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Abstract: Existing landmark retrieval models typically fuse global and local 
feature descriptors of target images to generate feature vectors for landmark 
retrieval. However, these models often exhibit poor resilience to complex 
viewpoints, occlusions, and lighting conditions. Moreover, the fused feature 
descriptors still contain substantial redundant information, leading to decreased 
retrieval accuracy. To address these issues, this paper proposes a novel  
single-stage image retrieval model enhanced by texture augmentation. The 
model incorporates a texture enhancement module that leverages texture 
feature encoding to reconstruct the original feature maps, amplifying the 
influence of texture features in deep feature vectors across different scales. This 
approach ensures robust feature representation under extreme angles, 
occlusions, or varying lighting conditions. To mitigate the problem of 
redundant features, the model introduces an innovative feature fusion module. 
This module optimises local features from multi-scale feature descriptors using 
a mapping fusion technique, eliminating redundant information and generating 
more compact and discriminative feature descriptors. Extensive experiments 
demonstrate that the proposed model achieves significant improvements in 
retrieval performance compared to state-of-the-art image retrieval models, 
while maintaining acceptable retrieval times. 
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enhancement. 
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1 Introduction 

Landmark retrieval is an important part of the computer vision field. Given a landmark 
image, landmark retrieval aims to retrieve landmark images that contain the same subject 
target as the queried image in the image database through an algorithmic model. The 
landmark retrieval model has a wide range of real-world applications, such as travel 
recommendation. Due to the diversity of shooting conditions, the quality of the image to 
be queried will be affected to a certain extent. For example, lighting, shadows, viewing 
angle, distance and proximity, occlusion or jitter, etc. (Teichmann et al., 2019). These 
uncertainties may affect the quality of the landmark image. These uncertainties will bring 
great challenges to the landmark retrieval model. 

Given an image, existing landmark retrieval models usually obtain the most similar 
image by extracting the representation vectors that can describe the features of the image 
and measuring the similarity between the vectors. There are two types of image 
representation vectors: global and local (Giorgos et al., 2020). Global representations are 
feature descriptors obtained through deep, fine-grained image feature extraction. These 
typically express abstract semantic relationships within images, such as the connection 
between targets and their surrounding backgrounds. However, they often lose shallow 
image features, including the local spatial structure and texture characteristics of the main 
subject (Wang et al., 2022). Conversely, local representations focus on capturing feature 
descriptors from multiple regions of interest within an image. These descriptors usually 
contain shallow representations of local areas, such as local spatial structures and texture 
patterns, but may overlook the intrinsic connections between multiple regions of interest 
(Chen et al., 2022). 

Generally, global representations contribute to improving recall rates, while local 
representations enhance precision. Global representations demonstrate robust retrieval 
capabilities for targets in various poses, whereas local representations are more 
advantageous for localising the main subject and excluding interference from other 
objects in the image. Consequently, most state-of-the-art landmark retrieval models 
employ both global and local representations (Song et al., 2022a, 2022b; Mohtashami and 
Jaggi, 2023; Liu et al., 2024; Do and Sinha, 2024). To address the semantic fusion 
challenge between these multi-scale feature vectors, various feature fusion algorithms 
have been proposed to semantically complement the advantages of both, thereby 
enhancing the model’s practical application and robustness. However, these models 
typically face the following issues: 

1 Existing landmark retrieval models often use output feature maps from intermediate 
and deep network layers for local and global feature branches, respectively. This 
process, involving multiple convolution and pooling operations, results in significant 
loss of shallow semantic information. However, in complex retrieval conditions such 
as distorted viewpoints, varying lighting, and occlusions, shallow features, 
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particularly texture features, often offer superior discriminative power (Do et al., 
2022). Texture features provide rich semantic information about spatial structures 
and local details of landmarks, remaining distinctive even under challenging 
conditions. As surface-level features with geometric invariance, textures maintain 
their spatial structure under distorted viewpoints, offering robustness in complex 
environments. The loss of these crucial features leads to inadequate image 
representation and suboptimal retrieval performance. 

