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Abstract: Aiming at the uncertainty of the internal correlation between 
economic growth, energy consumption and carbon emissions in regional 
construction industry, a dynamic impact research method based on hidden 
Markov model (HMM) was proposed. Firstly, the dynamic correlation of three 
variables in the region was established based on HMM, the optimisation 
parameter estimation of time window was set, and the optimal prediction of 
carbon emission state was achieved with Viterbi algorithm. Then, the dynamic 
parameters of the model with the best prediction effect were obtained, and 
further describes the evolution of the interaction of the three variables in the 
region. Finally, the empirical analysis of the East China region shows that the 
average prediction accuracy of HMM under the optimal time window is more 
than 93%, and its dynamic parameters intuitively describe the change in 
regional carbon emission development state and the dynamic relationship 
between carbon emissions, economic growth, and energy consumption. 

Keywords: building carbon emissions; improved HMM; state prediction; 
dynamic impact. 

Reference to this paper should be made as follows: Zhou, G., Fu, Z., Liu, Y., 
He, Z., Cai, M. and Luo, L. (2024) ‘The dynamic impact of regional 
construction industry economy, energy and carbon emissions based on HMM’, 
Int. J. Energy Technology and Policy, Vol. 19, Nos. 1/2, pp.17–34. 

Biographical notes: Guangquan Zhou received his Master’s in Civil 
Engineering Planning and Management from the School of Civil Engineering 
and Architecture of Central South University, and PhD in Road and Railway 
Engineering from the same school in 2018. He is currently an Associate 
Professor in the School of Civil Engineering and Architecture of Nanchang 
Hangkong University. His research interests include project management, 
intelligent buildings, etc. 

Zhiyu Fu received her Bachelor’s in Engineering Management from the School 
of Civil Engineering and Architecture of Nanchang Hangkong University. At 
present, she is a Master’s student at Nanchang Hangkong University. Her 
research interests include low-carbon building and intelligent construction. 

Yong Liu graduated from the School of Civil Engineering and Architecture of 
Central South University with a Bachelor’s in Engineering Management. At 
present, he is a Comprehensive Management Engineer in the planning and 
contract department of Beijing Gonglian Highway Link Co., Ltd., mainly 
engaged in building economic analysis, project contract management and so on. 

Zhengya He received his Bachelor’s in Electronic Information Engineering 
from School of Anhui Jianzhu University, and Master’s in Municipal 
Engineering from the same school in 2011. He is currently a Senior Engineer in 
the Anhui Institute of Building Research and Design. His research interests 
include green building low-carbon and reduced carbon technology, energy 
efficiency improvement of existing building, and energy audit. 

Mengya Cai received her Master’s in Geological Engineering from Anhui 
University of Science and Technology in 2018. She is currently an Engineer in 
Anhui Institute of Building Research and Design. Her research interests include 
construction engineering and municipal engineering. 

 

 



   

 

   

   
 

   

   

 

   

    The dynamic impact of regional construction industry economy 19    
 

    
 
 

   

   
 

   

   

 

   

       
 

Liang Luo received his Master’s in Civil Engineering from School of Urban 
construction of Yunnan University, and PhD in Civil Engineering from School 
Civil Engineering of Central South University in 2019. He is currently a 
Lecturer in the School of Civil Engineering and Architecture of Nanchang 
Hangkong University. His research interests include mechanics, structural 
engineering and construction technology. 

 

1 Introduction 

Sustainable development is the responsibility and unwavering pursuit of all nations in the 
world since high-quality economic growth, energy efficiency, and a healthy ecological 
environment are interdependent (Liu et al., 2019; Ye et al., 2023). One of the 
implications of China’s pursuit of high-quality development is ensuring stable economic 
growth while meeting the objectives of energy control and carbon emission reduction 
(Dong and Chang, 2023). China has consistently shown that it is willing to actively 
combat climate change and move in the direction of a low-carbon future. The Chinese 
Government vowed solemnly in 2015 to cut its carbon emission intensity by 60% to 65% 
by 2030 in comparison to 2005 (Xie, 2021). In 2020, China’s carbon peaking and carbon 
neutrality goals are officially proposed (Li and Li, 2020). At the moment, carbon 
emission has become a significant determinant of energy policies, and it is also necessary 
to promote the synchronous development of economic growth and carbon dioxide 
decoupling. The focus of relevant policy planning in various countries is on how to 
achieve the coordinated development of the combined system of economic growth, 
energy consumption, and carbon emission (Huang et al., 2021). 

