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Abstract: The development of smart applications in e-healthcare has aroused the exponential
growth of healthcare data. Therefore, the data owner tends to outsource them to powerful cloud
servers, which can provide query services. However, for privacy concerns, the data owner may
outsource the encrypted data instead of plaintexts. Moreover, when using the data query service,
query users may search the data based on their preferences. To address the aforementioned
issues, in this paper, we propose WeightedSim, an efficient and privacy-preserving weighted
similarity range query scheme for outsourced healthcare data. Specifically, we first develop an
encrypted R-tree index by utilising the symmetric homomorphic encryption (SHE) technique and
then employ it to perform a weighted similarity range query under the two cloud servers model.
We analyse the security of our scheme to be selectively secure when the SHE is semantically
secure against CPA and also conduct extensive experiments to validate the scheme’s efficacy.
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1 Introduction

The state-of-the-art technologies from IoT (Habibzadeh
et al., 2020) and artificial intelligence (Ahmed et al.,
2020) have led to an evolution of healthcare applications.
Benefitting from those innovations, many healthcare
scenarios have dramatic improvements, such as online
medical primary diagnosis, electronic healthcare records,
health monitoring and precision medicine (Habibzadeh
et al., 2020; Ahmed et al., 2020; Hua et al., 2019).
As a result, there has been a significant increase
in healthcare data and the data owners of healthcare
data, usually healthcare centres (HCs), offer the data
query service for doctors for further various applications.
Similarity query, which retrieves similar data with specific
metrics, is one of the most popular data query service
options. Euclidean distance is also a very common data
measurement for multi-dimensional data. The Euclidean
distance-based similarity query has been widely used in
a variety of healthcare applications. For example, Kumar
(2020) used deep learning and Euclidean distance-based
similarity query to solve the duplicated questions within
the medical community question-answering sites. In the
majority of instances, however, the HC lacks the computing
resources and storage capacity to accommodate such a
high volume of query requests. To address the computing
capabilities shortcoming, the HC typically outsources their
healthcare data to third-party cloud servers, which contain
robust computing power and may provide a more feasible
and reliable data query service. Due to the sensitivity
of healthcare data privacy, it raises a new issue about
how to prevent private information leakage from cloud
servers, which may not be fully trusted. Therefore,
the privacy-preserving similarity range query over the
healthcare data has been a notable topic.

Encrypting the outsourced data and executing a
similarity range query over the ciphertexts is a currently
viable solution for privacy issues. In the literature, many
privacy-preserving similarity range schemes have been
proposed for various data metrics (data models), such as
key-value model (Lin et al., 2021), spatial data (Song et al.,
2022), string edit distance (Jin et al., 2021), time-series
model (Zheng et al., 2021a) and Euclidean distance
(Zheng et al., 2021b). Zheng et al. (2021b) designed a
privacy-preserving healthcare data query scheme based on
Euclidean distance. However, this scheme did not account
for the preference on certain dimensions. In our scheme,
we consider the similarity range query with the Weighted
Euclidean distance (Zheng et al., 2022) (see the definition
in Subsection 3.1), which enables the query user to specify
weighted values for each data dimension, hence making the
similarity range query more specific. We may provide a
privacy-preserving data query service for further real-world
applications such as Nasser et al. (2019). Additionally, to
achieve a more effective and secure query scheme, some
schemes leverage the two cloud servers model instead of
a single cloud server. For example, Zheng et al. (2021a)
proposed a similarity range query scheme over the time
series data based on a two semi-trusted cloud servers model.

Zhang et al. (2021) employed the symmetric homomorphic
encryption (SHE) (Mahdikhani et al., 2020) to implement
the privacy-preserving dynamic skyline query scheme for
the online medical diagnosis system, which was also based
on the two cloud servers model. However, homomorphic
encryption and its homomorphic properties are limited to
integers only. Therefore, we should still ensure that the
data type of vectors is fixed-point decimals, which can
be converted into integers for homomorphic encryption by
multiplying by the number of multiples of ten.

In this paper, we propose WeightedSim, an efficient
and privacy-preserving weighted similarity range query
scheme for the healthcare data outsourcing based on SHE
(Mahdikhani et al., 2020) and R-tree under a two cloud
servers model. In our scheme, the healthcare data are
represented as multi-dimensional vectors. Specifically, our
main contributions are shown as follows.

• First, we propose an efficient and privacy-preserving
weighted similarity range query over healthcare data
using encrypted R-tree building blocks. To achieve
query efficiency, the R-tree index filters data points
that are unreachable by the query vector, thereby
reducing the amount of data searched. As for the
privacy-preservation, we encrypt the data using SHE
technique (Mahdikhani et al., 2020).

• Secondly, based on the SHE homomorphic properties,
we present a set of privacy-preserving protocols that
may figure out plaintexts’ relations without
decryption. With those protocols, the cloud servers
can launch the data query over the encrypted R-tree
without the original plaintext data.

• Finally, we analyse the security of our scheme and
conduct a simulation to evaluate its performance. The
result indicates that our scheme is privacy-preserving
and is selectively secure (Wang et al., 2014) when the
SHE is IND-CPA secure. Also, it shows that our
scheme is efficient on the multi-dimensional data
search.

The remainder of this paper is organised as follows. In
Section 2, we formalise our system model and overview of
our scheme. Then, we describe the necessary preliminaries
in Section 3. After that, we present the details of our
proposed scheme in Section 4, followed by the security
analysis, experiments in Sections 5 and 6, respectively. In
Section 7, we discuss some related works. Finally, we draw
our conclusion about our scheme in Section 8.

2 Models and design goals

In this section, we formalise our system model, security
model, and identify our design goals.