2 While existing multi-scale feature fusion algorithms can connect global and local 
representations in the form of feature point pairs and merge them into a highly 
reliable feature vector, the fused feature vector often contains numerous redundant 
features (Wu et al., 2023). These redundant features not only slow down the model’s 
retrieval speed in subsequent processes but may also introduce irrelevant feature 
vectors that interfere with the landmark retrieval process, potentially decreasing the 
model’s retrieval accuracy. 

To address the aforementioned issues, we propose a single-stage retrieval model with 
texture feature enhancement. The model incorporates a novel texture feature 
enhancement module designed to extract texture information embedded in shallow 
feature maps, generating corresponding texture feature maps that are propagated to 
subsequent global and local feature branches. This approach amplifies the influence of 
texture features in deep feature maps, resulting in more discriminative final feature 
representations. Within the local feature module, a self-attention mechanism is employed 
to select more distinctive local features, thereby enhancing the representational capacity 
of local feature vectors. The model culminates with a feature fusion module that 
integrates local and global features, effectively eliminating redundant features and 
mitigating the impact of irrelevant features on subsequent retrieval processes. This fusion 
process generates the final feature descriptor for landmark retrieval and matching. 
Experimental results demonstrate that the retrieval model augmented with the texture 
enhancement module significantly improves both image retrieval accuracy and feature 
extraction efficiency. The main contributions are summarised as follows: 

• We propose a feature enhancement module to improve the expressiveness of  
multi-scale feature descriptors. By propagating relevant texture features from 
shallow layers to deep feature descriptors and reconstructing them, we enrich the 
representation of feature descriptors, enhancing their robustness in complex 
environments. 

• We introduce a novel multi-scale feature fusion module that optimises local features 
from multi-scale feature descriptors generated by the backbone network. This 
module eliminates redundant features and performs subsequent feature fusion, 
resulting in more compact and discriminative fused feature descriptors. 

• Through extensive experiments on the Revisited Oxford and Paris datasets, we 
demonstrate that our proposed model achieves superior retrieval accuracy and 
performance compared to other state-of-the-art models. 
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2 Related work 

Contemporary landmark retrieval models predominantly utilise cross-scale fused features 
as guiding features for subsequent retrieval processes. This approach involves employing 
feature fusion methods to merge multi-scale feature vectors into a compact feature 
representation. A primary objective of feature fusion is to complement the strengths of 
global and local features, thereby obtaining more informative semantic features and 
consequently enhancing retrieval accuracy (Jerome et al., 2019; Weinzaepfel et al., 2022; 
Weyand et al., 2020; Xiao et al., 2020). In landmark retrieval, local features play a crucial 
role by capturing the most distinctive partial characteristics of the object being searched, 
thereby enabling precise target localisation. With the advancement of deep learning 
technologies, an increasing number of researchers have proposed local feature extraction 
methods based on various neural network architectures (Gordo et al., 2016; Philbin et al., 
2007; Noh et al., 2016). Global features, on the other hand, compensate for the inherent 
discreteness of local features and their lack of consideration for overall geometric 
structures, offering a more comprehensive representation. In scenarios requiring  
high-precision object localisation within images, global features often outperform local 
features (Babenko and Lempitsky, 2015; Sain et al., 2021; Tolias et al., 2015). As the 
depth of feature extraction networks in existing models continues to increase, the 
semantic representations contained in the extracted global and local feature maps become 
increasingly abstract. This shift moves away from focusing on the extraction of feature 
points from the original image towards exploring the relationships between feature point 
pairs or subsets (Zhang et al., 2023). Consequently, in scenarios with strong interfering 
factors such as distorted viewpoints, occlusions, and unnatural lighting conditions, 
retrieval models may experience performance degradation due to their inability to 
effectively mine these inter-feature relationships (Salih and Abdulla, 2023). In response 
to this challenge, some researchers have begun to explore methods of feature 
enhancement for deep feature maps (Baldrati et al., 2022; Suo et al., 2024). One 
promising direction involves introducing shallow semantic features into deep feature 
spaces, such as colour (Asadi Amiri et al., 2022), geometric contours (Liu et al., 2022), 
and texture features (Liu and Yang, 2023; Varish, 2022). Among these, texture feature 
models have gained particular favour among researchers due to their geometric 
invariance, demonstrating significant improvements in various domains (Öztürk et al., 
2023; Kelishadrokhi et al., 2023; Ahmad, 2022). 