Carbon emissions must be under control in energy-intensive industries in order to 
maintain sustainable development (Du et al., 2019). Due to its enormous growing 
development approach, the construction industry has over the past few years grown to be 
one of the three largest consumers of energy in China. The added value of the 
construction industry contributed more than 6.6% of the GDP during the 13th Five-Year 
Plan period, and in 2021, it has contributed to 7% (Statistics Bureau of the People’s 
Republic of China, 2021). The building industry’s energy use and carbon emissions are 
increasing along with the economy’s growth. In 2015, Chinese buildings consumed  
857 million tons of standard coal, which accounted for 25% of the nation’s total energy 
consumption (Li et al., 2017). By 2019, the whole construction process had consumed 
2.233 billion tons of standard coal, comprising 45.8% of China’s total energy 
consumption. Additionally, the process contributed 4.997 billion tons of carbon dioxide, 
representing 49.97% of the national carbon emission (CABBE, 2021). It is estimated that 
carbon emissions from construction processes will increase by 2.7% to reach 5.22 billion 
tons of carbon dioxide by 2021 (CABBE, 2021). Controlling energy consumption, 
reducing carbon emissions, and supporting sustainable economic progress pose 
significant challenges for the construction industry. China’s varying resources, economic 
development, and technical expertise necessitate coordinated regional development as a 
central national strategy (Sun and Zhang, 2021), with the construction industry’s overall 
efforts being vital to achieve this goal (Yan and Chen, 2022). 

Energy is the foundation of economic development and the primary source of carbon 
emissions. Numerous theoretical and empirical studies have examined the relationship 
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and causality between economic growth, energy consumption, and environmental levels, 
usually expressed by variables such as GDP, per capita GDP, total industrial output 
value, energy consumption, energy efficiency, carbon emissions, and sulphur dioxide 
emissions (Ye et al., 2023). Granger causality models, vector autoregressive (VAR), and 
vector error correction model (VECM) are commonly utilised to analyse the 
simultaneous effects of the three (Adedoyin and Bekun, 2020; Jebli and Youssef, 2017), 
while carbon emission intensity and carbon emission efficiency are evaluation indicators 
widely used to reflect the relationship between the three. Due to different research fields 
and geographical regions selected, there are certain differences in causality, influence 
degree and influence time (Ye et al., 2023; Li et al., 2019). 

For predicting changes among the three, the environmental Kuznets curve (EKC) was 
proposed as an idealised representation of the relationship between economic 
development and environmental quality, with an inverted U-shaped curve (Grossman and 
Krueger, 1995). However, the decoupling analysis is more practical and easy to calculate 
compared to the EKC and can identify the changes of variables over time (Yan and Chen, 
2022; Dong et al., 2020). Besides machine learning methods such as artificial neural 
networks, support vector machines, and recurrent neural networks show great potential 
(Wen and Yuan, 2020; Ağbulut, 2022). However, the improvement of prediction 
accuracy largely depends on a large number of historical data. Considering that the time 
series prediction requires a large amount of data and stable distribution, Ye et al. (2023) 
adopted the grey system model to model and forecast the interaction between the three, 
and introduced a dynamic compensation mechanism to adapt to the interactive system of 
economy, energy and environment. The grey system model has good adaptability to the 
prediction of unknown systems. 

