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Abstract: To achieve accurate prediction of energy demand, this study 
designed a new method for predicting comprehensive energy demand in 
industrial parks using echo state networks. Firstly, analyse the comprehensive 
energy structure of the park, then collect and supplement historical 
comprehensive energy load consumption data. Secondly, select the factors that 
affect the load demand forecast, and calculate the comprehensive similarity of 
similar days of historical energy demand according to the mutual information 
between the influencing factors. Finally, input the calculation results into the 
optimised echo state network of the crossbar algorithm, and output the 
predicted comprehensive energy demand of the park. Experiment shows  
that after applying this method, the predicted values fluctuate between  
1.410%–2.384%, RMSE values fluctuate between 176.4 MW–205.3 MW, 
indicating that the error of the predicted results using this method is relatively 
small. 

Keywords: comprehensive energy system of the park; energy demand; 
cold/hot/electrical loads; crossover algorithm; echo state network; demand 
forecast. 
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1 Introduction 

Industrial parks are an important component of China’s industrial clusters and also the 
allocation centre for production factors in various industries. Nowadays, new energy is 
widely used globally to improve environmental pollution issues, but there is a 
phenomenon of structural irrationality in the actual use process. To cope with this 
situation, the park’s energy supply system, mainly based on comprehensive energy has 
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been put into use (Zhao et al., 2022). The comprehensive energy system is an integrated 
system of multiple energy production, supply, and sales. During the planning, 
construction, and operation stages, it improves the synergy between energy production, 
transformation, transmission, consumption, and storage, effectively improving the energy 
utilisation efficiency and new energy consumption capacity of the park (Zhang et al., 
2023; Huang et al., 2022). Due to the large amount of intermittent energy present at the 
supply end of the integrated energy system, and the presence of multiple types, diverse 
characteristics, and randomly changing loads at the energy receiving end, it is necessary 
to analyse the comprehensive energy demand (Luo et al., 2020). 

For this purpose, a method for predicting energy demand was designed in Wu et al. 
(2021a) for the multi energy complementary system in the park. After analysing the 
environmental factors that affect the demand for cold and hot energy in the park, this 
method combines the mutual information method with the error minimisation method to 
preliminarily analyse the demand for energy. On this basis, a method for selecting energy 
consumption similar days based on comprehensive distance and trend similarity was 
designed to address the drawbacks of conventional grey correlation analysis. Based on 
the results of selecting similar energy consumption days, a deep belief network is used to 
predict the demand for different types of energy loads in the park. In Xu et al. (2020), 
relevant scholars fully utilised artificial intelligence technology, integrating convolutional 
neural networks and deep confidence networks, two classic network algorithms, to design 
a multi type energy demand prediction method. This method first analyses the feature 
information of convolutional neural networks and extracts effective features from them. 
Then, the feature extraction results are added as input information to the deep confidence 
network, and the final energy demand prediction value is output through training and 
learning. Based on the historical characteristics of energy demand in Fang et al. (2020), 
the historical feature data is smoothed through linear regression analysis to extract the 
linear changes of the historical feature data. Then, use the grey linear regression equation 
to preliminarily predict the trend of energy demand changes in the future stage. On this 
basis, the weighted fuzzy theory is used to optimise the traditional Markov chain model, 
modify the preliminary prediction results of the grey linear regression equation, avoid 
local fluctuations in the energy demand prediction process, and obtain effective 
prediction results. 

However, in practical applications, it has been found that the traditional methods 
mentioned above still have high prediction errors, and the numerical performance of the 
MAPE and RMSE indicators is not ideal. In response to this issue, this study proposes a 
method for predicting the comprehensive energy demand in industrial parks based on 
echo state networks: 

Firstly, analyse the comprehensive energy structure of the park, including the energy 
supply side, energy hubs, energy storage devices, and load side; 

Secondly, collect historical data on the comprehensive energy consumption of the 
park, and to avoid affecting the reliability of subsequent predictions due to abnormal or 
missing data, use Lagrange interpolation to repair the data and fill in any missing values; 