Beyond feature enhancement, the methods used for feature fusion are also a focal 
point of research. Local and global features differ in their attention to image content due 
to the varying scales of their feature extraction receptive fields. Global features focus on 
macro-scale and highly abstract semantic content, while local features concentrate on 
specific regions within the image (Xie et al., 2023). The efficient and accurate fusion of 
these different types of feature descriptors remains a critical research topic. Existing 
feature fusion methods often employ pyramid structures (Pipanmekaporn et al., 2023; Ao 
and Wu, 2023) to achieve feature fusion, leading to the development of various network 
architectures such as serial branch structures (Xu et al., 2023; Lu et al., 2024), parallel 
branch structures (Weng et al., 2023; Chen et al., 2024), and multi-scale feature output 
networks (Bhatti et al., 2023). While these model structures construct feature descriptors 
with strong representational capabilities, most of these fusion methods focus on semantic 
matching between feature points across different scale feature maps. They often neglect 
the optimisation of the feature descriptors themselves, resulting in fused feature vectors 
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that contain significant redundant features, potentially impacting the accuracy and 
performance of landmark retrieval models. 

3 Method 

In this chapter, a single-stage landmark retrieval model with texture feature fusion 
(TFFLR) is presented. The model extracts shallow texture semantic information and fuses 
it with global depth semantic information and local depth semantics, respectively, to 
obtain texture-enhanced feature descriptors. In particular, this paper uses a cross-scale 
semantic feature descriptor fusion module to fuse the global semantic feature descriptor 
with the local semantic feature descriptor, while retaining the two kinds of descriptive 
information to form a feature descriptor that can better describe the complete features of 
the image. The overall model is shown in Figure 1. 

Figure 1 Landmark retrieval model with texture feature fusion (see online version for colours) 

 

In Figure 1, ‘TEM’ and ‘FFM’ denote texture enhancement module and feature fusion 
module, respectively. ‘C’ denotes concatenation operator. In this model, the input image 
is processed through a multi-layer backbone network into a feature descriptor that 
contains the overall abstract semantic information of the image. The feature maps in the 
middle layer of the network are used as input to the local feature extraction network. 
After the local feature extraction network, one of the features is processed by the texture 
enhancement module to get the enhanced texture feature descriptor, and the other one is 
connected by skip connection to get the final local semantic feature descriptor. The 
feature descriptors containing the overall abstract semantics of the image are also 
connected using the same structure as the local feature extraction branch network to 
obtain the final global semantic feature descriptors. In the texture enhancement module, 
the quantisation coding method is used to quantise and code the features of the feature 
map obtained from the backbone network, and then the quantisation coding map and the 
statistical feature map of the feature are obtained respectively. The two feature maps are 
then used as inputs to the texture enhancement algorithm to obtain the final  
texture-enhanced feature descriptors. In the feature fusion module, in order to better fuse 
the global semantic features with the local semantic features, this paper uses the mapping 
fusion module to compute the orthogonal difference mapping of the local semantic 
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features with respect to the global semantic features, and obtain the orthogonal mapping 
feature map. Finally, the mapping map is merged with the original global semantic 
features and fed into a single-layer fully connected network to obtain the final fused 
feature map. The feature map is used as the retrieval and matching benchmark, which is 
fed into the image database for retrieval, and the most similar images are retrieved, and 
the labels corresponding to these images are output as the results to obtain the final 
retrieval results. 

3.1 Texture enhancement module 

Existing landmark retrieval methods typically employ high-level abstract semantic 
features to retrieve similar information, which can indeed achieve favourable retrieval 
results in certain specific scenarios. While utilising high-level abstract semantic features 
alone allows retrieval systems to comprehend the characteristics of the retrieval target 
from a holistic perspective, in the domain of landmark retrieval, fine-grained features 
often play a crucial role. For instance, the edges and shapes of buildings are particularly 
significant. However, directly applying existing image retrieval methods often results in 
the loss of this vital information. These detailed features are encapsulated within shallow 
texture features. Therefore, for applications such as landmark retrieval, it is imperative to 
integrate texture features into multi-scale feature vectors to achieve superior retrieval 
results. 

