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Abstract: In ASIACRYPT 2017, Rønjom et al. reported Yoyo tricks on generic rounds of SPNs.
Then they applied it to AES and found the most effective way to distinguish AES in several
rounds. In FSE 2018, Saha et al. distinguished AES in a known key setting up to 8 rounds. In
AFRICACRYPT 2022, Gupta et al. published a block cipher Future, whose design is like AES
with some tweaks. In this paper, we analysed Future by Yoyo trick in both secret key settings
and known key settings. We show that in the secret key setting, one can distinguish Future upto
five and six rounds with data complexity 29.83 and 258.83 respectively. We also demonstrate that
with known key settings, one can distinguish Future with data complexity 215 for both six and
eight rounds. Our attack is based on an adaptively chosen plaintext/ciphertext attack.
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1 Introduction

With the advent of advanced technologies, the usage
of network-connected resource-constraint devices has
increased drastically. These, in turn, have motivated the
cryptographic community to search for block ciphers
optimised for such use cases. Katan (De Cannière et al.,
2009), Present (Bogdanov et al., 2007), Skinny (Beierle
et al., 2016), LED (Guo et al., 2011), etc. are proposed with
these design constraints in mind.

Many times, the design principle of such block ciphers
is based on substitution and permutation layers. The main
goal of a block cipher structure is to maintain security,
privacy, and randomness. So one should not be able to
distinguish the output of a cipher from a same-length
random string. Most of the time, a distinguisher is
a statistical or structural feature that is not expected
to be present in a similar random function. At the
SHA3 competition (National Institute of Standards and
Technology, 2007), there were numerous attacks against the
Keccak-f public permutation of SHA3 winner Keccak, such
as the zero-sum distinguisher [introduced by Aumasson and
Meier (2009)]. However, many distinguishing attacks have
been reported both on secret-key and known-key settings
[introduced by Knudsen and Rijmen (2007)] on AES
(Daemen and Rijmen, 2002). Huang et al. (2009) analysed
the internal structure of ALPHA-MAC using a five-round
algebraic property of AES. Ghosh et al. (2017) propose a
new infective countermeasure for preventing fault attacks
on the AES block cipher. It is fascinating to study ciphers
as public permutations under the known-key paradigm.
Knudsen and Rijmen also contend that the non-existence
of known-key distinguishers implies the non-existence
of secret-key distinguishers, which makes studying the
former crucial. In this work, we explore the block cipher
Future under distinguishing attacks on both secret-key and
known-key settings.

Here we investigate a particular cryptanalysis technique
called the Yoyo game, which was first introduced by
Biham et al. (1998) and implemented on 16 rounds of
SKIPJACK. The Yoyo game is built on adaptively creating
new pairings of plaintexts and ciphertexts that retain a
certain property inherited from the original pair, similar
to Boomerang attacks (Wagner, 1999). Zero difference
between the pairs is a commonly used property. Imagine
that plaintext/ciphertext has a zero difference property after
some rounds of the cipher. A Yoyo game verifies whether
new pairs of plaintexts/ciphertexts that are formed by
swapping bytes/words of the original pairs have the same
zero difference after the same number of rounds. Applying
the Yoyo game on the Feistel network, Biryukov et al.
(2016) have found a seven-round distinguisher for Feistel
networks. In ASIACRYPT 2017, (Rønjom et al., 2017)
analysed the Yoyo game on substitution-permutation (SP)
networks. They proposed a deterministic distinguisher on
two generic SP rounds. Saha et al. (2018) distinguished
AESQ up to 16 rounds and distinguished AES up to 8
rounds in the known key setting scenario.

The block cipher Future was proposed by Gupta et al.
(2022), which adopts the general structure of the AES
round function and tweaks its components for the use of
lightweight cryptographic primitives. MDS matrices provide
maximum diffusion in block ciphers. However, most
lightweight block ciphers do not use MDS matrices in their
round function because of their high implementation cost.
Future overcomes this challenge by constructing its MDS
matrix from four sparse matrices, which cost significantly
less to implement in hardware. İlter and Selçuk (2023)
construct the MILP model for differential cryptanalysis
and linear cryptanalysis on Future. They find a differential
characteristic for five-round Future with probability 2−62

and a linear characteristic for five-round Future with linear
bias 2−31. In Gupta et al. (2022), the designers of Future
find an integral distinguisher for six-round Future. Also,
the designers predict that the meet-in-the-middle attack
may work up to seven rounds. The Yoyo attack is more
efficient than linear and differential cryptanalysis on the
reduced round Future. This is evident from Table 1, which
shows that the Yoyo attack requires less data complexity to
distinguish the reduced round Future.

1.1 Our contribution

In this paper, the block cipher Future is analysed with
respect to the Yoyo attacks. Both the models – secret-key
setting and known-key setting are considered while
performing the analysis. First of all, we adapt the notion
of Yoyo attacks on nibble-based block cipher Future. In
doing so, a distinguishing attack is mounted on five-round
and six-round Future in the secret-key setting with a data
complexity of 29.83 and 258.83 respectively. Then we show
that for a five-round Future one can find the 128-bit secret
key with 264 time complexity. In the known-key setting the
notion of impossible Yoyo distinguisher and bi-directional
Yoyo distinguisher is applied to mount distinguishing
attacks on six-round and eight-round Future with a data
complexity of 215. All the attacks presented in this paper
require negligible memory. Our results are tabulated in
Table 1.

1.2 Organisation of the paper

Rest of the paper is organised as follows. In Section 2,
we tabulate some notations which are used throughout the
paper. In addition to that, a brief description of Future and
Yoyo attacks is provided in this section. Details regarding
Yoyo attacks on five-round and six-round Future in the
secret-key setting are discussed in Section 3 with a key
recovery attack on five-round Future. Section 4 illustrates
Yoyo attacks upon the six-round and eight-round Future in
the known-key setting. Finally, the concluding remarks are
furnished in Section 5.
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Table 1 Comparison of attacks on Future

Key setting Round Time complexity* Data complexity** Memory complexity Attack types Reference
Secret key 5 28.83 XOR 29.83 Negligible Yoyo Section 3

6 258.83 XOR 258.83 Negligible
5 231 XOR 232 Negligible Linear İlter and Selçuk (2023)
6 262 XOR + 263 MAs*** 263 Negligible Differential

Known key 6 214.415 215 Negligible Yoyo Section 4
8 215 215 Negligible

Notes: *time complexity refers to the time taken to run a single instance of the cipher (unless explicitly specified);
**data complexity refers to the number of oracle accesses required; ***MAs refer to the number of memory
accesses.