Once again, based on the observation of historical energy consumption data, it can be 
seen that the demand for comprehensive energy in the park is actually the demand for 
cooling/heating/electricity/gas loads. Therefore, the average and upper and lower limit 
values of temperature, humidity, wind speed and light are selected as the influencing 
factors of energy demand forecast, and the mutual information value among these four 
influencing factors is calculated; 
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Then, according to the analysis results of mutual information of influencing factors, 
calculate the distance similarity and trend similarity of historical energy demand, and 
calculate the comprehensive similarity of similar days of historical energy demand 
through iterative summation; 

Finally, the vertical and horizontal crossover algorithm is introduced to optimise key 
parameters such as echo state network weights and thresholds by initialising the echo 
state network through horizontal/vertical crossover and comparing competition operators. 
Input the comprehensive similarity into the echo state network, and after training in the 
reserve pool, the comprehensive energy demand prediction results of the park can be 
obtained. 

2 Analysis of the comprehensive energy structure of the park 

Analysing the comprehensive energy structure of the park can roughly grasp the demand 
for energy supply, energy hubs, energy storage devices, and load terminals. This is the 
foundation for planning and construction of the park, and also an important basis for 
rational layout of the park (Huang et al., 2020). 

Firstly, analyse the structure of the comprehensive energy system in the park, as 
shown in Figure 1. 

Figure 1 Comprehensive energy structure diagram of the park 
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In Figure 1, the comprehensive energy structure of the entire park includes the energy 
supply end, energy hub, energy storage unit, and energy load end. The energy supply end 
can provide the initial form of energy, with a portion converted into the required energy 
form for the energy load end in the energy hub, and the other portion transported to the 
energy storage unit (Zheng et al., 2022). 

A hub is an energy conversion device that can convert different types of energy into 
the energy required by the energy load end (Zhang et al., 2022). The energy hub has dual 
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ports, where the input energy is ( 1, 2, , )isP i p=   and the output energy is 
( 1, 2, , ).jsQ j q=   Here, p and q represent the types of energy input and output, 

respectively. The energy conversion process in the hub is as follows: 

1 11 11 1 1 1 2 1 2 1

2 22 21 2 1 2 2 2 2 2

1 1 2 2

p p

p p

q pq q q q p q p q
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 (1) 

In formula (1), si and sj represent the energy forms of input and output, respectively; 
p qs sδ  represents the efficiency of converting energy si into sj; p qs sϑ  represents the 

distribution coefficient of energy, which satisfies the following constraints: 

0 1

1

p q

p q

j

s s

s s
s

 ≤ ϑ ≤
 ϑ =

 (2) 

3 Analysis of factors influencing energy demand 

3.1 Historical energy data preprocessing 

Generally speaking, the length of historical data should be long enough to ensure that the 
prediction model can capture trends and periodic changes in energy demand, but it should 
not be too long, otherwise it may contain outdated information or noise. Therefore, in this 
study, the length of historical energy data was set to 8765 data points to avoid adverse 
effects on prediction performance. 

When collecting historical energy consumption data, human error, instrument failure 
and other problems may occur, resulting in incomplete data or outlier (Xue et al., 2022). 
To address this issue, this study used Lagrangian interpolation to repair the data and fill 
in any missing values. The calculation process of the Lagrangian interpolation method is 
as follows: 

1 1

2
i i

i
x xx − ++=  (3) 

In formula (3), xi represents the processed data; xi–1 and xi+1 represent the previous and 
subsequent items of abnormal data. 

Due to the diverse sources of influencing factors and significant dimensional 
differences, in order to treat each influencing factor without differentiation, the maximum 
minimum method was used to normalise each influencing factor. The process is as 
follows: 

min,

max, min,

i j
i

j j

x x
x

x x
−′ =

−
 (4) 
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In formula (4), x′i represents the normalised energy consumption data; ix  represents the 
initial energy consumption data; max, jx  and min, jx  represent the upper and lower limits of 
the jth influencing factor matrix. 