To address this, we introduce a texture enhancement module based on a specialised 
texture feature quantisation operator. This module extracts comprehensive texture feature 
encodings from shallow feature maps. Furthermore, we propose a feature enhancement 
algorithm that utilises texture feature encodings to reconstruct the original feature maps. 
This process amplifies the influence of texture features within feature vectors at different 
scales, enabling feature vectors across all scales to better capture the structural details of 
landmark images. Consequently, this approach enhances the model’s robustness under 
complex viewing angles and lighting conditions, thereby improving the accuracy and 
accelerating the retrieval speed of landmark retrieval models. 

3.1.1 Texture feature quantisation operator 
Most deep neural networks for image processing have a fully convolutional layer, but the 
fully convolutional layer is sensitive to small local variations in the image, which can 
lead to the inability to accurately represent the statistical features of texture. In this paper, 
we propose to use the texture feature quantisation operator to characterise the statistical 
features of texture. In particular, the purpose of this operator is to quantise the input 
texture features into multiple layers, and quantise and encode the features in each layer to 
obtain the texture quantisation encoding matrix, and finally perform regular counting on 
this quantisation matrix to obtain the texture feature encoding. The specific structure of 
the operator is shown in Figure 2 as follows: 

1 Quantise 

 Suppose the size of the original feature map A is RC×H×W, and the feature vector after 
global average pooling is G, whose size is RC×1×1. First, calculate the cosine 
similarity S between the feature map A and the feature map G ∈ R1×H×W: 
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⋅
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 (1) 

 where Si,j denotes the value of S at (i, j) spatial locations, and when Si,j is computed 
for all locations, the final cosine similarity matrix S is obtained. Subsequently, the 
matrix S is deformed into a long vector Sreshape ∈ RHQ, and Sreshape is divided equally 
into N intervals, and the Ln for each interval is obtained by the following 
computation. 

( ) ( ) ( )max min
minreshape reshape

n reshape
S S

L n S
N
−

= ⋅ +  (2) 

 Finally, the quantisation coding matrix E ∈ RN×HW is calculated from Sreshape obtained 
from equation (1) and Ln obtained from equation (2): 

,

0.5 0.51 if

0 else                              

n i n i
n i

L S L S
E N N

 − − − − <= 



 (3) 

 where i ∈ [1, HW], n ∈ [1, N], Si at each spatial position is computed with L at all 
intervals to get the quantisation coding vector at that position, when the quantisation 
coding vectors at all positions have completed the computation of equation (3), the 
final result, the quantisation coding matrix E is obtained. 

2 Regular count 

 Given a quantisation coding matrix E, the quantisation counting map associated with 
it can be obtained Q ∈ RN×2, where the first dimension represents the position n of 
the interval in which the counting is to be performed, while the second dimension 
represents the corresponding regular counts under that interval. The quantisation 
count map is derived from the following equation: 

,
1

,
1 1

,

HW

i n
i

N HW

i n
n i

E
Q Cat L

E

=

= =

 
 
 =  
 
 
 




 (4) 

 where the Cat operator denotes the concatenation operation, the positions 
corresponding to the two vectors are directly connected to obtain the merged regular 
count matrix Q. 

3 Average feature coding 

 The regular count matrix obtained from equation (4) reflects the feature distribution 
in the image feature map, which belongs to the statistically relevant information. In 
order to further obtain more effective feature information, it is necessary to merge 
and recode the average pooled feature map G with the regular count matrix Q to 
obtain the final average feature encoding: 

( )( ),H Cat MLP Q G=  (5) 
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 where H denotes the average feature encoding, MLP denotes multilayer perceptron 
and G denotes the feature vector after average pooling in the first step, the purpose of 
the MLP operator is to resize the Q matrix to match G. This is usually achieved using 
a two-layer perceptron, where the first layer uses the leaky ReLU function as the 
activation function. 

