
   

  

   

   
 

   

   

 

   

   Int. J. Shipping and Transport Logistics, Vol. 5, No. 1, 2013 75    
 

   Copyright © 2013 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Two-agent single-machine scheduling with release 
times and deadlines 

Yunqiang Yin 
State Key Laboratory Breeding Base of 
Nuclear Resources and Environment, 
East China Institute of Technology, 
Nanchang, 330013, China 
E-mail: yunqiangyin@gmail.com 

Shuenn-Ren Cheng 
Graduate Institute of Business Administration, 
Cheng Shiu University, Kaohsiung County, Taiwan 
No. 840, Chengcing Rd., Niaosong Dist., 
Kaohsiung City 83347, Taiwan 
E-mail: tommy@csu.edu.tw 

T.C.E. Cheng 
Dean’s Office, 
Faculty of Business, 
The Hong Kong Polytechnic University, 
11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong 
E-mail: Edwin.Cheng@inet.polyu.edu.hk 

Wen-Hung Wu 
Department of Business Administration, 
Kang-Ning Junior College, Taipei, Taiwan 
No. 137, Lane 75, Sec. 3, Kangning Rd., 
Neihu District, Taipei City 114, Taiwan 
E-mail: wu410226@knjc.edu.tw 

Chin-Chia Wu* 
Department of Statistics, 
Feng Chia University, 
No. 100, Wenhwa Rd., 
Seatwen, Taichung, Taiwan 
E-mail: cchwu@fcu.edu.tw 
*Corresponding author 

 



   

 

   

   
 

   

   

 

   

   76 Y. Yin et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Abstract: Multiple-agent scheduling has attracted considerable research 
attention in recent years. However, studies of multiple-agent scheduling with 
release times and deadlines are few. In the presence of ready times, sometimes 
it is beneficial to wait for future job arrivals in constructing a schedule. Inspired 
by the importance of ready times, we study the single-machine two-agent 
scheduling problem with releases times and deadlines to minimise the number 
of tardy jobs of one agent under the restriction that the maximum lateness of 
the jobs of the other agent cannot exceed a given value Q. Having established 
that the problem is strongly NP-hard, we provide a branch-and-bound and a 
simulated annealing algorithm to search for the optimal and approximate 
solutions, respectively. The results of computational experiments reveal that the 
SA algorithm can generate near-optimal solutions quickly. 

Keywords: scheduling; two agents; simulated annealing; release times. 

Reference to this paper should be made as follows: Yin, Y., Cheng, S-R., 
Cheng, T.C.E., Wu, W-H. and Wu, C-C. (2013) ‘Two-agent single-machine 
scheduling with release times and deadlines’, Int. J. Shipping and Transport 
Logistics, Vol. 5, No. 1, pp.75–94. 

Biographical notes: Yunqiang Yin received his BS, MS, and PhD from 
Shandong University of Science and Technology, Kunming University of 
Science and Technology, and Beijing Normal University, China, in 2003, 2006, 
and 2009, respectively. He has worked at East China Institute of Technology 
since 2009. His research covers semi-group theory, ring theory, module theory 
and their applications, and algebraic hyper-structure theory, fuzzy sets, rough 
sets and process scheduling. He has published more than 70 papers in these 
fields and written a book on fuzzy hemi-rings. 

Shuenn-Ren Cheng received his BS in Statistics from Tung Hui University, 
MBA from St. John University in New York, and PhD from Manuel Quezon 
University. He is a Vice Professor of Cheng Shiu University, Taiwan. His areas 
of research include applied statistics and finance. 

T.C.E. Cheng is Dean of the Faculty of Business and Chair Professor of 
Management of The Hong Kong Polytechnic University. He obtained his PhD 
and ScD from the University of Cambridge, England. His research interests are 
in operations management and scheduling. 

Wen-Hung Wu is an Associate Professor at the Kang-Ning College of Medical 
Care and Management, Taiwan. He received his PhD in Management from  
Fu-Jen Catholic University, Taiwan. His present research includes management 
and scheduling. 

Chin-Chia Wu is a Professor in the Department of Statistics, Feng Chia 
University, Taiwan. He received his Doctoral degree from the Graduate 
Institute of Management, School of Management, National Taiwan University 
of Science and Technology, Taiwan in 1997. His teaching and research 
interests include applied statistics and operations research. 