With the development of spatial econometrics and related software, the analytical 
perspective gradually extends to spatial dimensions, and variables such as Moran index, 
Thiel index, threshold coefficient, coefficient of variation, and nuclear density are utilised 
to examine the spatial characteristics of the three indexes (Wang et al., 2021). Panel 
vector autoregressive (PVAR) and global vector autoregressive (GVAR) models can 
assess the spatial and temporal dynamics of the three substantially (Serdar et al., 2023; 
Assis et al., 2023), while the spatial Markov model adds a spatial lag term to the 
traditional Markov model, enabling a quantifiable analysis of the long-term spatial 
spillover effect between regions (Rey, 2001). Wang et al. (2019) used the spatial Markov 
transition probability matrix to predict the changing trend of carbon emission intensity. 
Du et al. (2022) applied it to explore the regional distribution pattern of carbon emission 
efficiency, and revealed the dynamic interaction among provinces through the transfer 
probability analysis of carbon emission efficiency. For the prediction of spatial evolution, 
Lin and Yu (2016) adopt the hidden Markov model (HMM) to model the traffic 
distribution on the network topological space, and by predicting the link load, make the 
link that is most likely to be idle enter the sleep mode to save energy. The prediction 
advantage of this method is that it does not need to obtain a large amount of data and can 
easily adapt to real-time scenarios (Manouchehri and Bouguila, 2023). It is widely used 
in speech recognition, image processing, information, machinery, transportation, biology 
and other fields (Elmezain et al., 2023; Ulmeanu et al., 2017). Since the state transition 
matrix estimation of HMM is calculated from the accumulated historical data, it cannot 
show the real-time state changes of the observing process and the hidden process. Some 
scholars have effectively solved this problem by setting a sliding time window (Wang  
et al., 2018). 
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In conclusion, there exists a clear and intricate interdependence among economic 
development, energy consumption, and carbon emissions, which is perpetually evolving. 
The interaction among these three constructs, along with the corresponding evaluation 
metrics, displays distinct spatial characteristics impacting the degree of interaction. 
Several challenges remain, however, such as the limited attention paid to forecasts 
derived from the interaction relationship despite extensive research (Ye et al., 2023). 
Moreover, the calculation of total carbon emissions from energy consumption varies 
among industries due to disparate carbon dioxide conversion coefficients for different 
energy sources. Publication of authoritative data slightly lags behind data on energy 
consumption and economic growth, contributing to greater uncertainty in establishing 
dynamic change models for interaction among the three factors. Existing studies in the 
field of architecture have mainly utilised the spatial Markov model, which analyses 
spillover effects on a single indicator, but is limited in providing real-time information 
feedback to quickly capture the impact of changes in external environments and policy 
incentives (Manouchehri and Bouguila, 2023). 

HMM contains an observable random process and a hidden random process. The 
establishment of HMM from a spatial perspective can comprehensively consider the 
correlation between time, space and factors, and provide a good framework for analysing 
the correlation changes of economic growth, energy consumption and carbon emissions 
in the construction industry region. Therefore, a dynamic correlation change research 
method based on HMM is proposed. Based on the lag of carbon emission data, the state 
change of carbon emission data is regarded as a hidden process, and the state change of 
economic growth and energy consumption is regarded as an observed process. Using the 
change of the number of regions with a certain state of the three, the changes of the whole 
three regions and their interaction effects are represented, and the three-variable dynamic 
correlation HMM from the spatial perspective is constructed. Taking the prediction 
accuracy of hidden variables as the index, the time window is set to optimise the HMM 
parameter training and prediction, and the Viterbi algorithm is used to explore the best 
fitting of the dynamic change of regional three variables. At this time, HMM dynamic 
parameters can better characterise the dynamic correlation evolution process among the 
three. 

The following structure of this paper is divided into three parts. In Section 2, the basic 
concept of HMM and the research method of spatial HMM based on time window are 
introduced. In Section 3, the validity of the proposed method is verified by an empirical 
analysis of the actual time series data in East China region. Finally, a conclusion was 
made. 

2 Construction of regional HMM 

2.1 Introduction to HMM 

For reference to Sosiawan et al. (2021), the HMM mainly consists of an hidden state 
sequence S = {s1, s2,…, sT} and an observation state sequence O = {o1, o2,…, oT}, and T 
is the total length of the time sequence. The hidden state sequence contains a total of N 
classes of hidden states, denoted as the set Q = {q1, q2,…, qN} and the observation state 
sequence contains M classes of observation states, denoted as the set V = {v1, v2,…, vM}. 
The HMM parameters can be represented by λ = {A, B, Π}, where: 
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1 A = [αij]N×N is the hidden state transfer probability matrix, where αij = P(st+1 = qj | st = 

qi) (i, j ∈ (1, 2, …, N)) and 
1

1,
N

ijj=
= α  denotes the probability of transitioning the 

hidden state qi at moment t to the hidden state qj at moment t + 1. 

2 B = [bj(k)]N×M is the observation state transfer probability matrix, where bj(k) =  

P(ot = vk | st = qj) (j ∈ (1, 2, …, N), k ∈ (1, 2, …, M)) and 
1

( ) 1,
M

jk
b k

=
=  denotes 

the probability that the hidden state qj corresponds to the observation state transfer 
probability matrix state vk at moment t. 