Figure 2 Structure of the texture feature quantisation operator (see online version for colours) 

 

3.1.2 Texture enhancement operator 
The role of the texture feature quantisation operator is to extract semantic information 
describing image textures from shallow feature maps of images and form corresponding 
texture feature encodings. However, in landmark retrieval models, the multi-scale deep 
feature maps extracted through deep neural networks often lose a significant amount of 
texture information. To recover texture feature information in deep feature maps, this 
paper proposes a texture feature enhancement algorithm. This algorithm utilises texture 
feature encodings to amplify the influence of texture features within multi-scale deep 
feature maps. By doing so, it enhances the ability of deep feature maps to discern 
structural details in images, thereby improving the retrieval accuracy of the model. 

Firstly, the shallow feature map is processed by the texture feature quantisation 
operator to obtain the quantisation coding matrix E [equation (3)], and the average feature 
coding H [equation (5)]. Subsequently, the reconstructed quantisation matrix J is 
obtained by the following equation: 

( )1 2max ( ) ( )TL soft H H= ⋅φ φ  (6) 

3 ( )J H L= ⋅φ  (7) 

where φ1, φ2 and φ3 denote different 1 × 1 convolutions respectively and softmax denotes 
the softmax function. Finally, the final reconstructed coding matrix U is calculated by the 
following equation: 
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U J E= ⋅  (8) 

The reconstruction coding matrix can be viewed as the contribution weight of each pixel 
point on the image in the shallow texture features, which is used to determine which 
regions in the shallow features have a greater impact on subsequent retrieval. Finally, to 
mitigate the potential for vanishing gradients, we employ a skip connection architecture 
to concatenate the reconstructed encoding matrix with the original input feature map A. 
This results in the texture-augmented feature vector V: 

( , )V Cat U A=  (9) 

where the Cat operator denotes the concatenation operation, i.e., the positions 
corresponding to two vectors are directly connected. 

3.2 Multi-scale feature fusion module 

In any processing task involving images, the coding quality of the image’s own 
representations directly affects the efficiency and accuracy of the task. The feature 
descriptors of an image are usually divided into two categories: global features and local 
features. Global features are more informative and contain the most distinguishing 
features of the things described in the image, which will directly affect the accuracy of 
the task, but global features are greatly affected by the view angle and illumination of the 
image, and small changes in the view angle or illumination will cause large fluctuations 
in the performance of the model, especially in the field of landmark retrieval, where the 
impact is particularly significant. Local features contain detailed information about the 
image description, and due to the principle of local geometric invariance, they are less 
affected by the view angle or other noises, but too many local features will produce local 
feature redundancy, which leads to a decrease in the operating efficiency of the model. In 
order to compensate each other for their respective shortcomings, this paper chooses 
feature fusion as a means of combining global features with local features. Although the 
final feature map obtained by the general feature fusion method can get a better feature 
representation, the global features and local features are usually extracted from multiple 
independent branches of the backbone network, and there is overlapping information 
between their feature representations, which will lead to redundancy of the 
representations when they are fused. Based on this, this paper proposes a new feature 
fusion method, the mapping fusion module, which reconstructs the local features, 
removes the redundant feature information that already exists in the global features, and 
finally connects the local features after removing the redundant representations with the 
global features, which makes the feature representations more robust and improves the 
efficiency of the subsequent models as well as their robustness. 

The structure of the fusion module used in this paper is shown in Figure 3, where Cat 
denotes the concatenation operator and FC denotes the fully connected layer. Let the 
global feature map be Fg, the size be C × 1, and the local feature map be Fl, C × H × W. 
Firstly, for each location point on the local feature map, compute its mapping vector to 
the global feature map Fpro: 

,
,

2

i j
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⋅
=  (10) 
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where i, j denote the coordinates where the computed points are located, ,i j
glF F⋅  denotes 

the dot product between the local and global feature maps at the i, j coordinate points, and 
|Fg|2 denotes the N2 paradigm of the global feature map. The corresponding difference 
vector ,i j

diffF  is then computed for each coordinate point: 

, , ,i j i j i j
prodiff lF F F= −  (11) 