3.2 Calculation of influencing factors mutual information 

Based on the analysis of the comprehensive energy system in the previous chapter, it can 
be seen that the demand for comprehensive energy in the park is actually the demand for 
cooling/heating/electricity/gas loads. Therefore, this study analyses the influencing 
factors of cooling, heating, and power loads. 

Due to the influence of multiple influencing factors, the cold/hot/electricity/gas load 
series has significant randomness and volatility. Therefore, the scientific selection of 
these influencing factors will help improve the accuracy of subsequent predictions 
(Zheng et al., 2021; Zhu et al., 2022). 

This study selects the average and upper and lower limits of temperature, humidity, 
wind speed, and light as the influencing factors for energy demand prediction, 
represented as: 

[ ]1 2, , , , ,i nI I I I I=    (5) 

In formula (5), Ii represents the ith influencing factor matrix; n = 12. 
Due to the multiple influencing factors involved, the computational complexity of 

predicting energy demand in the park has greatly increased, especially with some 
influencing factors having only weak or even inverse correlations with energy supply, 
which can easily lead to a decrease in estimation accuracy. Therefore, this study selects 
energy consumption similar days based on the principle of minimum error. 

Mutual information can reflect the relationship between different variables (Zhuo  
et al., 2022). Based on the cooling/heating/electricity/gas load data and its influencing 
factors, calculate the direct mutual information values of different influencing factors: 

( ) ( )( ) ( )
( ) ( )

,
log, ,

it vt v

it vt
i v it vtI I I I it vt

p I I
G pI I I I

p pI I∈ ∈
=   (6) 

In formula (6), Iit represents the value of the ith influencing factor at time t; Ivt represents 
the energy consumption load at time t; p(Iit) and p(Ivt) represent the edge distribution of Iit 
and Ivt, respectively; p(Iit, Ivt) represents the probability density function. 

4 Prediction of comprehensive energy demand in the park 

4.1 Comprehensive energy demand similarity analysis 

Taking the energy demand influencing factors analysed above as constraints, this study 
analyses the distance similarity of energy demand and the trend similarity of energy 
demand, respectively, to calculate the comprehensive similarity of energy demand. 
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4.1.1 Calculation of distance similarity in energy demand 
Assuming that Ki represents the sample influencing factors and Ka represents the 
corresponding influencing factors for the predicted day, establish the energy demand 
influencing factor matrix as follows: 

1 11 1 1

1

1

a i p

aj j ij pj

ap q iq pq

K K K K

K K K KK

K K K K

 
 
 
 =
 
 
  

 
     

 
     

 

 (7) 

In formula (7), p represents the number of influencing factors; q represents the 
dimension; Kij represents the numerical result of the ith influencing factor at time j; Kaj 
represents the numerical value of the influencing factors corresponding to the predicted 
day at the jth moment (Wang et al., 2022b). 

Based on the setting of the above parameters, the calculation formula for the 
establishment and micro increment matrix is as follows: 

1( , )
2

ij aj
aj

K Kk i j K
+Δ = −  (8) 

Substitute the results obtained from formula (8) into formula (9) to calculate the 
similarity between the composition and the micro increment: 

1

1
( , )( , ) k i jτ i j eΔ=  (9) 

On this basis, calculate the incremental product of energy demand, as follows: 

2 ( , ) ij aj ajk i j K K KΔ = −  (10) 

Substitute the calculation result of formula (10) into formula (11) to calculate the product 
incremental similarity of the comprehensive energy demand. The process is as follows: 

2

1
( , )( , ) k i jσ i j eΔ=  (11) 

Based on the above results, the distance similarity calculation formula for energy demand 
is: 

1 ( , ) (1 ) ( , )SIM τ i j σ i j= + −β β  (12) 

In formula (12), β represents the distance coefficient. 