2 Preliminaries

In this section, first of all, we discuss the notations used in
the paper. Then, we briefly describe the block cipher Future.
Finally, we discuss the Yoyo attack technique.

2.1 Notations

We use the term ‘nibble’ for 4-bit string and use the term
‘word’ for four nibbles. The additional notations used in
this paper are listed in Table 2.

Table 2 Notations

Notation Description

K ≪ n n bits left cyclic shift of binary string K

w(v) Total number of 1 present in the binary string v

Enck(A) k round encryption of Future with input state A

Deck(A) k round decryption of Future with input state A

v̄ Complement of the binary string v

F ◦G Composition of two function F and G,
that is F ◦G(x) = F (G(x))

2.2 Future

Future is a block cipher published in AFRICACRYPT 2022.
It has a 128-bit key length. It receives a 64-bit plaintext as
its state and outputs a 64-bit ciphertext. The state can be
expressed as 16 4-bit nibbles as follows:

State =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 ,

where each si is a 4-bit nibble.
In Future, the authors used the four functions namely,

SubCell, MixColumn, ShiftRows, and AddRoundKey. The
Encryption of the cipher is given in Algorithm 1. The
details of the four functions are given below:

• SubCell (SC): This is the nonlinear transformation of
Future. In which a 4-bit SBox is applied to each
nibble of the state, i.e.,

si ← SBox(si).

Table 3 SBox of Future

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
SBox 1 3 0 2 7 e 4 d 9 a c 6 f 5 8 b

• MixColumn (MC): This is the linear transformation of
Future. In which the state is multiplied by an MDS
matrix M , i.e., State = M ∗ State, where

M =


8 9 1 8
3 2 9 9
2 3 8 9
9 9 8 1

 .

• ShiftRow (SR): ShiftRow rotates each row of the
state. It rotates every nibble of ith row by i step to
the right for i = 0, 1, 2, 3, i.e.,
s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

←

s0 s4 s8 s12
s13 s1 s5 s9
s10 s14 s2 s6
s7 s11 s15 s3

 .

• AddRoundKey (ARK): A 64-bit round key (round key
generation is discussed later) is xor with the 64-bit
state.

• Round key generation of future: Let K =
k0k1 · · · k127 be the 128-bit key of the cipher Future.
Let K0 = k0k1 · · · k63 and K1 = k64k65 · · · k127. Then
the round keys are

RK[i] =

{
K0 ← K0 ≪ (5 · i2 ) if 2|i
K1 ← K1 ≪ (5 · ⌊ i2⌋) if 2 - i,

(1)

for 0 ≤ i ≤ 10. Now a single bit ‘1’ is xored with
each 4-bit nibble (in different positions) of every
round except the 0th, 5th, and 10th rounds.

A detailed analysis can be found in the original paper
(Gupta et al., 2022) of Future.
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Figure 1 SuperSBox of Future (see online version for colours)

Algorithm 1 Future encryption

Input: Plaintext P and Subkeys
RK[0], RK[1], ..., RK[10]

Output: Cipher text C
State = AddRoundKey(P,RK[0])1
for i = 1 to 9 do2

State = SubCell(State)3
State = MixColumn(State)4
State = ShiftRows(State)5
State = AddRoundKey(State,RK[i])6

State = SubCell(State)7
State = ShiftRows(State)8
C = AddRoundKey(State,RK[10])9
return C10

2.2.1 SuperSBox of Future

Let S = SC ◦ SR ◦MC ◦ SC. The input of S consists
of four parallel column vectors, each of which has four
nibbles. Now after the SC operation, each column maps
into that column. Also, MC is a function that takes a
column as input and gives a column as output. Now after
the SR operation, each column vector goes to the diagonal
vectors. After that, SC operation takes the diagonal to the
same diagonal. So if we see the input of S as a four column
vector each of which contains four nibbles, then the output
of S is the diagonal vector. Here each column maps into a
specific diagonal. We can see S as a four parallel SBoxes
which acts on the columns of the input state. We call these
32-bit SBox as SuperSBox. The SuperSBox is visualised in
Figure 1.

2.3 Yoyo attacks

Here, we provide some notions related to the Yoyo game in
the context of substitution-permutation network-based block
ciphers.

2.3.1 Zero difference pattern

Definition 2.1 (Rønjom et al., 2017): Let α = (α0, α1, ...,
αn−1) ∈ Fn

q . Let ν(α) = (z0, z1, ..., zn−1) ∈ Fn
2 where zi

= 1 if αi = 0 and zi = 0 otherwise. Then ν(α) is the zero
difference pattern for α.

In the case of Future, we write a state α = (α0, α1, α2,
α3) ∈ F4

216 where sometimes we use αi as a column of the
state α and sometimes we use αi as a diagonal of the state.
So here we define νcol(α) = ν(α) when αi’s are considered

as columns of the state and νdiag(α) = ν(α) when αi’s are
considered as diagonals of the state.

For example, let

α =


0 0 3 4
0 6 0 8
0 a b 0
0 d e f

 .

Now if we consider αi as columns of the state α then α =
(0, 06ad, 30be, 480f ) and then νcol(α) = (1, 0, 0, 0). On
the other hand if we consider αi as diagonals of the state α
then α = (06bf , 0, 380d, 40ae) and then νdiag(α) = (0, 1,
0, 0).

Now if we write ν(αi) then we take αi as four nibbles,
i.e., αi ∈ F1

216 = F4
24 . In the above example α1 = (0, 6, a,

d) so ν(α1) = (1, 0, 0, 0).

2.3.2 Deterministic Yoyo distinguisher for two generic
SP-rounds

In a symmetric key cryptosystem, many ciphers are
created by applying substitution and permutation operations
repeatedly. One generic SP-round means one substitution S
and one permutation L operation. So n generic SP-rounds
means n times one generic SP-round has repeated.

