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Abstract: Predicting viscosity’s nanofluids can benefit all domains, including 
energy, thermofluids, power systems, energy storage, materials, cooling, 
heating, and lubrication. The objective of this study to predict the dynamic 
viscosity of polyalphaolefin-hexagonal boron nitride (PAO/hBN) nanofluids 
using four main parameters: shear rate, shear stress, nanomaterials mass 
fraction, and temperature. Moreover, three hybrid ensemble learning models 
(Bayesian ridge-random forest, Bayesian ridge-MLP regressor and Bayesian 
ridge-AdaBoost regressor) were developed for the current task. The forward 
sequential feature selector (FSFS) created four input combinations (models). 
Model 4 showed the best prediction accuracy, followed by models 2, 3 and 1. 
The computational findings showed that ensemble learner 1 was slightly 
outperformed by ensemble learner 3. Meanwhile, among the predictive models, 
ensemble learner 2 consistently placed third. Besides, the research results 
demonstrated that creating predictive models based on all input parameters can 
produce a precise prediction matrix. Overall, the study recommended exciting 
conclusions on predicting a nanolubricant’s viscosity for use in heat transfer 
applicants. 

Keywords: nanofluids; viscosity; polyalphaolefin; PAO; machine learning; 
ensemble learning; boron nitride. 
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1 Introduction 

1.1 Research background and motivation 

Nanofluids, a fluid with outstanding thermophysical properties, have gotten a lot of 
interest in recent years because of their potential uses in various industrial fields (Wang  
et al., 2023; Lingala, 2023). It is critical to accurately determine the thermophysical 
parameters of nanofluids, such as dynamic viscosity and thermal conductivity, to assess 
their heat transfer effectiveness in these applications (Ali and Salam, 2020; Rashidi et al., 
2021; Rashidi et al., 2021). However, due to the high cost of nanoparticles, experimental 
evaluation of nanofluids’ complete spectrum of thermophysical properties is not 
economically possible. As a result, building predictive models for estimating nanofluid 
characteristics has become a critical area of research (Asadi et al., 2019; Zendehboudi  
et al., 2019; Zhou et al., 2023b). Researchers have used various strategies, including 
experimental, numerical, and intelligent methods, to analyse, predict, and optimise the 
thermophysical properties of nanofluids. Among these qualities, dynamic viscosity and 
thermal conductivity are important in evaluating heat transfer in industrial applications 
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such as pumping power and convective heat transfer (Gholizadeh et al., 2020). Despite 
the complexity of molecular interactions and the hydrodynamics of nanofluids, it is 
crucial to accurately determine the dynamic viscosity of these materials as a rheological 
parameter. In conclusion, research into the thermophysical properties of nanofluids is an 
area of science that is quickly developing, and the creation of prediction models for 
calculating the properties of nanofluids is essential for ensuring their practical usage in 
various industrial applications. 

1.2 Literature review 

Numerous theoretical and experimental studies have been carried out recently to 
understand better the effects of various variables on the improvement of dynamic 
viscosity and thermal conductivity of nanofluids, including temperature, solid volume 
fraction, nanoparticle size, base fluid type, shear rate, and nanoparticle shape (Garoosi, 
2020; Amin et al., 2021). The majority of these studies have concentrated on determining 
the dynamic viscosity of nanofluids using different types of nanoparticles, such as 
aluminum oxide (Al2O3), titanium dioxide (TiO2), silicon dioxide (SiO2), copper oxide 
(CuO), silicon carbide (SiC) and single-walled carbon nanotubes (SWCNTs), in different 
volume fraction ranges suspended in water (DW), deionised water (DIW), ethylene 
glycol (EG), and mixtures of these base fluids (Porgar et al., 2023; Younes et al., 2022; 
Alshuhail et al., 2023; Yang et al., 2017; Kalsi et al., 2023). However, it can be used to 
measure nanofluids’ relative viscosity in a lab, so some researchers have created 
theoretical models to calculate the dynamic viscosity to cut down on time-consuming 
laboratory experiments (Hemmati-Sarapardeh et al., 2018). Additionally, empirical 
models based on conventional mathematical correlations have been developed (Wang  
et al., 2016). An experimental study measured the thermo-physical properties of 
polyalphaolefin oil modified with nano additives like PAO6 as a base fluid mixed with 
zirconium oxide (ZrO2) and boron nitride (BN) nanoparticles (NPs) and graphene 
nanoplatelets (GNPs) (Guimarey et al., 2019). They observed that, the greatest increase in 
viscosity is obtained when GNPs were used as an additive. Also, the combination of 
polyalphaolefin (PAO) oil with hexagonal boron nitride (hBN) was prepared for thermal 
management and lubrication applications (Sleiti, 2020). The viscosity as a function of 
temperature (from –20 to 70°C) and volume fraction (0.25–1%) decreased with 
temperature for both base fluid and PAO/hNB nanofluids and increased with 
concentration. In another study, hexagonal boron nitride (h-BN) nanoparticles were 
dispersed in (PAO6) for comprehensive experimental examination (Jiang et al., 2021). 
Rheological characterisation showed that the h-BN nano-lubricants exhibited  
non-Newtonian behaviour at low shear rates (<36.69 s–1) and Newtonian behaviour at 
higher shear rates. 