4.1.2 Calculation of trend similarity in energy demand 
Using segmented trend similarity synthesis to characterise the similarity features between 
data, and transforming them into multiple sets of dispersed numerical values, a new 
concept of trend line segment difference is introduced to achieve analysis of trend 
similarity between data (Li et al., 2021). Generally speaking, the shape similarity between 
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different line segments can be analysed by the direct angle between the line segment and 
the horizontal axis. As the sequence is at the same time interval, this angle has higher 
comparability. Through the analysis of this angle, it can be found that the value of this 
angle only depends on the difference in longitudinal coordinates between the line and the 
line, and the difference between the scale value and the longitudinal coordinates in the 
direction of the line is determined as the value in the direction of the line (Wu et al., 
2021b). 

The geometric meaning of trend line segment values is shown in Figure 2. 

Figure 2 Trend segment value (see online version for colours) 
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From Figure 2, it can be seen that there is a close relationship between the trend line 
segment values and the included angles, and they correspond one-to-one, reflecting the 
trend attributes of the line segment composed of adjacent two points. Whether it is a 
forward or reverse analogy, the trend curve values of each indicator can be directly 
compared and calculated, and its universality is significantly enhanced (Wang et al., 
2022a). The calculation method for trend line segment difference is as follows: 

[ ] [ ], 1 , 13 ( , ) a j aj i j ijK K K Kk i j + +− −Δ = =  (13) 

By using the calculation results of formula (13), the trend similarity of energy demand 
can be obtained, as follows: 

3

1
( , )

2
k i jSIM eΔ=  (14) 

By iteratively merging the calculation results of formula (12) and formula (14), the 
comprehensive similarity SIM of energy demand corresponding to the predicted day can 
be obtained. The calculation process is as follows: 

1 21 1

1 1
1

q q

j j
SIM γ SIM μ SIM

q q= =
= +

−   (15) 

In formula (15), γ and μ represent a set of correlation coefficients, and the sum of the two 
is 1. 
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4.2 Prediction of comprehensive energy demand in parks based on echo state 
networks 

As a unique form of neural network, echo state network has a simple training method, 
fast convergence speed, and can effectively solve complex nonlinear problems. It is 
particularly suitable for analysing non-stationary time series data (Tian et al., 2020). 
Therefore, after the above analysis and selection of similar daily energy demand data, this 
study uses echo state networks to predict the comprehensive energy demand of the park. 

The structure of the echo state network is shown in Figure 3. 

Figure 3 Echo state network structure diagram (see online version for colours) 

s
sω

 

In the echo state network structure shown in Figure 3, the information of the input layer 
is the historical data of the comprehensive energy consumption of the park, and the 
output result of the output layer is the predicted value of the comprehensive energy 
consumption of the park. 

In the echo state network, the input layer information at time t is defined as u(t), the 
reserve pool state quantity is defined as s(t), and the output layer information is defined 
as o(t). The connection weights between the three parts are ,  s s

u sω ω  and o
sω  (Zhu et al., 

2021). 
The update formulas for the internal state s(t) and output o(t) of the reserve pool of 

the echo state network at time t are shown in formulas (16) and (17), respectively: 

( )( ) ( ) ( 1) ( 1)s s o
u s ss t f ω u t ω s t ω o t= × + × − + × −  (16) 

( )( ) ( 1)oout so t f ω o t= × −  (17) 

In the formula, f(∙) represents the activation function in the reserve pool structure; fout(∙) 
represents the activation function of the output layer. 
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On this basis, in order to improve the performance of the echo state network, the 
crossbar algorithm is used to improve the connection weights of the echo state network. 
The process is as follows: 

Process 1 Initialise the network according to the conditions. 

Process 2 Perform horizontal crossover calculations and compare competition 
operators. 

Process 3 Perform vertical crossover calculations and compare competition operators. 

Process 4 Stop iteration. 

Based on the analysis of the echo state network, the energy demand similar daily data 
obtained in Section 4.2 is input into the echo state network to predict the comprehensive 
energy demand of the park in the future stage. The specific steps are as follows: 

Step 1 Collect historical consumption data of cooling/heating/electricity/gas loads in 
the comprehensive energy system of the park, and use interpolation and 
normalisation methods to preprocess the historical energy demand data 
according to the processes shown in formulas (3) and (4). 