3 Π = (π1, π2, …, πN) is the initial state probability distribution, which indicates the 
probability of occurrence of the hidden state qi at the beginning of the HMM, i.e.,  

t = 1, and 
1

1.
N

ii
π

=
=  

Figure 1 HMM process (see online version for colours) 

 

2.2 Spatial HMM 

Build the HMM from the spatial dimension. Suppose there are a provinces in the region, 
including a HMMs. calculate the parameters with the relative frequency of the 
occurrence and change of hidden state and observed state from moment t to moment  
t = 1. The number of regions where hidden state qi appears at moment t is ( )(0 ),iq ta a≤ ≤  
where hidden state qj appears at moment t + 1 is ( 1)(0 ).jq ta a+≤ ≤  Therefore, the initial 
state probability ( ) / ,ii q tπ a a=  the state transition probability ( ) ( 1)/ .i jij q t q ta a +=α  
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Similarly, suppose the number of observation states vk at moment t is ( )(0 ),kv ta a≤ ≤  the 

observation state transfer probability ( ) ( )/ .k jij v t q tb a a=  

Figure 2 Multi-HMM process (see online version for colours) 

 

2.3 Time windows settings 

The time window is noted as Tchange = (tpre, t_), where tpre is the prediction time step and t_ 
is the parameter training history time step. The dynamic parameters λ_ = {A_, B_, Π_} are 
estimated from the observation and hidden state sequences within the window. 

Figure 3 HMM process with time window (see online version for colours) 

 

Since at least 2 consecutive years of data are required to estimate the hidden state transfer 
parameter A, tpre ∈ [1, T – 2], t_ ∈ [2, T – tpre]. The change of time window starts with  
tpre = 1, increase the prediction step size and then gradually change the parameter 
estimation step size t_, up to T – tpre. HMM parameters are estimated in the t_ window, 
and Viterbi algorithm [32] is used to select the region hidden state sequence with the 
greatest probability in the tpre window. To reflect the overall prediction effect of the 
region, a simple sum is used to average the prediction accuracy of each region. After 
finding the best prediction for the region as a whole, the dynamic parameters were used 
to characterise the dynamic changes among the three elements in the region. 
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Figure 4 Brief flowchart of the HMM method based on time window (see online version  
for colours) 

 

3 Empirical analysis 

3.1 Data acquisition 

Taking East China region as an example, time-series data were collected for seven 
provinces including Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi and Shandong. 
The total construction output value was selected as the economic growth indicator and 
the regional terminal energy consumption as the energy consumption indicator, and the 
data on the total construction output value and energy consumption from 2005 to 2020 
were collected from the China Statistical Yearbook and the China Energy Statistical 
Yearbook for each region. The actual regional gross output value was calculated with 
2005 as the base period, the total carbon emission was accounted for by the emission 
factor method, and the various types of energy consumption were converted into the total 
amount of standard coal. Some data are shown in Table 1. 
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Table 1 Total construction output, total energy consumption and carbon emissions in East 
China, 2005–2020 

Year Province 
Total construction 

industry output 
(billion yuan) 

Total energy 
consumption 
(million tons) 

Carbon emissions 
(million tons) 

2005 Shanghai 1,889.25 149.87 262.97 
2005 Jiangsu 4,368.95 146.78 197.62 
2005 Zhejiang 4,718.74 128.19 239.64 
2005 Anhui 963.54 47.25 109.58 
2005 Fujian 873.98 38.97 79.15 
2005 Jiangxi 566.04 11.31 29.03 
2005 Shandong 2,509.10 512.32 472.02 
... ... ... ... ... 
2020 Shanghai 8,462.48 185.79 498.09 
2020 Jiangsu 36,041.44 350.76 987.28 
2020 Zhejiang 21,407.73 325.73 893.31 
2020 Anhui 9,574.94 216.97 511.45 
2020 Fujian 14,434.32 253.77 552.59 
2020 Jiangxi 8,842.94 104.82 322.43 
2020 Shandong 15,282.19 401.28 1,105.33 

3.2 Model parameter estimation 

The Slope value of the selected index is used to characterise its development status, and 
the Slope value greater than 0 is the growth status, and the status label is 1; the Slope 
value less than 0 is the decrease status, and the status label is –1; in practice, the 
occurrence of Slope = 0 can be ignored. In order to reduce the complexity of the 
calculation, after obtaining the Slope value of each data its logarithmic and normalisation 
process. The number of observation states N = 4 and the number of hidden states M = 2 
of the simplified HMM, and other parameters are as follows: 