 

 

 

 



   

 

   

   
 

   

   

 

   

    Two-agent single-machine scheduling with release times and deadlines 77    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

Multiple-agent scheduling has received considerable research attention since Baker and 
Smith (2003) and Agnetis et al. (2004) introduced the multi-agent concept to scheduling. 
For example, Cheng et al. (2006) showed that the feasibility model of single-machine 
multi-agent scheduling is a strongly NP-complete in general. Agnetis et al. (2007) 
determined the complexity of some single-machine multi-agent scheduling problems and 
developed solution algorithms for them. Cheng et al. (2008) studied the complexity of 
two models of single-machine multi-agent scheduling, namely the feasibility model and 
minimality model. Agnetis et al. (2009) applied a Lagrangian dual to obtain a good bound 
and solved all the considered problems in strongly polynomial time. Leung et al. (2010) 
generalised the results for some two-agent problems and solved one open problem 
involving identical parallel machines. For more results on multi-agent scheduling, the 
reader may refer to Yuan et al. (2005), Ng et al. (2006), Wan et al. (2010), Cheng et al. 
(2011a, 2011b), Liu et al. (2010, 2011), Mor and Mosheiov (2010, 2011), Nong et al. 
(2011), Li and Hsu (2012), and Yin et al. (2012), among others. 

In the scheduling literature, studies involving due date-based objective functions, e.g., 
number of tardy jobs, and ready times are relatively limited. French (1982) points out that 
in some real-life applications, the penalty incurred by a late job does not depend on how 
late it is as a job that finishes a minute late might just as well be a century late. For 
instance, if an aircraft is scheduled to land at a time after which it will have exhausted its 
fuel, then the results are just as catastrophic whatever the scheduled landing time. In such 
cases, a reasonable objective would be to minimise the number of tardy jobs. On the 
other hand, generally each job has a different priority/weight, due date, and ready time. In 
the presence of ready times, sometimes it is beneficial to wait for future job arrivals in 
constructing a schedule. Despite multi-agent scheduling has become a popular research 
topic, study of multiple-agent scheduling with release times is relatively limited, 
especially involving the objective of minimising the number of tardy jobs. Inspired by 
these observations, we consider the two-agent single-machine scheduling problem with 
release times to minimise the number of tardy jobs of one agent with the restriction that 
the maximum lateness of the jobs of the other agent cannot exceed a given value. 

An application of the problem arises in the shipping industry (Lun et al., 2011;  
Zhang et al., 2011). Ships from different shipping companies call at a port, which needs 
to determine the order in which it will serve the ships that arrive over time. In this 
context, the port is the single machine and the arriving ships are the jobs with ready 
times. Assume that the ships belong to two major shipping firms, which constitute the 
two agents. From the perspective of the port, it (the machine) wishes to find a schedule to 
serve (process) the ships of one of the two shipping firms (the jobs of the two agents) 
such that the number of tardy ships of one shipping firm is minimised, subject to the 
maximum lateness of the ships of the other shipping firm cannot exceed a given limit. 

The rest of this paper is organised as follows: in Section 2, we introduce and 
formulate the problem under consideration. In Section 3, we show that the problem is 
strongly NP-hard while in Section 4, we show that two special cases of the problem are 
polynomially solvable. In Section 5, we present some dominance properties and a lower 
bound on the optimal solution, and exploit them to develop a branch-and-bound 
algorithm to solve the problem. In Section 6, we provide five variants of a simulated 
annealing (SA) algorithm to obtain approximate solutions for the problem. In Section 7, 
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we report the results of extensive computational experiments conducted to assess the 
performance of all the proposed algorithms. We conclude the paper in the last section. 

2 Model formulation 

We introduce the scheduling problem considered in this paper as follows: Consider  
two competing agents, called agents A and B, respectively. Each of them has a set of  
non-preemptive jobs to be processed on a single machine. Jobs arrive dynamically and 
thus have unequal release times. Agent A has to execute the job set 1{ ,A AJ J=  