When the difference vectors corresponding to all points ,i j
diffF  are calculated, the overall 

differential feature map Fdiff can be obtained, which can be regarded as the feature 
representation complement of the local feature map relative to the global feature map 
mathematically, and can be regarded as an information supplement to the global feature 
map representation in specific applications, and from this point of view, it is only 
necessary to merge the differential feature map with the original global feature map. In 
this paper, the difference vectors ,i j

diffF  corresponding to all points are used to 
subsequently append the global feature map Fg to get the final feature map Fout. In order 
to better couple this feature map with subsequent tasks, in practice, we use a global 
pooling layer as well as a fully-connected layer at the end to transform the size of the 
feature map into vectors of the size 512 × 1, which makes the feature characterisation 
more compact. 

Figure 3 Structure of the feature fusion module (see online version for colours) 

 

3.3 Optimisation 

Based on the approach proposed in Wang et al. (2022), the final feature descriptor 
obtained after feature fusion is followed by placing a prediction layer with a weight size 
of ω ∈ R512×N, where N denotes the number of labelled categories in the data. The final 
loss function required is as follows: 

( )( )
( )( )
ˆ ˆexp , 1

log
ˆ ˆexp ,

T
k

T
n n

n

γ AF ω g
L

γ AF ω g y

 ×
 = −
 × 
 


 (12) 
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where γ is the impact factor, ˆ nω  denotes the weight after regularisation by L2, ω the 
magnitude of the weight for the nth class, which mathematically denotes the kth row of ω 
after regularisation. yn denotes the output unique heat coding vector, and k denotes the 
index of the category where the ground-truth is located. The AF function denotes the 
ArcFace function, which has the form shown below: 

( )cos cos( ) if 1
( , )

if 0
a x m y

AF x y
x y

 + =
=  =

 (13) 

where x denotes the cosine similarity, m denotes the ArcFace edge value, and y indicates 
whether the class is ground-truth or not. 

4 Experiments 

4.1 Dataset and parameter details 

The training dataset used for the experiments in this paper is Google Landmark V2 
dataset (Giorgos et al., 2020), and the network is trained and then tested using Oxford and 
Paris datasets. Google Landmark V2 dataset is a dataset released by Google in 2020 for 
landmark detection and retrieval, which is suitable for large-scale, fine-grained landmark 
retrieval, and contains 200K labels of different landmark instances, totalling 5M images. 
The dataset is suitable for large-scale, fine-grained landmark retrieval and contains labels 
for 200K different landmark instances, totalling 5M images. All the images in the dataset 
have real-world lighting conditions and viewpoints, and contain a large number of 
unknown attractions in addition to well-known landmarks. The source of the data is the 
Wikimedia Common media repository and some of the images uploaded by users of the 
travel app. The Oxford dataset and Paris dataset are another kind of dataset for landmark 
retrieval model, with data sizes of 4,993 and 6,322 images, respectively, which are 
smaller in size, faster in detection and more in line with the real situation, and are 
therefore commonly used for landmark retrieval model testing. In the design of 
experimental test indexes, according to the idea of Cao et al. (2020) and Zhu et al. (2021), 
the mean average precision (mAP), the average precision of the top ten results (mp@10) 
and the average response time (time) are used as the reference indexes, which are 
compared with the mainstream landmark retrieval models to get the final results. 

In terms of parameter and model settings, the model proposed in this paper uses 
Res50 as the backbone network and the initial weight values of this backbone network 
use ImageNet pre-training weights. All the models involved in the experiment use 
Google LandMark V2 as the training dataset, where randomly 80% of this dataset is used 
for training and the remaining 20% is used for validation. The experimental platform was 
8 V100 GPUs for training, with the parameters set as follows: weight decay was fixed at 
0.0001, learning rate was 0.05, edge value m in the ArcFace function was set to 0.15, the 
impact factor of the loss function was set to 30, the batch size of training was 128, and 
the number of training iterations was 100. 