2.1 System model

In the system model, we propose a weighted similarity
range query scheme among the HC, a cloud with two
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servers {S1, S2}, and multiple query doctors (query users)
U = {U1, U2, ...}. The overview of our scheme is shown
in Figure 1.

• HC: The HC is treated as the data owner of a large
amount of healthcare data. HC will offer a weighted
similarity range query of database X to the query
user. Due to the constrained computing and storage
resources, HC will outsource the database to the
powerful cloud server. For the privacy concern, the
outsourced data should be encrypted, denoted by
E(X), in the cloud server.

• Cloud server: The cloud server model consists of two
cloud servers {S1, S2}. Both of them can provide
powerful computing power and abundant storage. S1

is responsible for the storage of the encrypted
database E(X) while S2 is to assist the data search.
S1 and S2 will cooperate to offer the weighted
similarity range query service to query users. When
the query user obtains the authorised key from the
HC, it can construct a query request (q, w, τ) and
encrypt it into the corresponding query token. Once
the cloud server receives the query token from the
query user, it will search the encrypted database
E(X) for the data satisfying
dw(xi, q) =

√∑k
j=1 wj(xi,j − qj)2 ≤ τ and returns

the ciphertext of those data to the query user.

• Query user: Query users U = {U1, U2, ...}, once
authorised by the HC, will obtain the authorised key
from it. When the query user applies the weighted
similarity range query on the encrypted data, it will
first generate a query token with the authorised key
and send the query token to the cloud server. After
receiving the encrypted data from the cloud server, the
query user may recover the original healthcare data.

2.2 Security model

In our security model, the HC works as the data owner of
healthcare data and is considered as fully trusted. Query
users, once authorised by the HC, are also regarded as
honest entities who faithfully follow our proposed design to
generate query tokens and launch weighted similarity range
query requests to the cloud servers. However, the cloud
servers {S1, S2} are considered to be honest-but-curious.
It means that they will follow the proposed design and
provide a weighted similarity range query on the encrypted
database E(X) honestly, but at the same time, cloud servers
are curious about the ciphertext and try to obtain the private
information of the data. In addition, we assume that there
is no collusion between S1 and S2. Although no collusion
is a very strong security assumption, it is still reasonable in
reality by using two different cloud service providers. Cloud
servers from different providers can hardly build up mutual
trust, so they will encounter much higher risks if they

collude with each other. Since our scheme focuses on
privacy preservation, we will not discuss attacks out of this
scope, e.g., denial of service (DoS) attacks.

2.3 Design goals

In this work, we aim to design an efficient and
privacy-preserving weighted similarity range query scheme
and have the following two objectives.

• Privacy preservation: Plaintexts of the healthcare data
and query requests should be secret to the cloud
server under the honest-but-curious model.

• Efficiency: We also intend to cut down the
computational cost of weighted similarity range query
among the query user and cloud server and should
improve the query efficiency as much as possible.

3 Preliminaries

In this section, we will introduce the basic definition
of weighted similarity range query, R-tree and the SHE
technique.

3.1 Weighted similarity range query

Let X = {xi = (xi,1, xi,2, ..., xi,k)|i = 1, 2, ..., n} be the
healthcare database with which there are n data records
totally in X and k dimensions in each data record. Let
(q, w, τ) be the query request, where q = (q1, q2, ..., qk)
is a k-dimensional query vector, w = (w1,w2, ...,wk) is
a k-dimensional weighted vector satisfying

∑k
j=1 wj = 1,

and τ is the distance threshold. With a given query request
(q, w, τ) and a data record xi, we define the weighted
Euclidean distance as dw(xi, q) =

√∑k
j=1 wj(xi,j − qj)2

and the weighted similarity range query is to figure out
all the data records in X which satisfy dw(xi, q) ≤ τ .
Because it is hard to implement the square root computation
in homomorphic encryption and dw(xi, q) and τ are
non-negative values, we will only consider dw(xi, q)

2 ≤
τ2 in later sections. Homomorphic properties are only
applicable to integers, thus we must transform real numbers
to integers by multiplying them by the number of multiples
of ten.

3.2 R-tree

R-tree (Guttman, 1984) is a spatial data structure that is
friendly to multi-dimensional data and can improve the
efficiency of the range query. The main idea behind the
R-tree’s construction is to group nearby objects at the same
level space with a minimum bounding rectangle in the tree’s
upper level. An example is presented in Figure 3.



146 G. Tang et al.

Figure 1 Overview of the proposed WeightedSim system
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The R-tree is defined as T ← {B1, B2, ..., Bm, D1, D2,
..., Dn}. D = {D1, D2, ..., Dn} is the data record stored in
the leaf-node of R-tree, where n is the number of data and
m is the number of internal nodes. Di = (di,1, di,2, ..., di,k)
is a k-dimensional vector. B = {B1, B2, ..., Bm} is the set

of the internal node in R-tree with k elements, where Bj =
{(lj,1, uj,1), (lj,2, uj,2), ..., (lj,k, uj,k)} is the k-dimensional
rectangle with which (lj,α, uj,α) is the lower bound and
upper bound of the rectangle in the αth dimension. Bj

is the parent or ancestor node of Dj as long as lj,α ≤
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di,α ≤ uj,α for 1 ≤ α ≤ k. In other words, a rectangle and
a data point satisfy l0,k > d0,k||u0,k < d0,k indicating that
this data point is not involved within this rectangle.

The range query algorithm is shown in Figure 2. To
apply a query to the R-tree, the query user first generates a
query rectangle to show the range of the query (Wang et al.,
2016). And then the query rectangle will check whether it
overlaps with the object in the R-tree. The query result will
return all the data involved within this query rectangle.

3.3 The SHE technique

3.3.1 The description of SHE

SHE can provide the efficient homomorphic addition and
multiplication for data encryption (Mahdikhani et al.,
2020). The SHE technique primarily consists of three
algorithms, including SHEKeyGen, SHEEnc and SHEDec.
The definition of these algorithms is as follows.