Artificial neural network (ANN) models have been extensively employed in 
experimental studies in recent years to assess the relative thermal conductivity and 
dynamic viscosity of diverse nanofluids. However, for many nanofluids, the hypothesised 
correlations are inadequately precise and effective (Esfe et al., 2016; Karimipour et al., 
2018). Advanced machine learning methods, such as the adaptive neuro-fuzzy inference 
system (ANFIS), multilayer perceptron artificial neural network (MLP-ANN), least 
square support vector machine (LLSVM), and others, are now being used by researchers 
to address this problem. For instance, Mehrabi et al. (2013) developed an FCM-ANFIS 
model to estimate the effective viscosity of nanofluids, which is restricted to a particular 
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kind of nanofluid and employs volume fraction, temperature, and nanoparticle size as 
input variables to predict the effective viscosity of nanofluids. A hybrid ANN-based 
group method of data handling (GMDH) technique was utilised by Atashrouz et al. 
(2014) to calculate the dynamic viscosity of nine nanofluids containing Al2O3, SiO2, 
TiO2, and CuO nanomaterials. MLP-ANN and radial basis function neural network 
(RBF-ANN) models were presented by Heidari et al. (2016) and colleagues, and they 
demonstrated good accuracy in predicting the viscosity of nanofluids using the same 
dataset. The viscosity of Newtonian nanofluids with various nanoparticle kinds and base 
fluids can be estimated using soft computing approaches, such as ANFIS, gene 
expression programming (GEP), MLP-ANN, and LLSVM, according to Chen et al. 
(2007). The MLP model was developed by Ansari and his team (2018) utilising various 
training algorithms and other transfer functions. Input factors for this study include 
temperature, shear rate values, nanoparticle size, density, and nanoparticle concentration. 
To estimate the relative viscosity of nanofluids, Baghban et al. (2019) developed a hybrid 
ANFIS and particle swarm strategy with as input parameters temperature, nanoparticle 
diameter, nanofluid density, volumetric fraction, and base fluid viscosity. However, the 
dataset that was gathered did not contain any carbon nanotubes. 

Recently, some robust machine learning models were developed to estimate the 
thermophysical properties of nanofluids; two modern novel machine learning approaches, 
a Bayesian optimised support vector machine and a wide neural network, were used to 
model-predict the thermophysical properties of Al2O3-GO nanofluids with a robust 
predictive efficiency of 97.15–99.91% (Kanti et al., 2023b). ANFIS models with different 
types of clustering techniques, including grid partitioning (GP), subtractive clustering 
(SC), and fuzzy c-means (FCM), were utilised to estimate the thermophysical properties 
of water-based oxide-MWCNT hybrid nanofluids (Zhang et al., 2023). SC-based ANFIS 
approach presented the highest precision model for the nanofluids viscosity (R = 0.99887 
and MAPE = 0.4206%). Application of novel machine-learning techniques was applied 
to examine the effects of pH on the stability and thermal properties of copper oxide 
(CuO), graphene oxide (GO), and their hybrid nanofluid (HNF) at different mixing ratios 
(Kanti et al., 2023a). Their ML results revealed that the Bayesian optimised support 
vector machine (BoA-SVM) was superior to Bayesian optimised boosted regression trees 
(BoA-BRT) for the viscosity model. An explainable artificial intelligence (XAI) 
technique called the Bayesian approach optimised Gaussian process regression was 
employed to develop a predictive model for the thermophysical properties of 
polydisperse SiO2/aqueous glycerol nanofluids (Sharma et al., 2023). The test XAI 
approaches were shown as robust because of the high correlation values, which ranged 
from 99.68% to 99.99%, along with minimal modelling errors. 