Step 2 Roughly select 12 dimensional influencing factors, calculate the mutual 
information value between influencing factors according to formula (6), and 
screen the influencing factors with the highest correlation according to the 
calculation results. 

Step 3 According to the process of formulas (7)–(12), calculate the distance similarity 
SIM_1 of historical energy demand data. 

Step 4 According to the process of formulas (13)–(14), calculate the trend similarity 
SIM_2 of historical energy demand data. 

Step 5 Based on the results obtained from steps 3 and 4, calculate the total similarity 
SIM of historical energy demand data using formula (15). 

Step 6 Construct a comprehensive energy demand load forecasting model using the 
echo state network, and improve the connection weights of the deep belief 
network using the cross over algorithm. 

Step 7 Calculate load balance constraints. Different types of energy are converted 
through hub coupling devices to balance the energy demand at the load end. The 
conversion process between energy sources must be based on the law of 
conservation of energy, namely: 

c c
c d

d d

w ηR R
w η

Δ = − Δ  (18) 

In formula (18), ∆R represents the change in energy consumption load; c and d 
represent the type of energy; W represents the unit calorific value of energy; η 
represents the utilisation rate of energy. Assuming that the total energy load that 
can meet the normal operation of the park is Lc, to ensure energy conservation, 
load balance constraints are introduced as follows: 
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( )0
1

. . 0
C

c c c cc
L L L s t L

=
= − + Δ Δ =  (19) 

In formula (19), 0
cL  represents the load before response; ∆Lc represents the 

energy load variation that can meet the normal operation of the park; C 
represents the type of energy. 

Step 8 Use data from similar days of historical energy demand as input information for 
the echo state network, and after training in the reserve pool, output the 
predicted comprehensive energy demand of the park as follows: 

( )
c

SIMZ o t
L

= ×  (20) 

5 Experiment and result analysis 

To verify the feasibility of the comprehensive energy demand prediction method for the 
park based on the echo state network designed above, the following experiments are 
designed. 

5.1 Description of experimental environment 

The experiment takes the cooling and heating load data of a certain park equipment 
company as an example and conducts simulation analysis in the MATLAB environment. 
The main energy supply methods of the comprehensive energy system in the park are 
combined cooling, heat and power generation, and photovoltaic power generation. The 
structure of the comprehensive energy system in the park is shown in Figure 4. 

Figure 4 The comprehensive energy structure of the experimental park 

 

The simulation parameters of the park’s energy supply indicators are shown in Table 1. 
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Table 1 Energy supply indicators 

Project Numerical value 
Installed capacity 80 MW 
Power generation output 65 MW 
Annual heating capacity 839,041.7 Gj/a 
Annual energy output 356.482 million kW/a 
Annual power supply 37,418.3 million kW/a 
Comprehensive auxiliary power consumption rate 3.0% 
Annual average thermoelectric ratio 66% 
Average annual power generation efficiency 45.63% 
Average annual heating efficiency 73.15% 

The basis for designing reasonable sample data for learning and validation is that the 
sample data should represent the characteristics of real data. Therefore, collect 
comprehensive energy consumption data of the park from January 2023 to April 2023 as 
samples, with a collection period of 0.5 hours. Collect data 48 times a day, and a total of 
1,574 sample points were collected. During the experimental process, this study 
normalised the sample data and set the average length of the sample data to 8 Bytes. 
Randomly select half of the data as the training set and the other half as the testing set to 
predict the comprehensive energy demand of the park in the future stage. To avoid 
excessively single experimental results, the method of Wu et al. (2021a) and method of 
Xu et al.(2020) were compared and used together with the method of this paper to 
complete performance verification. 

5.2 Indicator description and result analysis 

In order to quantify the performance of various prediction methods, appropriate 
evaluation indicators were selected in the experiment to evaluate the prediction results of 
different prediction methods. The average absolute percentage error and standard error 
were selected as performance verification indicators in the experiment, and their 
calculation formulas are as follows: 

1

1 n t t
t t

Y YMAPE
n Y=

−=   (21) 

( )2

1

1 n
t tt

RMSE Y Y
n =

= −  (22) 

In the formula, MAPE and RMSE represent the average absolute percentage error and 
standard error of the prediction results, respectively. n represents the number of sample 
points, tY  represents the predicted comprehensive energy demand at time t, and Yt 
represents the actual comprehensive energy demand corresponding to time t. Based on 
the above indicators, conduct performance analysis on different prediction methods. 