( )
( )
( )
( )

11 1

12 111 12

21 22 21 1

22 1

1 | 1
1| 1

Among them :
1| 1
1 | 1

t t

t t

t t

t t

P s s
P s s

A
P s s
P s s

+

+

+

+

= = − = −
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[ ] ( )
( )

1
1 2

2

1
Among them :

1
t

t

π P s
π π

π P s
= = −Π =  = =

 (3) 

3.3 Analysis of experimental results 

The length of the observation state data set and the hidden state data set T = 15, and the 
dynamic estimation of the parameters and the hidden state prediction of the unfolding 
time window are gradually changed. To increase the practical validity of the model, tpre is 
limited to the range of [1, T / 2]; due to the small time series data in this case, t_ is still 
taken as [2, T – tpre]. 

3.3.1 Prediction results 
3.3.1.1 Regional prediction correct rate 
Fixed prediction step tpre = 1, the results of HMM calculation are shown in Table 2. The 
average correct rate of regional carbon emission status prediction when the parameter 
estimation step is t_ = 2 is 100%, 100%, 100%, 100%, 85.71%, 71.43%, 100%, 100%, 
71.43%, 100%, 71.43%, 85.71%, 100%, 100%, and 100% in each year, respectively, with 
an average accuracy of 93.41%. t_ when increasing gradually, the average correct rate 
within the same year is smaller than the effect at t_ = 2. In particular, with the forecasts 
for 2014, 2018, and 2020, it can be seen that the model parameter estimation by taking 
the near time series data can better capture the effect of the observation state change with 
the hidden state change. 

Figure 5 Comparison of the correct prediction rate of optimised HMM and traditional HMM  
(see online version for colours) 

 

The prediction correctness of the conventional HMM is shown on the main diagonal of 
Table 2, and the parameter estimation interval is for all historical years data with an 
average correctness of 83.52%. The comparison with the correct prediction rate of HMM 
at tpre = 1, t_ = 2 is shown in Figure 5, and the overall prediction effect of the optimised 
HMM is better than that of the traditional HMM. 
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Table 2 Overall correct prediction rate of HMM at tpre = 1 (unit: %) 
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Table 3 Overall correct prediction rate of HMM based on time window (unit: %) 
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The average correctness of the HMM with changing time windows is shown in Table 3. 
The overall prediction effect of the HMM gradually decreases as tpre gradually increases. 
Some of the prediction effects improve as t_ increases to equal and greater than tpre. 
Therefore, after setting the time window in the HMM, it can be used to explore more 
applicable parameters in multiple ranges to improve the overall prediction effect; the time 
window can be selected optimally according to the needs in the face of different 
problems. In this example, the overall prediction effect of HMM is better with shorter 
parameter estimation and prediction steps, and it is more interpretable. 
Table 4 Correct prediction rate of HMM regions under Tchange = (tpre = 1, t_ = 2) (unit: %) 

Predict year Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong 
Regional 
average 
accuracy 

2009 100 100 100 100 100 100 100 100 
2010 100 100 100 100 100 100 100 100 
2011 100 100 100 100 100 100 100 100 
2012 100 100 100 100 100 100 100 100 
2013 100 100 100 100 100 100 0 85.71 
2014 0 100 100 100 100 100 0 71.43 
2015 100 100 100 100 100 100 100 100 
2016 100 100 100 100 100 100 100 100 
2017 100 0 0 100 100 100 100 71.43 
2018 100 100 100 100 100 100 100 100 
2019 100 100 0 100 100 100 100 85.71 
2020 100 100 100 100 100 100 100 100 
Province 
average 
correct rate 

91.67 91.67 83.33 100 100 100 83.33  

Table 5 Correct prediction rate of HMM regions under Tchange = (tpre = 2, t_ = 2) (unit: %) 

Predict year Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong 
Regional 
average 
accuracy 

2010 100 100 100 100 100 100 100 100 
2011 50 50 100 100 50 100 100 78.57 
2012 50 50 100 100 50 100 100 78.57 
2013 50 100 100 100 100 100 0 78.57 
2014 0 100 100 100 100 100 50 78.57 
2015 50 50 100 100 100 100 50 78.57 
2016 100 100 100 100 100 100 100 100 
2017 100 50 50 100 100 100 100 85.71 
2018 50 100 50 100 100 100 50 78.57 
2019 50 100 0 100 100 100 50 71.43 
Province 
average 
correct rate 