1.3 Research objectives 

This research is significant because it fills a knowledge gap in optimising nanolubricant 
viscosity. The thermophysical properties of nanofluids have been extensively studied, but 
the best way to maximise the viscosity of nanolubricants has received less attention. 
Furthermore, the use of machine learning in this field of study has been limited. The 
study aims to use experimental data to predict the dynamic viscosity of a nanolubricant 
made of a mixture of polyalphaolefin (PAO) and hexagonal boron nitride (hBN) 
nanomaterials. In order to examine the impact of many parameters on viscosity, including 
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temperature, shear stress, mass fractions of nanoparticles, and shear rate, the study 
separated the computational models into four sections. This is crucial because, by 
recognising how these factors affect the viscosity of the nanolubricant, the viscosity may 
be optimised. The study used three different hybrid machine learning techniques – 
Bayesian ridge + random forest, Bayesian ridge + MLP regressor and Bayesian ridge  
+ AdaBoost regressor – to assess the overall performance of the computational models. 
After a thorough statistical analysis, these machine-learning models were utilised to 
examine the experimental data and make predictions regarding the viscosity of the 
nanolubricant. This is crucial because it shows how machine learning can help optimise 
nanolubricant viscosity. Overall, this study contributes to the field by filling a gap in the 
literature on nanolubricant viscosity optimisation, exploring the effect of various 
parameters on viscosity, and proving the promise of machine learning in this area of 
research. 

2 Methodology 

As per Figure 1, the current research design is divided into several phases, such as data 
collection from lab measurements, features engineering and selection using sequential 
forward selection (SFS), development of four combinations, application of three different 
hybrid AI-driven models of each input combination and evaluate the performance of each 
hybrid model through four metrics. 

Figure 1 Flowchart of the proposed methodology (see online version for colours) 

 

2.1 Data collection and statistical analysis 

The raw data shown here relates to the articles previously published in Sleiti (2020, 
2021). The experimental measurements were conducted using the AR-G2 rheometer from 
TA Instruments to assess the viscosity values for pure PAO and the PAO/hBN 
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nanolubricants. Different data were taken, including viscosity (Pa-s), shear stress (Pa), 
shear rate (1/s), and temperature (°C). Moreover, the weight concentration of the 
nanomaterials was in three different values: (φ = 0% for pure PAO) and (φ = 0.6% and 
1.0% for PAO/hBN nanolubricants). 
Table 1 Main parameters of nanofluids data analysis 

 Shear stress 
(Pa) 

Shear rate 
(1/s) 

Temperature 
(°C) 

Mass fraction 
(φ) 

Viscosity 
(Pa-s) 

N Valid 537 537 537 537 537 
Missing 0 0 0 0 0 

Mean 9.9005 259.7481 24.9991 0.5307 0.1701 
Std. error of mean 0.00406 10.62038 1.11632 0.01774 0.01097 
Median 9.9340 173.3000 25.0000 0.6000 0.0573 
Mode 9.99 41.40 –19.70 0.00 0.02 
Std. deviation 0.09419 246.10889 25.86887 0.41100 0.25420 
Variance 0.009 60569.587 669.198 0.169 0.065 
Skewness -0.982 0.986 0.000 –.231 2.547 
Std. error of skewness 0.105 0.105 0.105 0.105 0.105 
Kurtosis 0.030 0.036 –1.199 –1.505 7.279 
Std. error of kurtosis 0.210 0.210 0.210 .210 0.210 
Range 0.38 988.08 89.70 1.00 1.55 
Minimum 9.62 6.42 –19.70 0.00 0.01 
Maximum 10.00 994.50 70.00 1.00 1.56 
Percentiles 25 9.8390 51.6850 2.5000 0.0000 0.0231 

50 9.9340 173.3000 25.0000 0.6000 0.0573 
75 9.9800 421.4000 47.5000 1.0000 0.1931 

As stated above, the dataset includes four different input parameters, such as shear rate, 
shear stress, temperature, and mass percentage of hBN nanomaterials, to estimate the 
values of dynamic viscosity, as shown in Table 1. The dataset has 537 valid points and no 
missing values. Furthermore, Table 1 displays descriptive statistics of input and output 
properties using metrics such as mean, standard deviation, variance, skewness, and 
kurtosis to provide a complete picture of the relationships between independent and 
dependent variables. The Pearson correlation coefficient (PCC) between input and output 
variables are described in Figure 2. Temperature input showed the strongest correlation 
with dynamic viscosity, with a negative coefficient correlation of 0.741. At the same 
time, shear rate and share stress indicated almost the exact correlation of ±0.55. 
Meanwhile, the mass fraction of BN nanoparticles showed a lower impact of 0.172. 