• SHEKeyGen(k0, k1, k2): Given security parameters
k0, k1, k2 satisfying k0 > k2 ≫ k1, the key
generation algorithm sets up a number N = pq with
two large prime numbers p,q where |p| = |q| = k0
and a random number L where |L| = k2. And then
the algorithm outputs the public parameter
pb← (k0, k1, k2, N), the secret key sk ← (p, L) and
the message space M ← {m|m ∈ [−2k1−1, 2k1−1)}.

• SHEEnc (sk, m): Given the secret key sk and a
message m ∈M , the encryption algorithm outputs the
ciphertext of m as
E(m) = (rL+m)(1 + r′p) mod N , where r and r′

are two random numbers satisfying r ∈ {0, 1}k2 and
r′ ∈ {0, 1}k0 .

• SHEDec (sk, E(m)): Given the secret key sk and the
ciphertext E(m), the decryption algorithm recovers
the message m′ = (E(m) mod p) mod L. If
m′ < L

2 , it indicates m ≥ 0 and m = m′. Otherwise,
m < 0 and m = m′ − L.

The SHE technique has the homomorphic properties as
follows.

• Homomorphic addition-I: Two ciphertexts E(m1) and
E(m2) satisfy
E(m1) + E(m2) mod N → E(m1 +m2).

• Homomorphic multiplication-I: Two ciphertexts
E(m1) and E(m2) satisfy
E(m1) ∗ E(m2) mod N → E(m1 ∗m2).

• Homomorphic addition-II: A ciphertext E(m1) and a
plaintext message m2 satisfy
E(m1) +m2 mod N → E(m1 +m2).

• Homomorphic multiplication-II: A ciphertext E(m1)
and a plaintext message m2 > 0 satisfy
E(m1) ∗m2 mod N → E(m1 ∗m2).

Note that, as SHE is a leveled homomorphic encryption,
which can only provide a limited round of calculation

in homomorphic multiplication-I (Zheng et al., 2021a).
To avoid incorrect decryption results, we make sure the
depth of homomorphic multiplication-I should be within
θ = ⌊ k0

2k2
− 1⌋.

3.3.2 SHE public key setting

According to the homomorphic properties, we can encrypt
the message with the public key pk ← {E(0)1, E(0)2},
where E(0)1 and E(0)2 are two ciphertexts of 0 with
different random numbers. When we apply the public
key encryption on the message, we have E(m) =
(m+ r1E(0)1 + r2E(0)2) mod N , where r1 and r2
are two random numbers satisfying r1, r2 ∈ {0, 1}k2 . In
later sections, we denote the public key encryption as
SHEEnc(pk,m).

3.4 Privacy-preserving protocol

Based on the SHE-based privacy-preserving protocol in
Zhang et al. (2021), to implement the secure two-party
computation, we design three atomic privacy-preserving
protocols: secure less than or equal (SLESSE), directly less
than (DLESS) and directly within (DWITHIN). Generally,
S1 keeps the homomorphic encryption public parameter
and the encrypted data while S2 holds the homomorphic
encryption secret key. Via these protocols, S1 and S2 may
figure out the comparison among those data without leaking
the plaintext information to both parties.

1 SLESSE: Cloud server S1, S2 work together to
calculate the result of whether m1 ≤ m2 with E(m1)
and E(m2) while the original information of m1 and
m2 will be in secret. In this protocol, S1 holds the
public parameter pb and ciphertexts {E(m1), E(m2),
E(−1)} while S2 holds the public parameter pb and
the secret key sk. In the later section, we denote it as
SLESSE(m1,m2). The detail of this protocol is as
follows.

• Step 1: S1 calculates the ciphertext E(x′) =
E(m1 −m2) = E(m1) + E(−1) ∗ E(m2) and
generates a random number s ∈ {−1, 1} by coin
flipping. According to properties of
homomorphic addition-II and homomorphic
multiplication-II, then S1 figures out
E(x) = E(s ∗ r1 ∗ x′ − s ∗ r2) where
r1, r2 ∈ {0, 1}k1 are two random numbers
satisfying r1 > r2 > 0. Notably, the plaintext
message in homomorphic multiplication-II should
not be negative. When s = −1, we need to
multiply E(x′) by E(−1).

E(x) =

{
s ∗ r1 ∗ E(x′)− s ∗ r2 s = 1

E(−1) ∗ r1 ∗ E(x′)− s ∗ r2 s = −1

S1 sends the E(x) to S2.
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• Step 2: After receiving the E(x), S2 utilises the
secret key sk to recover x. S2 returns a
encrypted value E(b′) to S1. If x ≤ 0,
E(b′) = E(1) otherwise E(b′) = E(0).

• Step 3: S1 receives E(b′) from S2 and outputs
the result E(b). If s = 1, E(b) = E(b′). If
s = −1 and
E(b) = E(1) + E(s) ∗ E(b′) = E(1− b′). E(b)
outputs E(b) = E(1) if m1 ≤ m2, otherwise
E(b) = E(0).

E(b) =


E(b′) s = 1

E(1) + E(s) ∗ E(b′) s = −1
= E(1− b′)

• Correctness: The protocol is correct iff when
m1 ≤ m2 it outputs E(b) = E(1) otherwise
E(b) = E(0). When s = 1, if m1 ≤ m2, because
of r1 > r2 > 0 and m1 −m2 ≤ 0, we may figure
out that x = s ∗ r1 ∗ (m1 −m2)− s ∗ r2 ≤ 0 and
the S2 will return E(b′) = E(1) to S1. Due to
s = 1, the protocol will return
E(b) = E(b′) = E(1). When s = −1, If
m1 ≤ m2, we have x ≥ 0 and the S2 will return
E(b′) = 0 to S1. And the S1 will compute the
result E(b) = E(1− b′) = E(1). We can use the
similar method to prove that the protocol will
return E(b) = E(0) if m1 > m2. Therefore, the
Secure Less Equal Than protocol is correct.

