model was 
compared with four traditional models based on RNN, GRU, 
LSTM and Bi-LSTM. The results showed that the BIG-
LSTM model outperformed all four models in all evaluation 
criteria, including RMSE and R2-score prediction accuracy. 
This indicates that the BIG-LSTM model is a reliable and 
accurate model for thermal error prediction. Specifically, the 
RMSE value of the BIG-LSTM model was only 0.9 μm, 
which is a very small error and demonstrates the high 
accuracy of the model. 

Possible future directions for this research could include 
the exploration of different architectures and hyperparameters 
for the BIG-LSTM model to improve its performance further. 
Additionally, incorporating other relevant features such as 
tool wear and cutting parameters could enhance the accuracy 
of thermal error predictions. It may also be useful to 
investigate the transferability of the proposed model to other 
manufacturing processes, materials and cutting tools. Finally, 
the implementation of real-time monitoring and control of 
thermal error using the proposed model could be a valuable 
application in industrial settings. 
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