2.2 Sequential forward selection 

Sequential forward selection (SFS) is a wrapper feature selection algorithm that improves 
model performance and interpretability by adding one feature at a time to the current set 
of selected features (Zhou et al., 2023a) (see Figure 3). The process stops when a certain 
number of features have been added, or no further improvement can be made. SFS is 
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computationally expensive and can lead to sub-optimal solutions if the relationship 
between the features and target variable is nonlinear. A new method that combines the 
SFS-based feature selection strategy with the random forest (RF) machine learning 
algorithm is proposed to solve these weaknesses. This method accurately identifies the 
importance of each feature, removing unneeded and duplicate features. The present study 
investigated the influence of different input parameters on predicting the dynamic 
viscosity of nanolubricants using four feature combinations (models), as reported in 
Table 2. The hyperparameters tuning of the SFS algorithm are as follows (random forest 
regressor(), k_features = 4, forward = true, scoring = ‘R2’, verbose = 2, cv = 3). 

Figure 2 Correlation coefficient between input and output variables (see online version  
for colours) 

 

Table 2 Features combinations according to forward sequential feature selector 

# Feature names cv_scores avg_score ci_bound std_dev std_err 
Model 1 Shear rate [0.99969451 

0.99336954 
0.9990032] 

0.99736 0.00637 0.00283 0.002 

Model 2 Shear rate, 
temperature 

[0.99785936 
0.99886052 
0.9978461] 

0.99819 0.00107 0.00048 0.00034 

Model 3 Shear stress, shear 
rate, mass fraction 

[0.99640226 
0.99568815 
0.99935141] 

0.99715 0.00357 0.00159 0.00112 

Model 4 Shear stress, shear 
rate, temperature, 

mass fraction 

[0.99218607 
0.99612162 
0.99876728] 

0.99569 0.00608 0.00270 0.00191 
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Figure 3 Sequential forward selection using random forest process (see online version  
for colours) 

 

2.3 Machine learning regressors 

The Bayesian ridge algorithm, random forest algorithm, MLP regressor algorithm, and 
adaptive boost regressor are the four machine learning approaches developed in this study 
to estimate the values of nanolubricant viscosity. The feature selection process was 
utilised to determine the relationship between input features and the target variable to 
determine the most informative features for predicting viscosity. After selecting the best 
features, each algorithm was trained on the data using these features. Finally, three hybrid 
models were developed using ensemble voting regressor implementation with the 
Bayesian ridge algorithm as the base algorithm, and the other three models combined to 
create three predictors. 

2.3.1 Bayesian ridge algorithm 
The Bayesian ridge algorithm is a linear regression method that utilises Bayesian 
methods to regularise the model (Cruz et al., 2021). This probabilistic algorithm 
estimates the weight coefficients of the linear model through maximum a posteriori 
(MAP) estimation. One of the key advantages of this approach is that it can efficiently 
manage scenarios in which the number of features in the dataset exceeds the number of 
samples, which frequently leads to overfitting when using typical linear regression 
models. The Bayesian ridge algorithm incorporates past information and presumptions 
about the model’s parameters into the estimate process, which helps prevent overfitting. 
The algorithm provides estimates of the model’s uncertainty, which can be advantageous 
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in specific applications such as decision-making processes. These estimates can be 
helpful when the model’s accuracy is critical and understanding the confidence level in 
the model’s predictions is required (Salem et al., 2022). The objective function to be 
minimised is as follows: 

2 2 2
, 2 22

1 1min
2 2 2

− + +w
samples

y Xw w λ w
nα

α  (1) 

where w is the weight vector, α is the precision of the noise, X is the input parameters, y 
is the nanolubricant viscosity, 2nsamples is the dataset size, and λ is the hyperparameter for 
the ridge (L2) regularisation. 