2 DLESS: Cloud server S1, S2 work together to
calculate the result of whether m1 < m2 with E(m1)
and E(m2). However, S1 gets the result directly
while it still keeps secret to S2. The other private
information such as plaintexts should still be in secret.
In this protocol, S1 holds the public parameter pb and
ciphertexts {E(m1), E(m2), E(−1)} while S2 holds
the public parameter pb and the secret key sk. In the
later section, we denote it as DLESS(m1,m2). The
detail of this protocol is as follows.

• Step 1: S1 calculates the ciphertext E(x′) =
E(m1 −m2) = E(m1) + E(−1) ∗ E(m2) and,
according to properties of homomorphic
addition-II and homomorphic multiplication-II,
then figures out E(x) = E(s ∗ r1 ∗ x′ + s ∗ r2) =
s ∗ r1 ∗ E(x′) + s ∗ r2 where r1, r2 ∈ {0, 1}k1

are two random numbers satisfying r1 > r2 > 0
and s ∈ {−1, 1} is a random number generated
by coin flipping by S1. S1 sends E(x) to S2.

• Step 2: After receiving the E(x), S2 utilises the
secret key sk to recover x. S2 returns the result
b′ directly to S1. If x < 0, b′ = true otherwise
b′ = false.

• Step 3: S1 receives b′ from S2 and outputs the
result b. If s = 1, b = b′. If s = −1 and b = ¬b′.
The protocol outputs b = true if m1 < m2,
otherwise b = false.

E(b) =

{
b′ s = 1

¬b′ s = −1

• Correctness: We can prove the correctness of this
protocol in a similar method with SLESSE.

3 DWITHIN: Given three ciphertexts E(m1), E(m2),
E(m3) and assumed that m1 < m3, this protocol is to
check whether m1 ≤ m2 ≤ m3. In this protocol, S1

holds the public parameter pb and ciphertexts
{E(m1), E(m2), E(m3), E(−1)} while S2 holds the
public parameter pb and the secret key sk. Similar to
the DLESS, S1 will figure out the result directly
while the result is still in secret in S2. In the later
section, we denote it as DWITHIN(m1,m2,m3).
The detail instruction is as follow.

• Step 1: S1 calculates the ciphertext E(x′) =
E((m1 −m2) ∗ (m3 −m2)) = (E(m1) +
E(−1) ∗ E(m2)) ∗ (E(m3) + E(−1) ∗ E(m2)).
Similar to SLESSE, S1 flips a coin
s ∈ {−1, 1} and chooses two random numbers
r1, r2 ∈ {0, 1}k1 which satisfy r1 > r2 > 0 to
compute E(x) = E(s ∗ r1 ∗ x′ + s ∗ r2) =
s ∗ r1 ∗ E(x′)− s ∗ r2 and then sends E(x) to
S2.

• Step 2: When S2 receives the E(x), it recovers x
with the secret key sk. If x ≤ 0, S2 returns a
plaintext flag b′ = true to S1 otherwise returns
b′ = false.

• Step 3: If s = 1, S1 computes the result bit b as
b = b′. If s = −1, S1 returns the flipped flag
b = ¬b′ as result. If m1,m2 and m3 satisfy
m1 ≤ m2 ≤ m3, the protocol output b = true,
otherwise b = false.

b =

{
b′ s = 1

¬b′ s = −1

• Correctness: If m1 ≤ m2 ≤ m3 and m1 < m3,
we may deduce the condition to
(m1 −m2) ∗ (m3 −m2) <= 0. And then we can
use the similar method to prove the DWITHIN.

4 Our proposed scheme

4.1 Weighted similarity range query over plaintexts

We first build up the R-tree index over the database.
To reduce the calculation of the weighted Euclidean
distance, we apply the range query on R-tree to filter
the data points which are impossible to include within
the weighted Euclidean distance with the query point.
Given a query request (q, w, τ), for a data point xi, if
it exists a dimension j that satisfies

√
wj(xi,j − qj)2 >

τ , we can consider this data point is impossible to be
involved within the weighted similarity range query and
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preclude it from the result set. Therefore, we setup a
query rectangle B0 = {(qj − τ√

wj
, qj +

τ√
wj

)|j = 1, ..., k}.
Because homomorphic properties are only applicable to
integers, we must multiply real numbers in the data and
the query rectangle by the number of multiples of ten
to convert them to integers. Once we apply this query
rectangle to the R-tree, we can acquire those data points
which may probably satisfy the weighted similarity range
query and add them to a candidate set. Finally, we check
whether the weighted euclidean distance between each
candidate set element and the query point is less than or
equal to the τ .

Algorithm 1 secureRangeQuery(E(B0), E(T ))

Input: Encrypted query rectangle E(B0), Encrypted R-tree node
E(T )

Output: Candidate set C
for each E(t) ∈ T.Children do

if E(t).isLeadNode() == false then
if secureIntersect(E(B0), E(t)) then

secureRangeQuery(E(B0), E(t))
end if

else
if secureInside(E(B0), E(t)) then

E(xi)← E(t).getData()
R← R ∪ {E(xi)}

end if
end if

end for

Algorithm 2 secureInside(E(B0), E(D0))

Input: Encrypted rectangle E(B0), encrypted data point E(D0)
Output: Return true if D0 ∈ B0; Otherwise return false.
for i← 1 to k do

if ¬(DWITHIN(l0,k, d0,k, u0,k)) then
return false

end if
end for
return true

Algorithm 3 secureIntersect(E(B0), E(B1))

Input: Encrypted rectangle E(B0), E(B1)
Output: Return true if B0 intersects with B1; Otherwise return
false.
for i← 1 to k do

if (DLESS(u1,k, l0,k)||DLESS(u0,k, l1,k)) then
return false

end if
end for
return true

4.2 Description of our scheme

In this section, we will introduce the detailed description
of our privacy-preserving weighted similarity range query
on healthcare data, including the system initialisation,
healthcare data outsourcing and privacy-preserving
weighted similarity range query.