2 , , },
A

A A
nJ J…  whereas agent B has to execute the job set 1 2{ , , , }

B
B B B B

nJ J J J= …  Let  
X ∈ {A, B}. The jobs of agent X are called X-jobs. The processing time, due date, and 
release time of job X

jJ  in the set JX are positive integers , ,  and ,X X X
j j jp d r  respectively, 

for all j ∈ {1, 2,…,nx}. Let S denote a feasible schedule of the nA + nB jobs, i.e., a feasible 
assignment of starting times to the jobs of both agents. The completion time of job X

jJ  is 

denoted as ( )X
jC S  and the lateness of job X

jJ  is given by ( ) ( ) .X X X
j j jL S C S d= −  We 

write X
jC  and X

jL  for ( )X
jC S  and ( )X

jL S  respectively, whenever this does not cause 
confusion. We consider the scheduling problem to minimise the number of tardy  
jobs of agent A, subject to the maximum lateness of the jobs of agent B does not exceed  
a given value Q. Using the three-field notation scheme α | β | γA: γB introduced by  
Agnetis et al. (2004), we denote the problem by max1 : ,A B

j jr U L∑  where A
jU  denotes 

whether or not job A
jJ  is tardy with 1A

jU =  if A A
j jC d>  and 0A

jU =  otherwise, and 

max max{ | }.B B B B
j jL L J J= ∈  

3 NP-hardness of ∑ max1 :A B
j jr U L  

In this section, we prove that problem max1 :A B
j jr U L∑  is strongly NP-hard by a 

reduction from 3-PARTITION. 

3-PARTITION: Given a set of 3n positive integers {a1, a2,…,a3n} and a positive integer b 

such that ,
4 2j
b ba< <  j = 1, 2,…,3n, 

3

1
,

n
ii

a nb
=

=∑  are there n pairwise disjoint  

three-element subsets Si such that 
i

jj S
a b

∈
=∑  for i = 1, 2,…,n? 

Theorem 1: Problem max1 :A B
j jr U L∑  is strongly NP-hard. 

Proof: We reduce 3-PARTITION to problem 1 max 21 , .A B
j jr U Q L Q≤ ≤∑  Given an 

instance of 3-PARTITION, we construct an instance of problem 11 ,A
j jr U Q≤∑  

max 2
BL Q≤  as follows: 
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2 , 1, 2, ,3A
jjp a j n= = …  

(2 1), 1, 2, ,3
3

A
j

jd b j n⎡ ⎤= + =⎢ ⎥⎢ ⎥
…  

0, 1, 2, ,3A
jr j n= = …  

1, 1, 2, ,B
jp j n= = …  

(2 1), 1, 2, ,B
jd j b j n= + = …  

(2 1) 1, 1, 2, ,B
jr j b j n= + − = …  

1 2 0.Q Q= =  

It is easy to see that there is a solution to the 3-PARTITION instance if and only if there 
is a feasible schedule for the constructed instance of the scheduling problem. 

4 Two polynomially solvable cases of ∑ max1 :A B
j jr U L  

Since problem max1 :A B
j jr U L∑  is strongly NP-hard, it is of interest to identify some of 

its solvable special cases with a view to locating the exact boundary between the ‘easy’ 
and ‘hard’ problems. First, we consider the case where all the A-jobs have equal due 
dates, i.e., 0A

jr =  for all j = 1, 2,…,nA, denoted as max1 0 : : ,A B A B
j j jr r U L= ∑  and show 

that this case can be solved in O(nAlognA + nBlognB) time by employing the idea of 
Agnetis et al. (2004) for solving problem max1 : .A B

jU L∑  

For each B-job ,B
jJ  define a deadline B

jD  such that B B
j jC d Q− ≤  for B B

j jC D≤  and 
B B
j jC d Q− >  for ,B B

j jC D>  i.e., .B B
j jD d Q− =  Re-arrange the B-jobs in non-decreasing 

order of .B
jD  Next, define the latest start time B

jLS  of job B
jJ  as the maximum value of 

the starting time of B
jJ  that permits a feasible schedule such that B B

j jC D≤  for all 

.B B
jJ J∈  Starting from the last B-job ,

B
B
nJ  set .B B B

B B
n n nLS D p= −  Now, we consider the 

following cases. 

• Case 1: 1.B B
B

n nLS D −>  Then set 1 1 1.B B B
B B

n n nLS D p− − −= −  

• Case 2: If there is only one job 1B
B
nJ −  such that 1,B B

B
n nLS D −≤  then set 

1 1.B B B
B

n n nLS LS p− −= −  

• Case 3: If there are more than one B-job whose deadlines are larger than BnLS  and 
assume that k is the smallest index such that ,B

B
n kLS D≤  then order the jobs in 

1{ , , }
B

B B
k nJ J −…  in non-decreasing order of B

jr  and let 1
B

j j jLS LS p+= −  for all 
1, , .Bj n k= − …  
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Continue backwards in this way until we obtain LS1. Clearly if all the jobs B
jJ  start after 

time LSj or ,B
jjr LS>  then the generated sequence is feasible. 