2.3.2 Random forest algorithm 
The random forest algorithm is an effective technique for solving regression problems 
(Zekić-Sušac et al., 2021). An ensemble method creates multiple decision trees to predict 
continuous output variables. The random forest algorithm employs the bagging approach, 
randomly selecting samples from the input data and making a decision tree for each 
sample. Then, the algorithm calculates the prediction of each tree, and the final output is 
the average of all the trees’ predictions. The random forest approach uses several trees 
and can capture complex correlations, such as nonlinearity and feature interaction, 
between input and output variables. Moreover, the algorithm includes a feature selection 
mechanism called feature randomness, which randomly selects a subset of features for 
each tree and finds the best split at each node. This method results in decorrelation 
between the trees and reduces the correlation between the features and output variables, 
lowering the prediction variance. The random forest algorithm is a versatile and robust 
method that can handle large datasets with many features. It is widely used in various 
regression applications such as time series prediction, high dimensional data analysis, and 
spatial data modelling (Parzinger et al., 2022; Wang et al., 2022). This study implements 
the following hyperparameters with the random forest algorithm: (max_depth = 5, 
oob_score = true, bootstrap = true). 

2.3.3 MLP regressor algorithm 
A supervised learning approach called a multilayer perceptron (MLP) uses artificial 
neural networks for regression tasks (Esfe et al., 2022; Ghritlahre and Prasad, 2018). The 
design comprises several interconnected layers of artificial neurons, where the input layer 
receives input data, one or more hidden layers process the data, and the output layer 
generates the prediction. The weights linking the neurons in each layer are changed 
during training to improve the network’s performance. A labelled dataset is necessary for 
MLP training, which involves presenting the network with input-output pairs and 
adjusting the weights to reduce the discrepancy between the predictions and actual 
outputs. The network can be used to predict new, unexplored data after training. MLP is 
helpful in various applications, including time series forecasting, natural language 
processing, and image identification, because it can simulate nonlinear interactions 
between inputs and outputs. However, MLP is susceptible to overfitting, mainly when 
many hidden layers or neurons exist. Different regularisation strategies, including 
dropout, weight decay, and early halting, can be used to address this problem (Ghazvini 
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et al., 2022). In this model, two hidden layers (200,200) with activation = ‘relu’ were 
implemented. The equation for a single neuron’s output is given by: 

( )1
( )

=
⋅= +n

i ii
f x σ w x b  (2) 

where f(x) is the output of the neuron, xi are the input parameters, wi are the weights 
associated with the inputs, b is the bias term, σ is the activation function. 

2.3.4 Adaptive boost regressor 
AdaBoost is a widely used ensemble method in regression tasks, particularly thermal 
engineering (Adun et al., 2022; Chen et al., 2022; Zhou et al., 2020). The central concept 
of AdaBoost is to combine several weak models, such as decision trees, to form a robust 
ensemble model. The weak models are trained iteratively, with each iteration focusing on 
the examples previously misclassified by the ensemble. This iterative process helps 
improve the ensemble’s overall performance by reducing the individual models’ bias and 
variance. AdaBoost’s key advantage is handling complex and nonlinear relationships 
between inputs and outputs. Moreover, it is robust to outliers and can be applied to 
various applications such as predicting temperature, pressure, and other thermodynamic 
properties in thermal engineering. This study used AdaBoost parameters: (base_estimator 
= RF, random_state = 0, n_estimators = 10). The weights are determined based on the 
performance of each weak learner. The formula for the prediction is: 

1
( ) ( )

=
=T

t tt
F x h xα  (3) 

where F(x) is the final prediction, T is the number of weak learners, αt are the weights for 
each weak learner’s prediction, ht(x) is the prediction of the tth weak learner. 

2.4 Ensemble voting regressor 

Ensemble voting regressor is a powerful technique that combines multiple base models’ 
predictions to form a more robust prediction (Phyo et al., 2022). This method employs 
the principle of majority voting to make a final prediction. Numerous base models are 
initially trained on the same dataset, making predictions on new, unseen data. Then, the 
base models’ predictions are combined by taking the majority vote on the predictions. In 
a scenario with three base models, two of which predict a particular value, that value is 
selected as the final prediction. Ensemble voting can be applied to both classification and 
regression tasks. One of the primary advantages of ensemble voting is its ability to 
enhance the model’s overall performance by reducing the variance and bias of the 
individual base models. Also, it improves the model’s generalisation, making it more 
robust for new unseen data. This method can be applied in various applications, including 
thermal engineering, weather forecasting, and energy management. 