Definition 2.2 (Rønjom et al., 2017): Let v ∈ Fn
2 be a

boolean vector. Let α, β ∈ Fn
q be a pair of states. Then

ρv(α, β) is a new state created from α and β. The ith

component of ρv(α, β) is defined as follows:

ρvi (α, β) =

{
αi, if vi = 1

βi, if vi = 0.
(2)

Two generic SP rounds can be written as G2 = L ◦ S ◦ L ◦
S. Rønjom et al. (2017) find a deterministic distinguisher
for two generic SP rounds G2. For finding the distinguisher
authors ignore the last permutation layer L as this does
not violate any security of the cipher. So we can write
two generic SP rounds as G2 = S ◦ L ◦ S, where L is a
permutation layer. The deterministic Yoyo distinguisher for
G2 is described in the following proposition.

Proposition 1 (Rønjom et al., 2017): Let P0, P1 ∈ Fn
q and

C0 = G2(P0), C1 = G2(P1). Let v ∈ Fn
2 . Suppose C ′

0 =
ρv(C0, C1) and C ′

0 = ρv(C1, C0). Then

ν(G−1
2 (C ′

0)⊕G−1
2 (C ′

1)) = ν(P0 ⊕ P1).

Now in the cipher Future if we take S = SC ◦MC ◦ SR ◦
SC and L = SR ◦MC, then the two-round Future can
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be written as R2 = L ◦ S. In our analysis, we remove the
operation ARK as ARK have no effect when we take the
XOR difference of two states. So four-round Future can
be written as R4 = S ◦ L ◦ S. Here we remove the last
linear layer L for simplicity of our attack. When we use
Yoyo distinguisher for a four-round, we call it a four-round
Yoyo game in the forward direction. Now we see that S−1 ◦
L−1 ◦ S−1 is also a two SP-rounds. So here also Yoyo
distinguisher works. Here we call it a four-round Yoyo
game in the backward direction.

Let (P0, P1) be a pair of states. Then one can generate
a new pair (C0, C1) by using the function ρv twice, where
C0 = ρv(P0, P1) and C1 = ρv(P1, P0). The new pair
depends on the value of v. As |v| = n, there are 2n choices
of v. So one can generate 2n pairs from P0, P1. Note that
if ρv generate the pair (C0, C1) then ρv̄ generate the pair
(C1, C0). The pair (C0, C1) and the pair (C1, C0) generate
same set {C0, C1}. We can generate 2n−1 − 1 many new
sets from a given pair. In case of Future n = 4. So we can
generate 7 distinct new pairs. For generating new pair we
use the method used in Rønjom et al. (2017). Algorithm 2
is used for generating these pairs.

Algorithm 2 SWAPcol(α, β)

Input: α = (α0, α1, α2, α3), β = (β0, β1, β2, β3) be two
state where αi, βi are columns of the state α and β
respectively.

Output: α′

α′ = α1
for i = 0 to 3 do2

if αi ̸= βi then3
α′
i = βi4

Break5

return α′6

In Algorithm 2, if we take α = (α0, α1, α2, α3) and β =
(β0, β1, β2, β3) where αi, βi are diagonals of the state α
and β respectively, then we call the above function as
SWAPdiag(α, β).

3 Yoyo attack on Future in the secret-key setting

This section discusses the Yoyo attack on Future in a secret
key setting in which the secret key is unknown to the
attacker.

3.1 Distinguishing attack on five-round Future

In this subsection, we devise a distinguisher for five-round
Future. The distinguisher is based on exploring a
well-known property (refer to Lemma 2) of the minimum
distance separable (MDS) matrix.

Let M be an MDS matrix of order n× n with branch
number (n+ 1). Then for a vector A ∈ Fn

q , the active
nibbles in A and MA are at least (n+ 1). This result is
also true for M−1. Thus we have the following result.

Lemma 2 (Daemen and Rijmen, 2002): Assume that A ∈
Fn
q is a non-zero vector. Let M be an MDS matrix

of order (n× n) with branch number (n+ 1). Then
w(ν(A)) + w(ν(MA)) ≤ (n− 1).

Proof: This is a well-known property of the MDS matrix.

�

Rønjom et al. (2017) distinguished five-round AES by Yoyo
distinguisher. Here, we take a similar approach. Now five
rounds Future can be written as

R5 = S ◦ L ◦ S ◦ SR ◦MC ◦ SC
= S ◦ L ◦ S ◦X, where X = SR ◦MC ◦ SC.

We have already discussed that for the S ◦ L ◦ S
construction, there exists a deterministic Yoyo distinguisher.
Now for the five-round Future, there is an extra operation
X , which is dependent on the cipher Future. So we need
to analyse the operation X . Let (Q0 ⊕Q1) be a state
difference such that w(νcol(Q0 ⊕Q1)) = t. Now if we
take X−1 of these two states, SWAP them, and then take
the operation X on these states, we get the state difference
(Q′

0 ⊕Q′
1). Then also w(νcol(Q

′
0 ⊕Q′

1)) = t. This result
is given below as a proposition:

Proposition 3: Let Q0 and Q1 be two states such that
w(νcol(Q0 ⊕Q1)) = t. Let P0 = ρv(X−1(Q0), X

−1(Q1))
and P1 = ρv(X−1(Q1), X

−1(Q0)). Then w(νcol(X(P0)⊕
X(P1))) = t.

Proof: We know that X = SR ◦MC ◦ SC.
It is clear that for any two states A0, A1, the relations

ρv(SC(A0), SC(A1)) = SC(ρv(A0, A1)) (3)

and

ρv(MC(A0),MC(A1)) = MC(ρv(A0, A1)) (4)

hold. It is noted that here we consider the state A0, A1

column wise while computing ρv. Using equations (3) and
(4) we can say that

ρv(MC ◦ SC(A0),MC ◦ SC(A1))

= MC ◦ SC(ρv(A0, A1)) (5)

From equation 5, we can say that when we take the
operation X−1 over Q0 and Q1 then applying the function
ρv for changing the pair is the same as changing the pair
after the operation SR using the function ρv.

We now show that if w(νcol(A0 ⊕A1)) = t,
B0 = ρv(SR−1(A0), SR−1(A1)), B1 = ρv(SR−1(A1),
SR−1(A0)), then w(νcol(SR(B0)⊕ SR(B1))) = t.