Now combining the idea developed by Agnetis et al. (2004) to construct a 
polynomial-time algorithm for solving max1 : ,A B

jU L∑  we obtain the following result. 

Theorem 2: Problem max1 0, :A B A B
j j jr r U L= ∑  can be solved in O(nAlognA + nBlognB) 

time. 

Proof: The proof is similar to that of Theorem 6.3 in Agnetis et al. (2004). 

We now consider another special case where the processing times of all the  
jobs are equal, i.e., X

jp p=  for all j = 1, 2,…,nx, where X ∈ {A, B}, denoted as 

max1 , : ,X A B
j j jr p p U L= ∑  and show that this case can be solved in O((nA + nB)7) time. 

Theorem 3: Problem max1 , :X A B
j j jr p p U L= ∑  can be solved in O((nA + nB)7) time. 

Proof: For each B-job ,B
jJ  compute its deadline ,B

jD  which can viewed as the modified 

due date of job .B
jJ  Assign to each A-job A

jJ  a weight 1A
jw =  and to each B-job  

B
jJ  a weight 1.B

Ajw n= +  Now apply Baptiste’s (1999) algorithm to solve problem 

1 ,
X X
j

X X
j j j j

J J

r p p w U
∈

= ∑  for the whole job set JA ∪ JB. Since the weights of the B-jobs 

are so large, they are all on time in the schedule constructed by the algorithm. The 
running time of Baptiste’s (1999) algorithm is O(n7), where n is the number of jobs. 
Thus, problem 1 ,

X X
j

X X
j j j j

J J

r p p w U
∈

= ∑  can be solved in O((nA + nB)7) time, as required. 

5 Branch-and-bound algorithm 

While no efficient algorithm is likely to exist to solve an NP-hard scheduling problem in 
theory, it is still necessary to solve such a problem or find near-optimal solutions in a fast 
and effective manner in practice (see Flavia Monaco and Sammarra, 2011). In this 
section, we provide a branch-and-bound and a SA algorithm to search for the optimal and 
approximately solutions for problem max1 : .A B

j jr U L∑  In order to speed up the search 

process in the branch-and-bound algorithm, we derive some dominance properties of the 
optimal solution in the following. 

5.1 Dominance properties 

Assume that schedule S has two adjacent jobs X
iJ  and Y

jJ  with X
iJ  immediately 

preceding ,Y
jJ  where X, Y ∈ {A, B}. Create from S a new schedule S′ by swapping the 
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jobs X
iJ  and Y

jJ  and leaving the other jobs unchanged in schedule S. In addition, assume 

that the starting time to process X
iJ  in S is t. We have the following results. 

Lemma 1: If , , max{ , } max{ , }, max{max{ , } , }X Y A A A A A A A
i j j i j i i jJ J J r t r t d r t p r∈ ≥ ≥ +  

A
jp+  and max{max{ , } , } max{ , } ,A A A A A A A

j j i i i i ir t p r p d r t p+ + > ≥ +  then S dominates S′. 

Proof: The completion times of the jobs A
iJ  and A

jJ  in S and S′ are, respectively, 

{ }
{ }{ }

{ }

( ) max ,

( ) max max , ,

( ') max ,

A A A
i i i

A A A A A
j i i j j

A A A
j j j

C S r t p

C S r t p r p

C S r t p

= +

= + +

= +

 

and 

{ }{ }( ) max max , , .A A A A A
i j j i iC S r t p r p′ = + +  

It is easy to see that ( ) ( )A A
i iC S C S′ >  and ( ) ( ).A A

j jC S C S ′≥  Moreover, it follows from 

{ }{ }max max , ,A A A A A
j i i j jd r t p r p≥ + +  

and 

{ }{ } { }max max , , max ,A A A A A A A
j j i i i i ir t p r p d r t p+ + > ≥ +  

that ( ) ( ) 1 0 ( ) ( ),A A A A
j i i jU S U S U S U S′ ′+ = > = +  and from max{ , } max{ , }A A

j ir t r t≥  that 

( ) ( ).A A
j iC S C S ′≤  The result follows. 