Calculate the error situation of the comprehensive energy demand prediction for 
seven consecutive times, and the results are shown in Table 2. 
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Table 2 Error comparison of different prediction methods 

Number 
of result 
statistics 

Method of this paper  Method of Wu et al. 
(2020) 

 Method of Xu et al. 
(2020) 

MAPE/% RMSE/MW MAPE/% RMSE/MW MAPE/% RMSE/MW 
1 2.051 178.7  5.553 345.5  5.283 363.7 
2 2.112 198.3  6.586 275.5  4.677 496.9 
3 2.362 184.7  6.358 361.4  4.595 555.0 
4 1.410 205.3  7.582 494.0  5.974 452.5 
5 2.250 176.4  6.564 339.9  4.849 404.6 
6 1.967 195.4  5.854 546.6  4.363 579.2 
7 2.384 203.0  6.353 453.6  5.431 433.3 

Observing the data in Table 2, it can be seen that after applying the method of this paper, 
the MAPE value of the predicted results fluctuates between 1.410%–2.384%, and the 
RMSE value fluctuates between 176.4 MW–205.3 MW. On the other hand, the minimum 
MAPE value of method of Wu et al. (2020) is 5.553%, while the minimum MAPE value 
of method of Xu et al. (2020) is 4.363%. The minimum values of both predicted outcome 
indicators exceed the maximum value of method of this paper. The minimum RMSE 
index for method of Wu et al. (3030) is 275.5 MW, while the minimum RMSE index for 
method of Xu et al. (2020) is 363.7 MW, which still significantly exceeds the method of 
this paper. 

Based on the above analysis, it can be concluded that the average absolute percentage 
error and root mean square error of the predicted results obtained by method of this paper 
are both low, indicating that the predicted results of method of this paper for the 
comprehensive energy demand of the park are closer to the actual comprehensive energy 
demand. The reason for the above results is that the method of this paper uses Lagrange 
polynomial to fill in the gaps in the historical data of comprehensive energy consumption 
in the park, effectively avoiding the impact of abnormal or missing data on the reliability 
of subsequent prediction. In addition, on the basis of initialising the echo state network, 
the method of this paper optimises key parameters such as echo state network weights 
and thresholds by crossing horizontally/vertically and comparing competition operators, 
thereby improving the prediction quality of the echo state network for the comprehensive 
energy demand of the park. 

6 Conclusions 

To accurately predict the demand for comprehensive energy in the park, this study 
collects and preprocesses historical comprehensive energy consumption data based on the 
analysis of the park’s comprehensive energy structure. After data processing, it was 
found that the demand for comprehensive energy in the park is reflected in the demand 
for cooling/heating/electricity/gas loads. Therefore, four kinds of factors, temperature and 
humidity, wind speed and light, are selected as the influencing factors of energy demand 
prediction, and their average values and upper and lower limits are taken as the 
influencing factors. According to the analysis results of mutual information of the 
influencing factors, the distance similarity and trend similarity of historical energy 
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demand are calculated. Through the iterative summation of the two factors, the 
comprehensive similarity of similar days of historical energy demand is calculated. 
Finally, the vertical and horizontal crossover algorithm is introduced to optimise the echo 
state network through horizontal/vertical crossover and comparison of competition 
operators. The comprehensive similarity is then input into the echo state network to 
obtain the final prediction result of the comprehensive energy demand of the park. 

According to the experimental results, after applying the method of this paper: 

1 The predicted MAPE value fluctuates between 1.410%–2.384%. 

2 The RMSE value fluctuates between 176.4 MW–205.3 MW. 

This can indicate that compared with the two traditional methods, the error of the method 
of this paper prediction results is significantly smaller, indicating that the method of this 
paper effectively achieves the design expectations. 
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