Now SR−1(A0)⊕ SR−1(A1) = ρv(SR−1(A0),
SR−1(A1))⊕ ρv(SR−1(A1), SR−1(A0)) = B0 ⊕B1.
Since SR is a linear operation, we have (A0 ⊕A1) =
(SR(B0)⊕ SR(B1)). Thus we have

w(νcol(A0 ⊕A1)) = w(νcol(SR(B0)⊕ SR(B1))). (6)
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Therefore if w(νcol(Q0 ⊕Q1)) = t and P0 = ρv(X−1(Q0),
X−1(Q1)) and P1 = ρv(X−1(Q1), X

−1(Q0)), then using
the equations (5) and (6) we say that w(νcol(X(P0)⊕
X(P1))) = t. �

Now in the above Proposition 3 we assume that
w(νcol(X(P0)⊕X(P1))) = t. So now we try to find out
the probability of w(νcol(X(P0)⊕X(P1)) = t for some
special choice of the input plaintext P0 and P1. The next
proposition is as follows:

Proposition 4: Let P0 and P1 be two inputs of
X with w(νcol(P0 ⊕ P1)) = 3. Then probability of
w(νcol(X(P0)⊕X(P1))) = t is approximately

(
4
t

)
(2−4)t.

Proof: Let w(νcol(P0 ⊕ P1)) = 3, i.e., there is only
one active column in P0 ⊕ P1. As the SC operation
takes a non-zero difference to a non-zero difference and
zero difference to a zero difference, so after the SC
operation there is one active column in xor difference
states. Now after MC, we get only one active column in
xor difference. In this active column, t nibbles are zero
with a probability approximately

(
4
t

)
(2−4)t. So after SR

operation, there are (4− t) active columns with probability
approximately

(
4
t

)
(2−4)t, i.e., w(νcol(X(P0)⊕X(P1))) =

t with probability
(
4
t

)
(2−4)t. �

Now, we mount a distinguishing attack on Future, i.e., we
obtain some property for Future which will distinguish
it from a random permutation. For this purpose, we
investigate the function X and find a property that is
always true for Future but not always true for a random
permutation. The next proposition is about the property
which will help us to distinguish Future.

Proposition 5: Let P0 and P1 be two inputs of X . Suppose
w(νcol(X(P0)⊕X(P1))) = t. Then every column of
P0 ⊕ P1 contains atmost (3− t) zero nibbles.

Proof: Given that w(νcol(X(P0)⊕X(P1))) = t. Therefore
there are (4− t) active columns in X(P0)⊕X(P1). After
applying SR−1 there are atmost (4− t) active nibbles in
every column. Suppose a column has atmost (4− t) active
nibbles. Then there are at least t nibbles that are inactive.
Then using Lemma 2 we say that after MC−1 that column
contains atmost (3− t) inactive nibbles, i.e. zero nibbles.
Therefore every column of P0 ⊕ P1 contains atmost (3− t)
zero nibbles. �

We are now ready to distinguish cipher Future for reduced
rounds. Next, we describe the distinguishing attack for
five-round Future.

We see that the five-round Future can be written
as R5 = S ◦ L ◦ S ◦X , where X = SR ◦MC ◦ SC.
Let P0, P1 be two states such that w(νcol(X(P0)⊕
X(P1))) = t. Take Q0 = X(P0) and Q1 = X(P1). Then
w(νcol(Q0 ⊕Q1)) = t. Now let C0 = S ◦ L ◦ S(Q0) and
C1 = S ◦ L ◦ S(Q1) be the ciphertext corresponding to the

plaintext P0, P1. Applying the ρv function we changed the
pair (C0, C1) to the pair (C ′

0, C
′
1), i.e., C ′

0 = ρv(C0, C1),
C ′

1 = ρv(C1, C0). Suppose Q′
0 = S−1 ◦ L−1 ◦ S−1(C ′

0),
Q′

1 = S−1 ◦ L−1 ◦ S−1(C ′
1). Then, w(νcol(Q

′
0 ⊕Q′

1)) =
t as this is the four-round Yoyo game in the forward
direction from the pair (Q0, Q1). Let P ′

0 = X−1(Q′
0) and

P ′
1 = X−1(Q′

1). Then by Proposition 5 we can say that
P ′
0 ⊕ P ′

1 contains atmost (3− t) inactive nibbles in each
column. So if we get a column with (4− t) inactive
nibbles, then we get a contradiction. Let P ′′

0 = ρv(P ′
0, P

′
1)

and P ′′
1 = ρv(P ′

1, P
′
0). Using Proposition 3 we can say that

w(νcol(X(P ′′
0 )⊕X(P ′′

1 ))) = t. So we can continue this
and check whether any contradiction occurs or not.

Algorithm 3 Five-round distinguish attack

Input: 25.415 pairs (P0, P1) such that w(νcol(P0 ⊕ P1)) =
3.

Output: 1 for Future and –1 for not Future.
for x = 0 to 25.415 do1

choose P0, P1 randomly such that w(νcol(P0 ⊕ P1))2
= 3
flag = 03

for y = 0 to 23.415 do4
C0 = Enc5(P0), C1 = Enc5(P1)5
C′

0 = SWAPdiag(C0, C1), C′
1 =6

SWAPdiag(C1, C0)
P ′
0 = Dec5(C0), P ′

1 = Dec5(C1)7
for i = 0 to 3 do8

if 2 ≤ (w(ν((P ′
0 ⊕ P ′

1)i)))< 4 then9
flag = 110
break11

P0 = SWAPcol(P
′
0, P

′
1), P1 = SWAPcol(P

′
1, P

′
0)12

if flag == 0 then13
return 114

return–115

Now there is a probability that we get w(νcol(X(P0)⊕
X(P1))) = t for some random input P0, P1. When we get
a pair (P0, P1) such that w(νcol(X(P0)⊕X(P1))) = t, we
can continue the above process without any contradiction
for the cipher Future. But in the case of the random
permutation, we get a contradiction after a certain time.
So for a pair, if we get a contradiction then we call that
pair a wrong pair, and if we do not get any contradiction,
then we call that pair a right pair. In Algorithm 3 we
describe the attack for w(νcol(X(P0)⊕X(P1))) = 2. In
Figure 2 we give examples of wrong pair and right pair for
w(νcol(X(P0)⊕X(P1))) = 2. In the next subsection, the
complexity of this attack is given.

3.1.1 Complexity analysis

To find the complexity of the above algorithm, we first
try to find out the probability of at least one column with
at least (4− t) inactive nibbles. So our next lemma is as
follows.
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Lemma 6: The probability of at least one column with
at least (4− t) inactive nibbles in a random state is
approximately p1(t) = 4

(
4
t

)
(2−4)4−t.