After the performance assessment of the diverse traditionally used ML regressions, 
the two best regressions have been recognised. At that point, these two main regressions 
will be used for the next step to obtain the best output from the dataset. Then, the voting 
regressor will be utilised. As per Figure 4, three ensemble learning (hybrid) were 
developed as  ensemble learning 1 (Bayesian ridge + random forest), ensemble learning 2 
(Bayesian ridge     + MLP regressor) and ensemble learning 3 (Bayesian ridge+ AdaBoost 
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regressor). It is worth noting that the Bayesian ridge is consistent with all machine 
learning algorithms due to its linear correlations between the input parameters and the 
dynamic viscosity. The equation for the ensemble voting regressor’s prediction can be 
expressed as follows: 

1
( ) · ( )

=
=n

i ii
F x w f x  (4) 

where F(x) is the final prediction made by the ensemble, n is the number of individual 
regressors (base models) in the ensemble, wi is the weight associated with the ith, 
regressor’s prediction, fi(x) is the prediction made by the ith regressor for the input sample 
x. 

Figure 4 Schematic diagram of ensemble voting regressor (see online version for colours) 

 

2.5 Performance metrics 

In the current study, four performance metrics, mean absolute error (MAE), mean 
squared error (MSE), root mean squared error (RMSE), and R-squared (R2), were utilised 
to evaluate the performance of machine learning models in predicting the dynamic 
viscosity of nanolubricants. Generally, a model with a lower MAE, MSE, and RMSE and 
a higher R² better fits the data. However, it is essential to remember that the choice of 
metric depends on the specific problem and the goals of the analysis. 
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where μi is the predicted value of viscosity’s nanofluid and μ̂  is the mean value of 
viscosity’s nanofluid. 

3 Modelling results and analysis 

Table 3 presents the performance metrics of four different combinations (models 1, 2, 3 
and 4) during their training and testing phases using three different hybrid ensemble 
learning approaches (ensemble learnings 1, 2 and 3). As stated above, the metrics include 
mean squared error (MSE), root mean squared error (RMSE), R-squared (R2), and mean 
absolute error (MAE). 

Overall, the results demonstrate that the model itself (prediction approach) and the 
ensemble learning technique (number of input features) that are used both affect machine 
learning performance. For example, model 2 (two input parameters) and model 4  
(four parameters) outperform model 1 (one input parameter) and model 3 (three input 
parameters) throughout both the training and testing stages. This suggests that models 2 
and 4 are the most accurate models in predicting nanolubricant viscosity with two and 
four input parameters. In contrast, models 1 and 3 show lower accuracy than models 2 
and 4. This conclusion reveals that models 1 and 3 implementation is more cost-effective 
in employing one and three features to predict the viscosity value rather than  
four features. In specific, ensemble learnings 1 and 3 consistently outperform ensemble 
learning 2. This finding can be attributed to the development of tree-based algorithms that 
show higher accuracy than neural networks for the current task. 

Finally, the ensemble learning approach selected can considerably impact the models’ 
accuracy and generalisability, and the models’ performance can vary based on their 
complexity and other parameters. As a result, it is critical to carefully select and evaluate 
various ensemble learning strategies in order to improve model performance and produce 
more accurate predictions. 

This part shows the scatter plots of the coefficient of determination (R2) using four 
different models (combinations) during their training and testing scenarios using three 
different ensemble machine learning techniques are presented in Figure 5. For model 1, 
the R2 values during the testing phase for the three hybrid methods are close, ranging 
from 0.74953 to 0.82509. However, the R2 value during the training phase is higher, 
ranging from 0.75008 to 0.82799. For model 2, the R2 value during the testing phase for 
the three ensemble learning methods ranges from 0.75460 to 0.910885, with ensemble 
learning 1 and ensemble learning 3 showing slightly higher values. The R2 value during 
the training phase is higher than the testing phase for all the ensemble learning methods, 
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ranging from 0.78923 to 0.92025. For model 3, the R2 values during the testing phase for 
all three ensemble learning methods range from 0.79440 to 0.82786, with ensemble 
learning 3 showing the highest value. The R2 value during the training phase is higher 
than the testing phase for all the ensemble learning methods, ranging from 0.79548 to 
0.82786. For model 4, the R2 value during the testing phase for all three ensemble 
learning methods ranges from 0.91800 to 0.93902, with ensemble learning 3 showing the 
highest value. The R2 value during the training phase is higher than the testing phase for 
all the ensemble learning methods, ranging from 0.93965 to 0.94714. 
Table 3 Quantitative evaluation of models 1, 2, 3 and 4 

Model 1 
Training phase  Testing phase 

Ensemble 
learning 1 

Ensemble 
learning 2 

Ensemble 
learning 3  Ensemble 

learning 1 
Ensemble 
learning 2 

Ensemble 
learning 3 

MSE 0.01072 0.01558 0.01072  0.01281 0.01831 0.01279 
RMSE 0.10354 0.12481 0.10355  0.11318 0.13532 0.11308 
R2 0.82799 0.75008 0.82797  0.82478 0.74953 0.82509 
MAE 0.07122 0.09285 0.07105  0.07873 0.09985 0.07848 