4.2.1 System initialisation

The system initialisation starts at the HC. In this step,
the HC generates and distributes security keys to the
corresponding entity. The HC first selects the proper
security parameters k0, k1, k2 before invoking the
SHEKeyGen(k0, k1, k2) to generate the public parameter
and secret key {pb, sk} for the encryption. After that,
HC generates the public key pk ← {E(0)1, E(0)2} at
Subsection 3.3.2. HC delivers pb to S1 and sk to S2. In our
model, S1 stores and handles encrypted data. Without the
sk, S1 is unable to access plaintexts. While S2 possesses
the encryption secret key, without the encrypted data, it
also cannot access the plaintext of the original data. If
both parties adhere to our security assumptions, they cannot
access the plaintext data. And then HC generates ciphertext
{E(−1)}, which are leveraged for the filtration stage and
refinement stage in the weighted range query, and sends the
ciphertext to S1. HC delegates the query users U = {U1,
U2, ...} in the system and sends pk to them. When the
new query user registers on the system and is authorised
by HC, it will also receive the key from HC. Using pk,
the query user can encrypt the query data before sending it
to the cloud server. Because query users may have a lower
security level, we only delegate the public key instead of
the secret key to them.

4.2.2 Healthcare data outsourcing

Given the healthcare database X = {xi = (xi,1, xi,2, ...,
xi,k)|i = 1, 2, ..., n}, the HC will construct the encrypted
R-tree over X and then outsource it to S1. The detail of
data outsourcing is as follows.

Step 1 HC builds up a k-dimensional R-tree
T ← {B1, B2, ..., Bm, D1, D2, ..., Dn} on the
dataset X . As stated in Subsection 3.1, if the
numbers in the database are not integers, they
must first be pre-processed and converted into
integers.

Step 2 HC encrypts the the tree into E(T ) ← {E(B1),
..., E(Bm), E(D1), ..., E(Dn)}, where Bj =
{(E(lj,1), E(uj,1)), ..., (E(lj,k), E(uj,k))} and
E(Di) = {E(xi)} with SHEEnc(sk,m). After
that, the HC outsources the E(T ) on S1.

4.2.3 Weighted similarity range query over ciphertexts

After receiving the encrypted tree E(T ), S1 will cooperate
with S2 to offer the weighted similarity range query for
query users. The query user may launch the similarity query
by submitting the query token. Specifically, it consists of
three steps: an initial step for query initialisation, a filtration
step for excluding data points inaccessible to the query
point, and a refinement step for calculating the weighted
Euclidean distance between the data and query point and
returning the result to the user. The overview of the range
query is shown in Figure 4.
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Figure 4 Overview of range query in WeightedSim
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• Initial step: The query user constructs a query request
(q, w, τ ) and generates the refinement token (E(q),
E(w), E(τ)) with SHEEnc(pk,m). And then the
query user constructs the query rectangle
B0 = {(qj − τ√

wj
, qj +

τ√
wj

)|j = 1, ..., k} as the
instructions in Subsection 4.1 and encrypted it into
the filtration token. As stated in Subsection 3.1, we
should convert the real numbers in the query
rectangle into integers before generating the filtration
token. The query user then chooses a session key ssk
and a symmetric encryption to recover the query
result. In our scheme, we select AES as the
encryption algorithm, denoted as AESssk(�). Finally,
the user sends the session key ssk and query token
{E(q), E(w), E(τ), E(B0)} to S1.

• Filtration step: We will use R-tree range query to
preclude the inaccessible data and filter a candidate
set. Because the internal nodes and leaf nodes data
are encrypted by SHE, we implement the range query
using the privacy protocols in Subsection 3.4. We first
design the top level function as Algorithm 1. To
check whether the encrypted data point is inside the
encrypted rectangle, because the statement
l0,k > d0,k||u0,k < d0,k is equivalent to
¬(l0,k ≤ d0,k ≤ u0,k), we may design the
secureInside(E(B0), E(D0)) as Algorithm 2 by
implementing the conditional statement with
DWITHIN protocol in Subsection 3.4.
Correspondingly, we can implement
secureIntersect(E(B1), E(B0)) as Algorithm 3 to
check whether two encrypted rectangles intersect with
DLESS. Eventually, The algorithm outputs a

candidate set C = {E(xi)|xi may probably satisfy
dw(xi, q) ≤ τ}.

• Refinement step: For xi ∈ C, S1 computes the
weighted Euclidean distance between xi and q
according to the SHE homomorphic properties.
Because it is difficult to apply square root in the
homomorphic encryption, S1 calculates
E(dw(xi, q)

2) = E(
∑k

j=1 wj(xi,j − qj)
2) in the

practical. After that, S1 and S2 cooperate to launch
the SLESSE in Subsection 3.4 to compare
E(dw(xi, q)

2) and E(τ2). If dw(xi, q)
2 ≤ τ2, in other

words, xi satisfies the similarity query, the protocol
returns a encrypted result bit E(bi) = E(1), otherwise
E(bi) = E(0). Next, S1 generates a k-dimensional
random vectors Γi = {γi,1, ..., γi,k} and random value
γi,0 for each candidate xi and calculates
E(xi + Γi) = E(xi) + Γi and
E(bi + γi,0) = E(bi) + γi,0 to obfuscate plaintexts.
Those random numbers belong to the SHE message
space {m|m ∈ [−2k1−1, 2k1−1)}. S1 encrypts each
random vector and random value with symmetric
encryption, represented as
AESssk(Γi)||AESssk(γi,0). Finally, S1 construct a
result set R = {(E(xi + Γi), E(bi +
γi,0), AESssk(Γi)||AESssk(γi,0))|xi ∈ C} and sends
to S2.