Figure 2 Five-round distinguishing attack, (a) as in P ′
0 ⊕ P ′

1

there are two inactive nibbles in a single column,
(P0, P1) is a wrong pair (b) as in P ′

0 ⊕ P ′
1 every

column has at most one inactive nibble, (P0, P1) is a
right pair (see online version for colours)

(a)

(b)

Proof: The probability of getting (4− t) inactive nibbles
in a column is

(
4
t

)
(2−4)4−t. There are four columns in

a state. So the probability of getting at least one column
with at least (4− t) inactive nibbles is approximately
p1(t) = 4

(
4
t

)
(2−4)4−t. �

Now we take P0, P1 with w(νcol(P0 ⊕ P1)) = 3.
From Proposition 4 the probability of w(νcol(X(P0)
⊕X(P1))) = t is p2(t) =

(
4
t

)
(2−4)t. Therefore to get a

pair such that w(νcol(X(P0)⊕X(P1))) = t, we have to
generate p2(t)−1 pairs and for every pair we create p1(t)−1

pairs by Yoyo game to distinguished five-round Future.
Hence, the total data complexity for this distinguishing
attack is 2· p1(t)−1 p2(t)

−1.
Hence, the data complexities for t = 1, 2, 3 are 211,

29.83 and 211 respectively. In Algorithm 3 we describe our
distinguishing attack for t = 2. In this case p1(2)−1 = 23.415
and p2(2)

−1 = 25.415. In Algorithm 3 we see that after
getting the pair (P ′

0, P
′
1) we need to xor that pair for further

analysis. So the time complexity of Algorithm 3 is 25.415 ·
23.415 = 28.83 xor operation of states.

3.2 Distinguishing attack on six-round Future

The six-round Future can be written as R6 = S ◦ L ◦ S ◦
L ◦ S. Similar to the five-round attack, here also we try to
find out some condition which is true for the cipher Future
but not true for a random permutation. Rønjom et al. (2017)
used the relation [for proof see Daemen and Rijmen (2007)]
between the input difference and the output difference of
the function S ◦ L ◦ S for distinguished six-round AES.
Here we also try to find out a relation between the input
difference and output difference of the function S ◦ L ◦ S
for distinguished six-round Future. Our next theorem is
about that relation.

Theorem 7: Let P0, P1 be two state and Q0 = S ◦ L ◦
S(P0), Q1 = S ◦ L ◦ S(P1). Then w(νcol(P0 ⊕ P1)) +
w(νdiag(Q0 ⊕Q1)) ≤ 3 if w(νcol(P0 ⊕ P1)) ≤ 3.

Proof: Let w(νcol(P0 ⊕ P1)) = t. Then after the operation
S there are (4− t) active diagonals. So every column
contains atmost (4− t) active nibbles, i.e., every column
contains at least t inactive nibbles. Now L = SR ◦MC. So
after MC operations by Lemma 2 (for n = 4), we can say
that every column contains atmost (3− t) inactive nibbles,
i.e., every column contains at least 4− (3− t) = (1 + t)
active nibbles. So after the SR operation, there are at
least (1 + t) active columns. So after operation S there
are at least (1 + t) active diagonals, i.e., there are atmost
(3− t) inactive diagonals. So w(νdiag(Q0 ⊕Q1)) ≤ (3−
t). Therefore w(νcol(P0 ⊕ P1)) + w(νdiag(Q0 ⊕Q1)) ≤
t+ (3− t) = 3. �

Let us take a pair of plaintext (P0, P1) such that
w(νcol((L ◦ S(P0))⊕ (L ◦ S(P1)))) = t where 1 ≤ t ≤ 3.
Suppose Q0 = L ◦ S(P0) and Q1 = L ◦ S(P1). Now let
C0 = Enc6(P0) and C1 = Enc6(P1) i.e., C0 = S ◦ L ◦
S(Q0) and C1 = S ◦ L ◦ S(Q1). Then we can say
that w(νcol(Q0 ⊕Q1)) + w(νdiag(C0 ⊕ C1)) ≤ 3 by
Theorem 7.

i.e., w(νdiag(C0 ⊕ C1)) ≤ 3− t. (7)

Now w(νcol(Q0 ⊕Q1)) = t. From here we play a
four-round Yoyo game in the forward direction and get
Q′

0, Q′
1, i.e., Q′

0 = S−1 ◦ L−1 ◦ S−1(C0) and Q′
1 =

S−1 ◦ L−1 ◦ S−1(C1). From Proposition 1 we say that
w(νcol(Q

′
0 ⊕Q′

1)) = t. Now w(νcol(Q
′
0 ⊕Q′

1)) = t =⇒
w(νdiag(S(Q

′
0)⊕ S(Q′

1))) = t. Let P ′
0 = S−1 ◦ L−1(Q′

0),
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P ′
1 = S−1 ◦ L−1(Q′

1), i.e., P ′
0 = S−1 ◦ L−1 ◦ S−1(S(Q′

0)),
P ′
1 = S−1 ◦ L−1 ◦ S−1(S(Q′

1)). Therefore by Theorem 7
we write w(νdiag(S(Q

′
0)⊕ S(Q′

1))) + w(νcol((P
′
0 ⊕ P ′

1)))
≤ 3. Thus we have

w(νcol((P
′
0 ⊕ P ′

1))) ≤ 3− t. (8)

Now let R0 = S(Q′
0), R1 = S(Q′

1). Therefore
w(νdiag(R0 ⊕R1)) = t. If we play a four-round Yoyo
game in the backward direction from the pair (R0, R1)
and we get (R′

0, R′
1), i.e., R′

0 = S ◦ L ◦ S(P ′
0) and R′

1 =
S ◦ L ◦ S(P ′

1). Then from Proposition 1 we can say
that w(νdiag(R

′
0 ⊕R′

1)) = t and so w(νcol(S
−1(R′

0)⊕
S−1(R′

1))) = t, i.e., w(νcol((L ◦ S(P ′
0))⊕ (L ◦ S(P ′

1)))) =
t. Now we are at the stage where we start. Continue this
process up to a certain time (which is discussed in the
next subsection), if we get a contradiction of the equations
(7) or (8) then we can say that the cipher is not Future,
and if the conditions are satisfied up to a certain time,
we conclude that the cipher is Future. So for a pair, if
we get a contradiction, then we call that pair a wrong
pair, and if we do not get any contradiction, then we
call that pair a right pair. In Algorithm 4 we describe
the attack for w(νcol((L ◦ S(P0))⊕ (L ◦ S(P1)))) = 2. In
Figure 3 we give examples of wrong pair and right pair for
w(νcol((L ◦ S(P0))⊕ (L ◦ S(P1)))) = 2.