60 80 80 100 90 100 70  
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3.3.1.2 Correct prediction rate by province 
The overall prediction of carbon emission status obtained by the regional HMM in the 
time windows Tchange = (tpre = 1, t_ = 2) and Tchange = (tpre = 2, t_ = 2) is better than 85%. 
The correct prediction rate of each province at this time for each region under the short 
time window is obtained and shown in Tables 4 and 5. The correct prediction rate of the 
HMM for each region under Tchange = (tpre = 1, t_ = 2) is at least 83%, and the overall 
performance of the HMM decreases when the prediction step size increases. 

3.3.2 Analysis of regional state changes based on dynamic parameters 
After step-by-step training, the time window with the best overall prediction is Tchange = 
(tpre = 1, t_ = 2). At this time, the regional HMM is more suitable for characterising the 
overall three-factor state change and transfer. The dynamic parameters obtained on the 
basis λ_ = {A_, B_, Π_} for the period from 2007 to 2019 are obtained as shown in  
Figures 6, 7 and 8. 

1 Change in carbon emission development status 

 The change in the hidden state shift probability from Figure 6(a) shows that the 
probability of carbon emission state change to lowering has increased from 2009 to 
2013, and the development of carbon emission has decelerated in all parts of East 
China region during this time period. α21 denoted as the change in probability of 
state from growth to lowering, the trend shows that after 2009, the regions that 
changed from growth to lowering state have been steadily existing, although the 
proportion is low, and the emission reduction status of some regions is stable. As can 
be seen from 6(b), the overall regional carbon emission status is more in the growth 
state; combined with the change of α12, it can be seen that some regions in the region 
gradually changed from the lowering to the growth state after 2013. The overall 
regional carbon emission status is stable during 2017~2019. 

 Figure 7 shows the probability change of the overall regional carbon emission 
development status in each consecutive 2 years. The state of growth is always more 
than the state of decrease, with growth between 2009 and 2010. 2010~2016 saw an 
improvement in the state of carbon emissions, with a partial change from growth to 
decrease. 

2 Carbon emissions are linked to changes in economic and energy development status 

 Figure 8(a) shows that carbon emissions are in the lower state, b11 and b12 correspond 
to the lower state of economy and energy consumption, and the lower state of 
economic growth and energy consumption, which is very unlikely to occur from the 
macro historical data. The correlation between the growth state of carbon emissions 
and the growth state of economy and energy consumption is always high, and the b22 
curve shows a ‘rising trend’ after 2017, which indicates that the correlation between 
the reduced state of carbon emissions and the reduced state of economy and the 
growth state of energy consumption is gradually increasing in a few regions, and it is 
necessary to identify these regions and take necessary measures to improve them. 
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Figure 6 Change in hidden state transfer probability, (a) hidden state transfer as a reduced 
probability change (b) hidden state transfer as a growth probability change  
(see online version for colours) 

  
(a)     (b) 

Figure 7 Probability change of emission matrix based on time window (see online version  
for colours) 

 
 
 

Figure 8 Observation state transfer probability change, (a) corresponding observation state 
probability change when the hidden state is reduced (b) corresponding observation state 
probability change when the hidden state is growth (see online version for colours) 

  
(a)     (b) 
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4 Conclusions 

In summary, the paper concludes as follows: 

1 A method based on HMM for the dynamic influence relationship of multi-variables 
within a region is proposed. By setting a time window to optimise the HMM 
parameter estimation, the influence of state change among variables is highlighted; 
combined with the Viterbi algorithm to explore the best prediction effect of the 
hidden state that can be out, and realise the dynamic parameters to portray the 
multivariate state change law among regions, and the results are presented 
intuitively. 

2 The overall prediction of carbon emission status in East China region was achieved 
based on the improved HMM, with an average correct rate of over 93%, and the best 
parameter estimation and prediction window consistent with the HMM of the region 
was obtained, which provides a research basis for the subsequent development of the 
prediction of future carbon emission status. 

3 From the analysis of HMM dynamic parameters, it can be seen that the overall 
carbon emissions in East China region changed to a lower state more from 2009 to 
2013, and part of the lower state gradually changed to a growth state after 2013; the 
lower state of carbon emissions began to correlate with the lower economic and 
energy consumption growth states from 2017 to 2019, and the correlation gradually 
increased. 
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