Lemma 2: If , ,X Y A
i jJ J J∈  max{ , } max{ , },A A

j ir t r t≥  max{ , }A A A
j j jr t p d+ >  and 

max{max{ , } , }A A A
j j ir t p r+  then S dominates S′. 

Proof: Analogous to the proof of Lemma 1, if the given conditions hold, we have 
( ) ( ) 2 1 ( ) ( )A A A A

j i i jU S U S U S U S′ ′+ = > = +  and ( ) ( '),A A
j iC S C S≤  as required. 

We can easily establish the following results in the same way as we proved Lemmas 1 
and 2. 

Lemma 3: If , ,X Y A
i jJ J J∈  max{ , } ,A A A

j i ir r t p≥ +  and max{ , } ,A A A
i i id r t p≥ +  then S 

dominates S′. 

Lemma 4: If , ,X Y B
i jJ J J∈  max{ , } max{max{ , } , }B B B B B B B

i i i j j i ir t p d Q r t p r p+ − ≤ < + +  

,B
id−  and max{max{ , } , } ,B B B B B

i i j j jr t p r p d Q+ + − ≤  then S dominates S′. 

Lemma 5: If , ,X A Y B
i jJ J J J∈ ∈  max{ , } max{ , },B A

j ir t r t≥  and max{max{ , }A
ir t  

, } ,A B B B
i j j jp r p d Q+ + − ≤ then S dominates S′. 
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Next, we present two lemmas to determine the feasibility of a partial sequence. Let  
(π, -, -) be a sequence of the jobs, where π is the scheduled part with k jobs. Moreover, let 
US be the unscheduled job set and C[*] the completion time of the last job in π. 

Lemma 6: If there is a B-job B
jJ  in US such that [ ]max{ , } ,B B B

k j j jC r p d Q+ − >  then any 
sequence (π, π′) is not a feasible solution, where π′ is a sequence of the job set US. 

Lemma 7: If all the unscheduled jobs belong to JA and there exists an A-job JA such that 
[ ]max{ , }A A A
k j j kC r p r+ ≤  for all the jobs \{ },A A

jkJ US J∈  then job A
jJ  may be assigned 

to (k + 1)th position. 

Now let A(t) be the set of available unscheduled jobs at time t, i.e., ( ) { X
jA t J= ∈  

| },X
jUS t r≥  and B(t) the set of unavailable and unscheduled jobs at time t, i.e., 

( ) { | }.X X
j jB t J US t r= ∈ <  

Lemma 8: If ( )( )
min { }YX kj

X Y
j J B t kJ A t

p t r∈∈
+ ≤∑  or B(t) = ∅, and A(t) ⊆ JA, then there is 

an optimal schedule such that the early A-jobs in A(t) are scheduled in the earliest due 
date (EDD) order, and the tardy A-jobs in A(t) are scheduled in any order after the 
completion of all the processed jobs. 

Proof: The first part can be proved by the insertion argument and the second part can be 
easily observed. 

5.2 A lower bound for max1 :A B
j jr U L∑  

The efficiency of a branch-and-bound algorithm largely depends on the effectiveness of 
lower bounds for curtailing the partial sequences. In this subsection, we propose a lower 
bound. Let AS be a partial sequence in which the order of the first k jobs is determined 
and US be the unscheduled part with n1 A-jobs and n2 B-jobs, where n1 + n2 = nA + nB – k. 
We develop a optimal solution for max1 0, : ,A B A B

j j jr r U L= ∑  which is evidently a lower 

bound for max1 :A B
j jr U L∑  in the following. 

Algorithm 1: 

Step 1 Compute the latest start time B
jLS  of job B

jJ  in US and enumerate the A-jobs in 

US such that 
1(1) (2) ( ) .A A A

nd d d≤ ≤ ≤"  

Step 2 Foe each B-job B
jJ  in US, let it start processing at time .B

jLS  

Step 3 Define block i as the ith set of contiguously processed B-jobs. Let there be 
2n n≤β  blocks and let the starting time and finishing time of each block i be s(i) 

and f(i), respectively. 