Algorithm 4 Six-round distinguish attack
Input: 228.415 pairs (P0, P1)
Output: 1 for Future and -1 for not Future
for x = 0 to 228.415 do1

choose P0, P1 randomly2
flag = 03

for y = 0 to 229.415 do4
if (w(νcol(P0 ⊕ P1))) ≥ 2 then5

flag = 16

C0 = Enc6(P0)7
C1 = Enc6(P1)8
if (w(νdiag(C0 ⊕ C1))) ≥ 2 then9

flag = 110

C′
0 = SWAPdiag(C0, C1), C′

1 =11
SWAPdiag(C1, C0)
P ′
0 = Dec6(C0), P ′

1 = Dec6(C1)12
P0 = SWAPcol(P

′
0, P

′
1), P1 = SWAPcol(P

′
1, P

′
0)13

if (flag == 0) then14
return 115

return–116

Complexity analysis

Now for a random permutation the probability of getting a
xor differential state with at least (4− t) inactive word is
q1(t) =

(
4

4−t

)
(2−16)(4−t). At first we assume that w(ν((L ◦

S(P0)⊕ L ◦ S(P1)))) = t. Now the probability of getting
such state is q2(t) =

(
4
t

)
(2−16)t(1− 2−16)(4−t).

Therefore for getting a pair such that w(ν(L ◦ S(P0)⊕
L ◦ S(P1))) = t, we have to generate q2(t)

−1 pairs. In
this case, we are trying to get a contradiction by two
equations (7) and (8), one is a relation between ciphertext

pair and one is a relation between plaintext pair. So
for every pair we create q1(t)

−1

2 pairs by Yoyo game to
distinguished six-round Future. The total data complexity
for this distinguishing attack is 2· q2(t)

−1 q1(t)
−1

2 =
q2(t)

−1 q1(t)
−1. The data complexities for t = 1, 2, 3 are

260, 258.83 and 260, respectively. Now in Algorithm 4 we
describe our distinguishing attack for t = 2. In this case
q1(2)

−1 = 229.415 and q2(2)
−1 = 229.415. In Algorithm 4 we

see that when we get the pairs (P0, P1) and (C0, C1) then
we have to xor the pairs for further analysis. So the time
complexity for Algorithm 4 is 228.415 · 229.415 · 2 = 258.83
xor operation of states.

3.3 Key recovery attack on five-round Future

From Section 3, we see that five-round Future can be
written as R5 = S ◦ L ◦ S ◦X , where X = SR ◦MC ◦
SC. In this section, we will find the subkey RK[0] which
is xor in the beginning of R5. The MixColumn matrix M
in Future is defined by the matrix

M =


α3 α3 ⊕ 1 1 α3

α⊕ 1 α α3 ⊕ 1 α3 ⊕ 1
α α⊕ 1 α3 α3 ⊕ 1

α3 ⊕ 1 α3 ⊕ 1 α3 1

 .

Let Px be the plaintext, and let (Px)i denote the i′th
column of the plaintext Px for 0 ≤ i ≤ 3. Now we take
two plaintexts P0 and P1 such that (P0)0 = (0, i, 0, 0)
and (P1)0 = (z, z ⊕ i, 0, 0) where z is a random non-zero
element in {0, 1}4 and the other columns are equal for
the two plaintexts. Let RK[0] = (RK[0][0], RK[0][1],
RK[0][2], RK[0][3]) where each RK[0][i] is the column
of the the subkey RK[0]. Now the difference between the
first column of the two partial encrypted plaintexts through
MC ◦ SC ◦ARK becomes

α3d0 ⊕ (α3 ⊕ 1)d1 = m0

(α⊕ 1)d0 ⊕ αd1 = m1

αd0 ⊕ (α⊕ 1)d1 = m2

(α3 ⊕ 1)d0 ⊕ (α3 ⊕ 1)d1 = m3

where d0 = SBox[RK[0][0]] ⊕ SBox[z ⊕RK[0][0]]
and d1 = SBox[i⊕RK[0][1]]⊕ SBox[z ⊕ i⊕RK[0][1]].
Now, the equation pertaining to m3 can be written as
follows

m3 = (α3 ⊕ 1)(SBox[RK[0][0]]

⊕ SBox[z ⊕RK[0][0]])

⊕ (α3 ⊕ 1)(SBox[RK[0][1]⊕ z ⊕ i]

⊕ SBox[z ⊕RK[0][1]⊕ i]).

The value of m3 becomes zero for i ∈ {RK[0][0]⊕
RK[0][1], z ⊕RK[0][0]⊕RK[0][1]}. So if we run through
all values of i ∈ {0, 1}4, we can find at least two values of
i for which the term m3 in fourth equation is zero.
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Figure 3 Six-round distinguishing attack, (a) as in P ′
0 ⊕ P ′

1

there are two inactive columns, (P0, P1) is a wrong
pair (b) as in C0 ⊕ C1 there is one inactive diagonal,
and P ′

0 ⊕ P ′
1 has one inactive column, (P0, P1) is a

right pair (see online version for colours)

(a)

(b)

Now we form a set of plaintext as follows. For each i
generate a pair of plaintexts P0 and P1 such that the first
column of P0 and P1 are (0, i, 0, 0) and (z, z ⊕ i, 0, 0)
respectively. Other columns for P0 and P1 are the same.
Now we generate four new pair of plaintexts by five-round
Yoyo game (one can see Algorithm 5 for more clarity).
This four pairs with the pair (P0, P1) forms a set of pairs
of plaintext with five elements. So if a pair is of the correct
form then it satisfies the fourth equation with m3 = 0.

Algorithm 5 Key recovery attack on five-round Future

Input: 24 plaintext pairs (P0, P1) such that (P0)0 = (0, i,
0, 0) and (P1)0 = (1, 1 ⊕ i, 0, 0) for i = 0, 1, ...,
24−1 and (P0)j = (P1)j for j = 1, 2, 3.