Model 2 
Training phase  Testing phase 

Ensemble 
learning 1 

Ensemble 
learning 2 

Ensemble 
learning 3  Ensemble 

learning 1 
Ensemble 
learning 2 

Ensemble 
learning 3 

MSE 0.00501 0.01314 0.00497  0.00658 0.01794 0.006515 
RMSE 0.07075 0.11462 0.07050  0.08109 0.13394 0.080714 
R2 0.91969 0.78923 0.92025  0.91005 0.75460 0.910885 
MAE 0.04500 0.08652 0.04507  0.05323 0.09420 0.053199 

Model 3 
Training phase  Testing phase 

Ensemble 
learning 1 

Ensemble 
learning 2 

Ensemble 
learning 3  Ensemble 

learning 1 
Ensemble 
learning 2 

Ensemble 
learning 3 

MSE 0.01082 0.01275 0.01073  0.01284 0.01503 0.01293 
RMSE 0.10402 0.11291 0.10358  0.11331 0.12260 0.11371 
R2 0.82640 0.79548 0.82786  0.82437 0.79440 0.82314 
MAE 0.07134 0.08274 0.07104  0.07866 0.09106 0.07858 

Model 4 
Training phase  Testing phase 

Ensemble 
learning 1 

Ensemble 
learning 2 

Ensemble 
learning 3  Ensemble 

learning 1 
Ensemble 
learning 2 

Ensemble 
learning 3 

MSE 0.00333 0.00376 0.00329  0.00446 0.00599 0.00450 
RMSE 0.05775 0.06133 0.05740  0.06677 0.07742 0.06705 
R2 0.94650 0.93965 0.94714  0.93902 0.91800 0.93850 
MAE 0.03934 0.04306 0.03947  0.04269 0.04878 0.04290 

All the models show higher R2 values during the training phase than the testing phase, 
showing machine learning algorithms’ ability to generalise well to unseen data in 
predicting the value of dynamic viscosity. The performance of the models during the 
testing phase is better when ensemble learning 3 is used. However, the choice of the 
hybrid machine learning approach and the input combination’s performance varies 
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depending on the model complexity, number of features (data size), interpretability, 
training time, and hyperparameters tuning. 

Figure 5 Scatter plots of models 1, 2, 3 and 4 using different ensemble learners versus predicted 
viscosity (see online version for colours) 
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Figure 5 Scatter plots of models 1, 2, 3 and 4 using different ensemble learners versus predicted 
viscosity (continued) (see online version for colours) 

  

The boxplots of the developed models during the training/testing scenarios are presented 
in Figure 6. Box plots illustrate the distribution and probability density between the 
observed and predicted values of dynamic viscosity. Models 1, 2, 3 and 4 testing 
scenarios were evaluated using three different ensemble learning methods: ensemble 
learnings 1, 2 and 3. 

The results indicate that, in the testing scenario of model 1, the median and standard 
deviation of the ensemble learnings 1, 2 and 3 were (0.130, 0.179, and 0.130) and (0.189, 
0.173, and 0.189), respectively. In the testing scenario of model 2, the median and 
standard deviation were (0.083, 0.030, and 0.083) and (0.237, 0.260, and 0.237) for 
ensemble learnings 1, 2 and 3, respectively. In the testing scenario of model 3, the 
median and standard deviation were (0.130, 0.158, and 0.130) and (0.188, 0.193, and 
0.188) for ensemble learnings 1, 2 and 3, respectively. Finally, in the testing scenario of 
model 4, the median and standard deviation were (0.056, 0.055, and 0.056) and (0.243, 
0.244, and 0.243) for ensemble learnings 1, 2 and 3, respectively. 

Overall, while median performance values suggest that hybrid model-3 consistently 
performs well, followed by hybrid model 1 and hybrid model 2, it is essential to consider 
the standard deviation, which indicates variability in performance. Hybrid model 2 
exhibits higher variability, making it less stable, while hybrid models 1 and 3 display 
more consistent results. Combination 2 consistently yields the lowest median 
performance, while combination 4 tends to perform the best. 