4.2 Experiment results 

The experimental results of mAP and mp@10 are shown in Table 1. 
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Table 1 Comparison of mAP and mp@10 results 

Method 
DataSets 

ROxford  RParis 
mAP mp@10 mAP mp@10 

AlexNet+GEM (Philbin et al., 2007) 43.3 62.1  58.1 91.6 
VGG16-GEM (Philbin et al., 2007) 61.9 82.7  69.3 97.9 
ResNet101-GEM (Philbin et al., 2007) 67.3 84.7  77.2 98.1 
ResNet101-GEM+SOLAR (Filip et al., 
2017) 

69.9 86.7  81.6 97.1 

ResNet101-AdvBCT (Pan et al., 2023) 76.9 93.8  83.7 98.3 
ResNet101-DToP (Song et al., 2023) 77.5 94.2  84.9 99.1 
ResNet101-CiDeR (Song et al., 2024) 78.2 94.7  86.2 99.4 
DELF-ASMK+SP (Xiao et al., 2020) 67.8 87.9  76.9 99.3 
DELF-R-ASMK+SP (Xiao et al., 2020) 76.0 93.4  80.2 99.1 
ResNet50-DF-SBIR (Chaudhuri et al., 
2023) 

69.3 88.7  79.9 99.2 

ResNet50-DELG (Weyand et al., 2020) 69.7 89.1  81.6 99.5 
ResNet50-CBIR-SNN (Hu et al., 2022) 75.5 94.1  84.4 99.3 
ResNet50-TFFLR 79.6 95.5  87.1 99.5 

In Table 1, we compare the retrieval metrics of mainstream retrieval models with the 
model proposed in this paper on the two datasets ROxford and RParis. In terms of the 
backbone network, the retrieval models utilising ResNet as the backbone network 
demonstrated superior performance compared to those using AlexNet and VGG16 as the 
backbone network. Contrast, among the models utilising ResNet as the backbone, the 
model following the incorporation of the TFFLR module demonstrated the most optimal 
performance across all metrics on both ROxford and RParis. The mAP metric on the 
ROxford dataset reaches 79.6, which represents an improvement of 4.1 compared to the 
CBIR-SNN model that uses the same backbone network. The mAP metric on the RParis 
dataset reaches 87.1, which represents an improvement of 2.7 over the CBIR-SNN 
model. This indicates that the TFFLR model performs better overall compared to the 
CBIR-SNN model with the use of the same backbone network, and that the retrieval 
accuracy has been improved to some extent. With regard to the model comprising 
ResNet101 as the backbone network, the CiDeR model demonstrated the most optimal 
experimental performance, achieving 78.2 on ROxford-mAP and 86.2 on RParis-mAP. In 
contrast, TFFLR demonstrates superior performance when ResNet50 is employed as the 
backbone network. It outperforms the CiDeR model by 1.4 and 0.9 points, respectively, 
in the two aforementioned metrics. Furthermore, on the ROxford-mp@10 and RParis-
mp@10, the improvement was 0.8 and 0.1, respectively. 

The experimental results demonstrate that the TFFLR model performs exceptionally 
well on both test datasets, whether compared to the baseline model with ResNet101 as 
the backbone or models using ResNet50 as the backbone network. The improvement is 
particularly significant on the R0xford dataset. A possible explanation is that while 
deeper backbone networks can generate more compact deep feature vectors, they lose a 
considerable amount of shallow features. For landmark images, shallow features, 
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especially texture features, contain semantic information about the spatial structure and 
local details of landmarks, and their impact on retrieval performance cannot be ignored. 

In contrast, the TFFLR model incorporates a texture feature enhancement module that 
amplifies the shallow texture features in multi-scale feature maps. This ensures that the 
deep feature maps processed by the backbone network still retain rich shallow texture 
semantic information. Consequently, the extracted feature vectors maintain good 
expressiveness even under complex viewing angles and lighting conditions. Additionally, 
the model’s feature fusion module eliminates redundant features from the original feature 
maps, reducing the influence of irrelevant features on the model’s retrieval process, 
thereby enhancing the performance of the landmark retrieval model. These findings 
indicate that the TFFLR model can significantly improve retrieval accuracy while 
reducing the depth of the backbone network. This achievement results in a more 
streamlined overall model with fewer parameters, potentially increasing the training 
speed of the entire retrieval model. 