Output: Subkey SK[0][0]

for i = 0 to 24−1 do1
P0 = 0, P1 = 02
(P0)0 = (0, i, 0, 0), (P1)0 = (1, 1⊕ i, 0, 0)3
S = {(P0, P1)}4
for y = 1 to 4 do5

C0 = Enc5(P0), C1 = Enc5(P1)6
C′

0 = SWAPdiag(C0, C1), C′
1 =7

SWAPdiag(C1, C0)
P ′
0 = Dec5(C0), P ′

1 = Dec5(C1)8
P0 = SWAPcol(P

′
0, P

′
1), C1 = SWAPcol(P

′
1, P

′
0)9

S = S ∪ {(P0, P1)}10

for SK[0][1] = 0 to 24−1 do11
for SK[0][2] = 0 to 24−1 do12

for SK[0][3] = 0 to 24−1 do13
SK[0][0] = SK[0][1]⊕ i14
for every {P0, P1} ∈ S do15

if m3 ̸= 0 then16
jump to the next possible SK[0]17

return SK[0]18

Now the adversary can test for remaining 212 candidate
keys and check the fourth equation for all five pairs, where
we know that RK[0][0]⊕RK[0][1] ∈ {i, i⊕ z} for known
values of i and z. The equation holds for a random key for
all five pairs with probability 2−4·5 = 2−20. So when testing
for total 212 keys there may be a false positive occurs with
probability 2−20 · 212 = 2−8. Now when a key satisfies the
condition for five pairs then one can generate more plaintext
pairs to remove the false positive. As this happens rarely
this does not affect the total data complexity. The total 24 ·
5 number of adaptively chosen plaintext pairs is needed for
finding the correct key. Thus the data complexity for this
attack is 2 · 24 · 5 ≈ 27.32.

Now to find the correct key, we test only for the
fact that RK[0][0] = RK[0][1]⊕ i and do not use the
fact RK[0][0] = RK[0][1]⊕ i⊕ z as i runs over all 24
possible values. Now for each i we need to check 212 keys
candidate. and for each check, we need to calculate four
s-boxes. So we need to calculate 212 · 2 · 4 · 5 · 24 = 221.32
s-boxes. Now we assume that one round costs 16 s-box
calculation. So the time complexity is equivalent to 221.32

16·5
= 215 five-rounds of Future.

Through a similar process, we can find out the values
of RK[0][1], RK[0][2], and RK[0][3]. After that we find
RK[1] by exhaustive search and hence the key is recovered.

Complexity analysis

The data complexity of recovering RK[0][0] is 27.32.
Therefore the total data complexity of recovering the
whole RK[0] is 4 · 27.32 = 29.32. The time complexity
of recovering RK[0][0] is 215. Therefore the total time
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complexity of recovering the whole RK[0] is 4 · 215 = 217.
The time complexity of recovering the subkey RK[1] is
264. The overall time complexity of recovering the subkeys
RK[0] and RK[1] is dominated by the time complexity of
recovering RK[1]. Therefore, the overall time complexity
of recovering the secret key is dominated by 264.

4 Yoyo attacks on Future in the known-key setting

This section discusses the Yoyo attack on Future in a known
key setting. That is, the attacker knows the secret key.
Here we try to show that reduced round of Future (up to
eight-round) can not be used as an internal permutation of
another cipher.

4.1 Attack on six-round Future

The six-round Future can be written as R6 = S3 ◦ L2 ◦
S2 ◦ L1 ◦ S1, where S1 = S2 = S3 = S and L1 = L2 = L.
Here we give an impossible differential Yoyo distinguisher
for six-round Future and show that using that distinguisher
we can distinguish six-round Future from a random
permutation.

Let (Q0, Q1) be a pair such that w(νdiag(Q0 ⊕Q1)) =
3. Take P0 = S−1

1 ◦ L−1
1 ◦ S

−1
2 (Q0) and P1 = S−1

1 ◦ L−1
1 ◦

S−1
2 (Q1). Suppose P ′

0 = ρv(P0, P1), P
′
1 = ρv(P1, P0). Let

Q′
0 = S2 ◦ L1 ◦ S1(P

′
0) and Q′

1 = S2 ◦ L1 ◦ S1(P
′
1). So we

claim that w(νdiag(Q′
0 ⊕Q′

1)) = 3, since this is four-round
Yoyo game in the backward direction. So there exists
a diagonal in Q′

0 ⊕Q′
1 such that at least one nibble is

active in that diagonal and other diagonals are inactive.
Hence there exists a column in Q′

0 ⊕Q′
1 such that the

exact one nibble is active in that column. So after MC
operation, all four nibble of that column is active. Hence
after SR all the columns are active. So after L2 operation,
all columns are active. As a result, after S3 operation, all
the diagonals are active. Let C0 = S3 ◦ L2(Q

′
0) and C1 =

S3 ◦ L2(Q
′
1). Then w(νdiag(C0 ⊕ C1)) = 0. Therefore for

some pair (Q0, Q1) satisfying w(νdiag(Q0 ⊕Q1)) = 3 if we
get w(νdiag(C0 ⊕ C1)) > 0 which is impossible for Future,
we can conclude that the cipher is not Future. For a random
permutation with probability 4.2−16 = 2−14, there exists an
inactive diagonal in C0 ⊕ C1. Therefore we first randomly
choose 214 pairs Q0, Q1 such that w(νdiag(Q0 ⊕Q1)) =
3 and get the corresponding 214 pairs C0, C1 using the
above described method. If the cipher is Future, we get
w(νdiag(C0 ⊕ C1)) = 0 for every pair. Otherwise, we can
get a pair with a high probability such that w(νdiag(C0 ⊕
C1)) > 0. Algorithm 6 describes the six-round distinguish
attack in the known key setting.

Complexity analysis

In Algorithm 6 the loop in line 1 iterates 214 times. For
each iteration, the encryption function in line 5 is called
twice. This means that the encryption function will be
called a total of 2 × 214 = 215 times. The data complexity

of the attack is the number of times the encryption function
is called. In this case, the data complexity is 215. For each
iteration, in line 3 the function S−1 ◦ L−1 ◦ S−1 called
twice. The function S−1 ◦ L−1 ◦ S−1 is equivalent to
four-round Future. Here the encryption function is six-round
Future. The time complexity of an attack is the number of
operations required to break the cipher. Therefore the time
complexity of this attack with respect to six-round Future
is 2 × 214 × 4

6 = 214.415.