Once S2 receives the result set, it recovers the SHE
plaintexts by the private key sk and transfers the new result
set {xi + Γi, bi + γi,0, AESssk(Γi)||AESssk(γi,0)} to the
query user.

Because the query user also owns the session key ssk,
it can remove random values easily. Firstly, it decrypts the
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AESssk(γi,0) to obtain bi by removing the random value
γi,0. If bi = 1, it means that xi is one of the results of the
range query, and then the query user continues to decrypt
AESssk(Γi) and deduces the random vector Γi to obtain
the original data xi.

5 Security analysis

In this section, firstly we will present the security analysis
of the SHE-based privacy-preserving protocol. And then we
will analyse the security of our scheme.

5.1 Security of privacy-preserving protocol

With the given ciphertexts {E(m1), E(m2)}, the SLESSE
protocol outputs the result of whether m1 < m2 while S1

and S2 can not obtain the information of plaintexts. In
this protocol, S1 holds the encrypted inputs [ciphertexts
{E(m1), E(m2)}] and the encrypted output [E(b)]. Those
messages are encrypted by SHE, which has been proven to
be semantically secure against CPA (Zheng et al., 2021a).
Therefore, without the secret key sk, S1 can not obtain
any information of those messages from the ciphertexts.
On the other side, S2 can recover the plaintext x = s ∗
r1 ∗ (m1 −m2)− s ∗ r2 with the sk. However, the random
numbers r1 and r2 prevent the S2 from obtaining the
original information of (m1 −m2). And S2 can not figure
out whehter (m1 −m2) is greater than, less than or equal
to 0 without the coin flipping number s.

We can use a similar way to analyse DLESS and
DWITHIN protocols. However, S1 directly knows the result
of the protocol while S2 can not figure it out due to the
coin-flipping.

5.2 Security of weighted similarity range query

We will prove that our scheme is selectively secure by the
real/ideal world model. Firstly, we will define the leakage
function from the perspectives of S1 and S2. After that,
we will present the definitions of the real-world model
and ideal world model and prove that the probability of
the adversaries in our security definition distinguishing the
view of the real/ideal world model is negligible.

1 Leakage function: The leakage function L(·) denotes
the leak information to an entity. Here, we define the
leak information to S1 and S2.

• L(S1): The information leakage to S1 involves
the public parameter pb, the encrypted R-tree
E(T ), the encrypted query token (E(q), E(w),
E(τ), E(B0)), ciphertext {E(−1)}. Also,
because this is a tree-based search scheme, it is
inevitable to leak the access pattern and search
pattern (Wang et al., 2014). Due to the R-tree
structure and DWITHIN and DLESS protocols,
the relations among some plaintexts will also be
revealed.

• L(S2): The information leakage to S2 involves
the public parameter pb, the secret key sk, and
the number of data records in the candidate set.

2 Real world model: In the real world model, there are
two adversaries A1 and A2 with probabilistic
polynomial time (PPT), and we assume that they will
not collude. Their interactions are as follows.

• Initialisation phase: A1 sends a dataset
X = {xi = (xi,1, xi,2, ..., xi,k)|i = 1, 2, ..., n} to
the challenger. And then, the challenger follows
the instructions of Subsection 4.2.1 to generate
the SHE key {pb, sk}. The challenger sends pb
to A1 and sk to A2. As Subsection 4.2.2, the
challenger builds up the R-tree T according to X
and encrypts it into E(T ) with SHE key.

• Token phase 1: A1 submits c0 weighted similarity
range queries, denoted as {qi, wi, τi|1 ≤ i ≤ c0},
where c0 is a polynomial number, and sends to
the challenger. The challenger applies the token
generation algorithm in Subsection 4.2.3 and
generates the query tokens {E(qi), E(wi), E(τi),
E(Bi)|1 ≤ i ≤ c0}. After that, the challenger
returns these query tokens to A1.

• Challenge phase: The challenger returns E(T ) to
A1.

• Token phase 2: A1 submits c1 − c0 weighted
similarity range queries, denoted as
{qi, wi, τi|c0 + 1 ≤ i ≤ c1}, where c1 is also a
polynomial number, and gets the query tokens
{E(qi), E(wi), E(τi), E(Bi)|c0 + 1 ≤ i ≤ c1}
from challenger.

• Query processing: With these query tokens
{E(qi), E(wi), E(τi), E(Bi)|1 ≤ i ≤ c1}, A1

and A2 cooperate to apply the weighted
similarity range query on E(T ) to obtain the
query result.

We denote the view of A1 in the real world as
realV iew(A1) which involves the query tokens, SHE
ciphertexts from E(T ) and SLESSE protocol, the
access pattern and search pattern of E(T ), the
plaintexts relation from DWITHIN and DLESS
protocols, and the R-tree. Similarly, we denote the
view of A2 in the real world as realV iew(A2) which
includes the AES ciphertexts in the result set,
plaintexts in the result set and some plaintexts from
protocols.