In the field of landmark retrieval, in addition to the mAP and mp@10 indicators, the 
response time is another indicator that cannot be ignored, the response time is negatively 
correlated with the retrieval speed, the longer the response time, the slower the retrieval 
speed, and the speed of the retrieval speed directly indicates that the retrieval model’s 
operational efficiency as well as immediacy, which is a major criterion for judging 
whether the retrieval model is practical or not. The experimental results of response time 
are shown in Table 2. 
Table 2 Comparison of average response time 

Method Time (ms) 
AlexNet+GEM 120 
VGG16-GEM 230 
ResNet101-GEM 134 
ResNet101-GEM+SOLAR 150 
ResNet101-AdvBCT  192 
ResNet101-DToP 247 
ResNet101-CiDeR 205 
DELF-ASMK+SP 510 
DELF-R-ASMK+SP 2,260 
ResNet50-DF-SBIR 207 
ResNet50-DELG 118 
ResNet50-CBIR-SNN 187 
R50-TFFLR 213 

As illustrated in Table 2, the TFFLR model exhibits inferior performance in terms of 
average response time relative to other mainstream retrieval models, in which for the 
CiDeR model, the average response time exceeds 8ms, and the retrieval speed is slower 
than that of the CiDeR model. Using the same backbone network, the TEIR model has 
the largest gap with the DELG model, with an average response time exceeding 95 ms 
However, combining the mAP and mp@10 metrics, TFFLR outperforms the DELG 
model in both the ROxford-mAP and RParis-mAP metrics, with an improvement of 9.9 
and 5.5. In the ROxford-mp@10 metrics, TFFLR improves 6.4 compared to the DELG 
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model, indicating that the model sacrifices some of the retrieval speed but achieves a 
large accuracy improvement. The mean value of the average response time of the models 
compared in the experiment is 380 ms, while the average response time of the TFFLR 
model is 213ms. Although the retrieval efficiency decreases when comparing the 
minimum value of the response time of 118ms, it is much smaller than the mean value of 
the average response time, which indicates that the method still has a strong immediacy 
in the practical application scenario. And from the perspective of dataset, TFFLR 
improves significantly under the ROxford dataset, compared with ResNet101-CiDeR, 
both metrics are improved by 1.4 and 0.8, respectively, while on the RParis dataset, it is 
improved by 0.9 and 0.1. The main reason is that the images captured by RParis are of 
high quality and the number of noisy images is small, so that even the ordinary retrieval 
models can also obtain better results, and the room for improvement is smaller than 
ROxford. 

In conclusion, the proposed TFFLR retrieval model, although not outperforming 
some existing retrieval models in terms of response time, maintains an acceptable latency 
for practical implementations. Notably, it exhibits substantial enhancement in mean 
average precision when compared to contemporary models. This improvement in 
accuracy, coupled with its reasonable computational efficiency, renders the TFFLR 
model highly valuable for real-world retrieval scenarios. The model’s performance 
characteristics suggest that it is well-suited to address the requirements of a wide range of 
landmark retrieval applications, striking an effective balance between precision and 
operational feasibility. 

5 Conclusions 

We present a texture-enhanced single-stage landmark retrieval model designed to address 
the sensitivity of existing models to factors such as illumination, viewpoint, and 
occlusion by leveraging texture features. The model initially employs a texture 
enhancement module to reconstruct original feature maps, amplifying the influence of 
texture features in deep feature descriptors and thereby improving the expressiveness and 
robustness of multi-scale feature maps under complex conditions. To obtain more 
comprehensive feature descriptors, the model introduces a novel feature fusion module 
that integrates global and local feature maps, utilising a mapping fusion approach to 
optimise local features within feature descriptors at various scales and eliminate 
redundant features, resulting in more complete and discriminative fused feature 
descriptors. Experimental results demonstrate that this model significantly outperforms 
existing methods in retrieval accuracy while maintaining acceptable retrieval speeds. As 
the modalities used to describe landmarks continue to expand, future research directions 
will explore the potential for multi-modal landmark retrieval, such as implementing 
landmark retrieval for video data. 
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