Algorithm 6 Six-round distinguish attack in known key setting

Input: 214 pairs (Q0, Q1) such that w(νdiag(Q0 ⊕Q1)) =
3

Output: 1 for Future and –1 for not Future
for x = 0 to 214 do1

choose Q0, Q1 randomly such that2
w(νdiag(Q0 ⊕Q1)) = 3
P0 = S−1 ◦ L−1 ◦ S−1(Q0), P1 =3
S−1 ◦ L−1 ◦ S−1(Q1)
P ′
0 = SWAPcol(P0, P1), P ′

1 = SWAPcol(P1, P0)4
C0 = Enc6(P

′
0), C1 = Enc6(P

′
1)5

if (w(νdiag(C0 ⊕ C1))) ≥ 1 then6
return–17

return 18

4.2 Attack on eight-round Future

The eight-round Future can be written as R8 = S4 ◦
L3 ◦ S3 ◦ L2 ◦ S2 ◦ L1 ◦ S1, where S1 = S2 = S3 = S4 =
S and L1 = L2 = L3 = L. Saha et al. (2018) present
an impossible differential bi-directional Yoyo trick to
distinguish eight-round AES in the known key setting. This
technique is used to distinguish eight-round Future in the
known key settings.

Let (Q0, Q1) be a pair such that w(νdiag(Q0 ⊕Q1)) =
3. Take P0 = S−1

1 ◦ L−1
1 ◦ S

−1
2 (Q0) and P1 = S−1

1 ◦ L−1
1 ◦

S−1
2 (Q1). Suppose P ′

0 = ρv(P0, P1) P ′
1 = ρv(P1, P0). Let

Q′
0 = S2 ◦ L1 ◦ S1(P

′
0) and Q′

1 = S2 ◦ L1 ◦ S1(P
′
1). So

we claim that w(νdiag((Q
′
0 ⊕Q′

1))) = 3, since this is
four-round Yoyo game in the backward direction. So there
exists a diagonal in Q′

0 ⊕Q′
1 such that at least one nibble is

active in that diagonal and other diagonals are inactive. So
there exists a column in Q′

0 ⊕Q′
1 such that the exact one

nibble is active in that column. So, after the MC operation,
all four nibbles in that column are active, and after the
SR operation, all columns are active. Hence, after the L2

operation, all columns are active. Let R0 = L2(Q
′
0) and

R1 = L2(Q
′
1). Therefore w(νcol(R0 ⊕R1)) = 0. Let C0 =

S4 ◦ L3 ◦ S3(R0) and C1 = S4 ◦ L3 ◦ S3(R1).
Let C ′

0 = ρv(C0, C1), C ′
1 = ρv(C1, C0). Let R′

0 =
S−1
3 ◦ L−1

3 ◦ S
−1
4 (C ′

0) and R′
1 = S−1

3 ◦ L−1
3 ◦ S

−1
4 (C ′

1). So
we claim that w(νcol((R

′
0 ⊕R′

1))) = 0 since this is
four-round Yoyo game in the forward direction. Therefore
there are no inactive columns in R′

0 ⊕R′
1.

Therefore for some pair (Q0, Q1) satisfying
w(νdiag(Q0 ⊕Q1)) = 3 if we get w(νcol((R′

0 ⊕R′
1))) > 0

which is impossible for the cipher Future, we can conclude
that the cipher is not Future. Now for a random permutation



248 S.K. Mondal et al.

with probability 4.2−16 = 2−14, there exists an inactive
column in (R′

0 ⊕R′
1). Therefore we first randomly choose

214 pairs (Q0, Q1) such that w(νdiag(Q0 ⊕Q1)) = 3 and
get the corresponding 214 pairs R′

0, R
′
1 using the above

described method. Now if the cipher is Future, we get
w(νcol((R

′
0 ⊕R′

1))) = 0 for every pair. If the cipher is
not Future, we can get a pair with a high probability such
that w(νcol((R

′
0 ⊕R′

1))) > 0. Algorithm 7 describes the
eight-round distinguish attack in the known key setting.

Algorithm 7 Eight-round distinguish attack in known key
setting

Input: 214 pairs (Q0, Q1) such that
w(νdiag(Q0 ⊕Q1)) = 3

Output: 1 for Future and –1 for not Future
for x = 0 to 214 do1

choose Q0, Q1 randomly such that2
w(νdiag(Q0 ⊕Q1)) = 3
P0 = S−1 ◦ L−1 ◦ S−1(Q0), P1 =3
S−1 ◦ L−1 ◦ S−1(Q1)
P ′
0 = SWAPcol(P0, P1), P ′

1 = SWAPcol(P1, P0)4
C0 = Enc8(P

′
0), C1 = Enc8(P

′
1)5

C′
0 = SWAPdiag(C0, C1), C′

1 = SWAPdiag(C1, C0)6
R′

0 = S−1 ◦ L−1 ◦ S−1(C′
0), R′

1 =7
S−1 ◦ L−1 ◦ S−1(C′

1)
if (w(νcol(R

′
0 ⊕R′

1)) ≥ 1 then8
return–19

return 110

Complexity analysis

In Algorithm 7 the loop in line 1 iterates 214 times. For
each iteration, the encryption function in line 5 is called
twice. This means that the encryption function will be
called a total of 2 × 214 = 215 times. In this case, the data
complexity is 215. For each iteration, in lines 3 and 7 the
function S−1 ◦ L−1 ◦ S−1 is called four times. The function
S−1 ◦ L−1 ◦ S−1 is equivalent to four-round Future. Here
the encryption function is eight round Future. Therefore the
time complexity of this attack with respect to eight round
Future is 4 × 214 × 4

8 = 215.

5 Conclusions

In the security analysis of Future (Gupta et al., 2022),
the authors did not mention the Yoyo attack. In this
paper, we analysed Future with respect to Yoyo trick in
secret key setting and known key setting. We see that
in the secret key setting, Future can be distinguished up
to five- and six-round with data complexity 29.83 and
258.83, respectively. We show that the 128-bit secret key of
five-round Future can be recovered with time complexity
264. We further show that for both six and eight rounds,
Future can be distinguished in the known key settings with
data complexity 215. Future work in this area could explore
the application of the Yoyo attack to other block ciphers.
One possible direction for Future work is to develop

new methods for defending against the Yoyo attack. This
could involve designing new block ciphers that are less
susceptible to the Yoyo attack.
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