3 Ideal world model: In the ideal world model, there are
two PPT adversaries A1 and A2 (assume that these
two adversaries will not collude with each other) and
a simulator based on L(S1) and L(S2). They interact
as follows.
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• Initialisation phase: A1 sends a dataset
X = {xi = (xi,1, xi,2, ..., xi,k)|i = 1, 2, ..., n} to
the simulator. And then, the simulator delivers
pb ∈ L(S1) to A1 and sk ∈ L(S2) to A2.
According to the E(T ) ∈ L(S1), the simulator
builds up a encrypted R-tree E′(T ) which is
isomorphic to E(T ). The main idea of
constructing E′(T ) is to apply SHE self-binding
(Zheng et al., 2021a). Firstly, the simulator
leverages sk ∈ L(S2) to compute two different
ciphertexts of 0 E1(0) and E2(0). After that, for
each ciphertext E(x) in each node, the simulator
calculates E′(x) = E(x) + r1 ∗ E1(0) + r2 ∗
E2(0), where r1 and r2 are random numbers.

• Token phase 1: A1 submits c0 weighted
similarity range queries, denoted as {qi, wi,
τi|1 ≤ i ≤ c0} and sends to the simulator. The
simulator generates the query tokens {E(qi),
E(wi), E(τi), E(Bi)|1 ≤ i ≤ c0} with the SHE
key in L(S1) and converts the query token into
{E′(qi), E′(wi), E′(τi), E′(Bi)|1 ≤ i ≤ c0} by
self-binding. After that, the simulator returns
these query tokens to A1.

• Challenge phase: The simulator returns E′(T ) to
A1.

• Token phase 2: A1 submits c1 − c0 weighted
similarity range queries and gets the query tokens
{E′(qi), E′(wi), E′(τi),
E′(Bi)|c0 + 1 ≤ i ≤ c1} from simulator.

• Query processing: With these query tokens
{E′(qi), E′(wi), E′(τi), E′(Bi)|1 ≤ i ≤ c1}, A1

and A2 cooperate to apply the weighted
similarity range query on E′(T ) to obtain the
query result.

We denote the view of A1 in the ideal world as
idealV iew(A1) which involves the query tokens,
SHE ciphertexts from E′(T ) and SLESSE protocol,
the access pattern and search pattern of E′(T ), the
plaintexts relation from DWITHIN and DLESS
protocols, and the R-tree. In the similar way, we
denote the view of A2 in the ideal world as
idealV iew(A2) which includes the AES ciphertexts
in the candidate set, some plaintexts received from
protocols and candidate set.

Definition 1 (selevtive security of our scheme): Our scheme
is selectively secure with L(S1) and L(S2) iff, for any two
PPT adversaries A1 and A2, there exists a simulator that
the probability of A1 and A2 to distinguish the real world
model and ideal world model is negligible.

Theorem 1: Our scheme is selectively secure with the
leakage L(S1) and L(S2) iff the SHE technique is
semantically secure against CPA.

Proof: According to Definition 1, to prove the selective
security of our scheme, we will show that A1 and A2 can
not distinguish between the view of the real world and the
ideal world respectively, as follows.

• View of A1: Both idealV iew(A1) and realV iew(A1)
include the query tokens, SHE-encrypted R-tree, the
access pattern and search pattern of R-tree. As for the
E(T ) and E′(T ), because E(T ) is isomorphic to
E′(T ), A1 can not distinguish these two views from
the tree structures. The internal nodes and leaf nodes
in E′(T ) are generated by the self-binding from
E(T ), also these nodes are encrypted by SHE which
has been proven to IND-CPA (Zheng et al., 2021a),
so A1 can not distinguish the nodes in E(T ) and
E′(T ). Correspondingly, A1 can not distinguish the
ciphertexts of SLESSE protocol and query token from
idealV iew(A1) and realV iew(A1) because they also
are encrypted by SHE. Because of the self-binding in
E′(T ), the ciphertexts still hold up the same plaintext
relation. As a consequence, the same query token will
have the same DLESS and DWITHIN results as well
as the search path on the tree structure. Therefore, A1

can not distinguish the access pattern and search
pattern of E(T ) and E′(T ). Therefore, A1 can not
distinguishing idealV iew(A1) and realV iew(A1).

• View of A2: Both idealV iew(A2) and realV iew(A2)
include the AES ciphertexts in the candidate set, some
plaintexts received from privacy-preserving protocols
and candidate set. Because the AES ciphertexts are
encrypted from random numbers, A2 can not
distinguish the ciphertexts from idealV iew(A2) and
realV iew(A2). As for the plaintexts from protocols
and candidate set, they are all garbled by random
numbers, so A2 can not distinguish the plaintexts
from the real world and ideal world.

In conclusion, A1 and A2 can not distinguish between the
view of the real world and the ideal world.

6 Experiments

In this section, we conduct a simulation of WeightedSim to
evaluate the performance of the weighted similarity range
query. Specifically, to verify the efficiency of the filtration
step of our scheme, we compare WeightedSim with the
naive scheme that does not apply filtration in the query.
We implement the WeightedSim and naive scheme with
Java (JDK 15 as execution environment) and execute on
a machine with 16 GB memory, 2.90 GHz AMD Ryzen
7 4800H CPU and Win 11 OS. In the simulation, we
evaluate the performance on the EEG (2013) dataset, which
contains 14,980 rows of data with 15 attributes. As for
the R-tree, we leverage R*-tree (Beckmann et al., 1990)
as the data index construction strategy and implement
the scheme based on an open-source R-tree repository
(https://github.com/davidmoten/rtree-multi).
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Also, the security parameters of SHE are set as
k0 = 1,200, k1 = 30, k2 = 80. We can figure out
the maximum multiplicative depth θ = 6 and all the
SHE privacy-preserving protocols are involved within
the maximum depth. The summary of the experimental
environment is shown in Table 1. The computational cost
is correlated with three factors: the dataset size n, the data
dimension k and the query threshold τ . In the following
part, we conduct the experiments around these three factors.