In addition to the graphical comparison, a Taylor diagram (Taylor, 2001; Ali et al., 
2022) was also employed to evaluate the developed hybrid models based on their 
correlation and standard deviation. Figure 7 presents the Taylor diagram for the three 
hybrid learners with different input combinations for training and testing data. 
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Figure 6 Boxplots presentation of developed models for the training/testing phases, (a) model-1 
training (b) model-1 testing (c) model-2 training (d) model-2 testing (e) model-3 t 
raining (f) model-3 testing (g) model-4 training (h) model-4 testing (see online version 
for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 6 Boxplots presentation of developed models for the training/testing phases, (a) model-1 
training (b) model-1 testing (c) model-2 training (d) model-2 testing (e) model-3 
training (f) model-3 testing (g) model-4 training (h) model-4 testing (continued)  
(see online version for colours) 

  
(e)     (f) 

  
(g)     (h) 

 

 

 

 



   

 

   

   
 

   

   

 

   

    Artificial intelligence-based viscosity prediction 107    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 Taylor plots of performance metrics for the four predictive models (see online version 
for colours) 
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According to the testing Taylor diagram findings, combination 4 performs best in 
estimate accuracy, followed by combinations 2, 1 and 3. Moreover, it is observed that the 
hybrid model utilising Bayesian ridge along with random forest generally performs 
slightly better than the model using Bayesian ridge with AdaBoost regressor, which in 
turn serves better than the model with Bayesian ridge and MLP regressor in all 
combinations. These findings confirm the high accuracy and reliability of the proposed 
ensemble learning models in predicting the dynamic viscosity of Newtonian oil-based 
nanofluids. 

It should be noted that the Taylor diagram provides a valuable visualisation for 
comparing multiple statistical measures, such as correlation and standard deviation, of 
different models. The diagram identifies the optimal model in terms of these measures 
and facilitates the comparison of other models in a single plot. Therefore, using the 
Taylor diagram in addition to boxplots provides a more comprehensive evaluation of the 
developed ensemble learning models. 

4 Algorithms reviews 

The current research employed three different hybrid machine learning algorithms to 
predict the viscosity of polyalphaolefin-boron nitride (PAO-BN) nanofluids due to their 
significant challenges in materials science and engineering. Bayesian ridge was the base 
model in the hybrid algorithms due to its linear regression technique that maintains the 
linear regression coefficients using a probabilistic framework. The Bayesian ridge was 
combined with random forest, MLP, and AdaBoost in the first, second, and third models, 
respectively. In addition, the primary purpose of combining two algorithms is to 
compensate for the weaknesses of the other, aiming for a more robust and accurate 
prediction of PAO-BN nanofluid viscosity. Random forest is an ensemble method based 
on decision trees. It is known for capturing complex relationships in the data and utilising 
nonlinear patterns. The MLP is an ANNs capable of learning complex patterns and 
relationships. It’s often used for nonlinear regression tasks. AdaBoost is an ensemble 
method that combines multiple weak learners into strong learners, giving more weight to 
misclassified samples. It is often used to improve the performance of decision trees. As 
per the above explanations, it is clear that, hybrid models 1 and 3 outperformed model 2 
when four input parameters were included. Moreover, second combination can replace 
combination 4 to reduce the computational cost and have two input parameters rather 
than four. 

5 Conclusions and future recommendations 

The current study aimed to address the challenge of forecasting the viscosity of 
nanofluids, which is a complex and time-consuming task. To achieve this goal, several 
machine learning (ML) models were employed, including Bayesian ridge+ random forest, 
MLP regressor + Bayesian ridge and Bayesian ridge + AdaBoost regressor, which were 
implemented with three ensemble learners. The modelling process considered several 
relevant nanofluid characteristics, such as shear stress, shear rate, temperature, and mass 
fractions. 
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The main findings of the study are: 

1 The proposed machine learning models demonstrated high accuracy and reliability in 
predicting the dynamic viscosity of nanofluids utilising temperature, shear rate, mass 
fraction, and shear stress. 

2 The Bayesian ridge + AdaBoost regressor model was the most effective in predicting 
the dynamic viscosity relative to the three hybrid learners. 

3 Model 4 (combination with four parameters) was the most accurate in the testing 
phase, with R2 > 94%, followed by Models 2, 1, and 3 (combination with 2, 1 and 3 
parameters). 

4 This study was the first to present the dynamic viscosity of nanofluids through these 
four combinations, providing a reliable and robust technology for dynamic viscosity 
prediction. 

In conclusion, the results of this study demonstrate the potential of the developed ML 
models for accurately predicting the dynamic viscosity of nanofluids. However, future 
research could explore additional essential issues, such as using optimisation models with 
multiple models with the same parameters or the same applied model with different 
scales of input data. 
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