• Computational cost versus n: In our scheme, the
similarity query time increases correspondingly by the
size of the dataset. In this experiment, we setup the
parameters as n ranging from 4,000 to 14,000, τ = 6
and k = 5. Figure 5 indicates the computational cost
of similarity query between our scheme and the naive
scheme varying with the dataset size n. From the
diagram, we can learn that after applying the filtration
strategy, our scheme can considerably reduce the
computation cost compared with the naive scheme
without filtration. Besides, the increasing rate of our
scheme is smaller than the naive scheme.

Figure 5 Computational cost varying from dataset size
(see online version for colours)

• Computational cost versus k: In our scheme, the
performance of the similarity query is also affected by
the data dimension. In this experiment, we setup the
parameters as n = 4,000, τ = 6 and k ranging from 4
to 14 and the experiment result is as shown in
Figure 6. From the diagram, we can know that the
query time will also increase with the increment of
the data dimension in both schemes and our scheme
is much more efficient than the naive scheme. Also,
the increase of data dimension only has a slight
impact on the performance in the WeightedSim
compared with the naive scheme.

• Computational cost versus τ : In our scheme, the
query threshold also impacts the query efficiency.
With the increase of τ , the size of the candidate set in
the filtration step will become larger so that the query

time will also increase correspondingly. In the
experiment, we setup the parameters as n = 4,000, τ
ranging from 2 to 8 and k = 5 and plot the
computational cost varying with τ in Figure 7. The
chart shows that the query time of our scheme
increases by the increase of τ while the
computational cost of the naive scheme stays stable.

Figure 6 Computational cost varying from data dimension
(see online version for colours)

Figure 7 Computational cost varying from query threshold
(see online version for colours)

7 Related works

As we stated, there have appeared some research works
on privacy-preserving data query (Hua et al., 2019; Zhang
et al., 2021; Lin et al., 2021; Jin et al., 2021; Song et al.,
2022; Zheng et al., 2021a, 2021b, 2022) which may be
applicable in the healthcare scenario to protect the data
privacy.

Wang et al. (2016) employed R-tree and OPE techniques
to design a privacy-preserving nearest neighbour search that
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achieved IND-OCPA (Boldyreva et al., 2009). However,
the encryption revealed the order of ciphertexts and
reached a relatively weak secure level. Zhang et al. (2021)
based on SHE technique building blocks, proposed a
privacy-preserving dynamic skyline query scheme for the
secure online medical diagnosis system. In their scheme,
they also designed a series of SHE privacy-preserving
protocols under the two cloud servers model. Similarly,
based on the SHE technique and two cloud servers
model, Zheng et al. (2021a) presented a privacy-preserving
similarity range query scheme over the encrypted time
series data with the k-d tree. To avoid exceeding the
multiplicative depth of homomorphic multiplication in SHE,
they designed a bootstrap protocol to refresh the ciphertexts.
However, the bootstrap protocol will cause additional
computation and reduce the efficiency of the data query.

Table 1 Experimental environment

Parameter Setting

Evaluating CPU 2.90 GHz AMD Ryzen 7 4800H
Evaluating RAM 16 GB
Programming language Java
Execution environment JDK 15
Operating system Win 11
SHE security parameters k0 = 1,200, k1 = 30, k2 = 80
Dataset EEG (2013) eye state dataset

Secure two-party computation was originated by Yao
(1982). Although the original design of Yao was inefficient,
this area has been discussed profoundly and there has
been significant progress in secure two-party computation.
Toft (2011) presented secure comparison schemes for two
non-colluding parties. Shelat and Shen (2013) implemented
Yao’s (1982) protocol with weaker security assumptions
while improving the performance. This technique has also
been applied in real-world applications. In our scheme, we
proposed a set of secure two-party computation protocols
to compare the data based on homomorphic encryption
under the honest-but-curious and no collusion security
assumptions.

Zheng et al. (2021b) designed a Euclidean
distance-based privacy-preserving similarity range query
for healthcare data. In their scheme, these healthcare data
were encrypted with modified asymmetric-scalar-product
encryption (MASPE) and a quadsector tree was created
as the index. They applied the filtration strategy to prune
the unnecessary tree searching paths and the refinement
strategy to validate whether the data satisfied the similarity
range query. However, this scheme did not consider the
preference of some specific data dimensions when querying.
Later, Zheng et al. (2022) firstly introduced the weighted
similarity range query on the healthcare data. In their
scheme, they defined the negative infinity norm (NIND)
distance as the lower bound of the weighted Euclidean
distance. When building an index, they selected reference
points from the data and applied the triangle inequality of
NIND to build up a sorted list as the index in which these
data were also protected by MASPE. However, NIND does

not satisfy the triangle inequality and the query results are
incorrect.

8 Conclusions

In this paper, we proposed an efficient and
privacy-preserving weighted similarity range query scheme
(WeightedSim) for the healthcare data outsourcing scenario
under the two cloud servers model. Specifically, we design
an encrypted R-tree as the encrypted data index for the
healthcare data using the SHE technique, followed by the
corresponding SHE privacy-preserving protocols on the two
cloud servers model for the range query on the encrypted
R-tree. Using the provided encrypted R-tree, we setup the
filtration and refinement strategies to apply the weighted
similarity range query over the ciphertexts. Finally, the
security analysis shows that our scheme is selectively
secure as long as SHE is IND-CPA and the experimental
results demonstrate that our scheme is efficient. There are
still some limitations in our scheme. For example, the result
in Figure 7 shows the data query time strongly related to
the query threshold τ . As τ expands, the improvement of
our strategies will become less effective. In addition, we
did not consider the computational cost between two cloud
servers during our experiment. In the future, we will adjust
our scheme to be more expected and robust by introducing
new methods that adapt our data query scheme to arbitrary
query thresholds. Additionally, communication costs will
be considered into the future works, which will be based
on the two cloud servers model.
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