Step 4 For each job A
jJ  in US, if A

jd  falls outside any reserved interval,  

subtract from A
jd  the total length of all the blocks preceding ,A

id  i.e., 
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( )

( ( ) ( )).
A
j

A A
j j

f i d

d f i s i
≤

Δ = − −∑  If A
jd  falls within block i, do the same, but 

instead of A
jd  use the left extreme of block k, i.e., let 

( )

( ) ( ( ) ( ))
A
j

A
j

f i d

s k f i s i
≤

Δ = − −∑  

Step 5 Solve problem 1 A A
j jUΔ ∑  using Moore’s algorithm as follows: 

Step 5.1 Order the A-jobs in US in non-decreasing order of A
jΔ  (i.e., in the 

EDD order). 

Step 5.2 If no job in the sequence is late, stop. The schedule is optimal. 

Step 5.3 Find the first late job in the schedule and denote it by .A
uJ  

Step 5.4 Find a job A
vJ  with 

1
max .A A

v i
i u

p p
≤ ≤

=  Remove job A
vJ  from the 

schedule and process it after the completion of all the processed jobs. 
Go to Step 5.2. 

Let m be the optimal solution value of problem 1 .A A
j jUΔ ∑  Then a lower bound for the 

partial sequence PS is [ ]
1

,
k

X
Xj

i

LB U I m
=

= +∑  where X ∈ {A, B} and IX = 1 if X = A, and 0 

otherwise. 

5.3 Branch-and-bound algorithm 

We adopt the depth-first search and assign jobs in a forward manner starting with the first 
position. In the searching tree, we choose a branch and systematically work down the tree 
until we either eliminate it by virtue of the dominance properties or the lower bound, or 
we reach its final node, in which case the resulting sequence either replaces the initial 
incumbent solution or is eliminated. The branch-and-bound algorithm runs as follows: 

Step 1 Initialisation: Use a SA heuristic (to be discussed below) to obtain an initial 
incumbent solution. 

Step 2 Branching: Apply the depth-first search in the branching procedure until all the 
nodes are explored or eliminated. 

Step 3 Eliminating: Apply Lemmas 1–6, to eliminate the dominated partial  
sequences. Use Lemma 7 to determine the job in the (k + 1)th position. For the 
non-dominated nodes, use Lemma 8 to determine the order of the unscheduled 
jobs. 

Step 4 Bounding: Calculate a lower bound on the number of tardy jobs for each 
unfathomed partial sequence or the number of tardy jobs of the completed 
sequence for agent A. If the lower bound for an unfathomed partial sequence is 
larger than the initial incumbent solution, eliminate that node and all the nodes 
beyond it in the branch. If the value of the completed sequence is less than the 
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incumbent solution, adopt the completed sequence as the new incumbent 
solution. Otherwise, eliminate it. 

Step 5 Stopping rule: Repeat Steps 2 to 4 until no more nodes to explore. 

5.4 SA algorithm 

SA is a well-known meta-heuristic method widely applied to solve combinatorial 
optimisation problems (Kirkpatrick et al., 1983; Ekren and Ekren, 2010; Lin et al., 2011; 
Song et al., 2012; Stahlbock and Voβ, 2010; Li and Pang, 2011). Adopting hill climbing 
moves governed by a control parameter, SA has the advantage of avoiding getting 
trapped in a local optimum. 

We present an SA algorithm to treat problem max1 :A B
j jr U L∑  as follows: the SA 

algorithm commences with four initial solutions. In order to guarantee that the initial 
solution is feasible, we first arrange the jobs of agent B in the EDD order, followed by 
arranging the jobs of agent A in four ways, giving rise to four simple variants of the SA: 
SA1, in which the A-jobs are in the smallest processing time (SPT) order; SA2, in which 
the A-jobs are in the smallest ready time (SRT) order; SA3, in which the A-jobs are in the 
EDD order; and SA4, in which the A-jobs are in the weighted smallest processing time 
(WSPT) order. Moreover, in order to improve solution quality, we define a compound SA 
variant as SA5 = min{SA1, SA2, SA3, SA4}. For neighbourhood generation, we employ the 
pairwise interchange (PI) generation method to generate neighbourhood solutions. For 
the acceptance probability, we adopt the following acceptance probability 

( )( ) exp ,TP accept δ U= − ×Δ  

where δ is a control parameter, which changes in the kth iteration according to the method 
proposed by Ben-Arieh and Maimon (1992) as follows: 

,kδ =
β

 

where β is an experimental constant and ΔUT is change in the objective value. After 
preliminary trials, we set β = 2. As for the stopping rule, all the SA variants are stopped 
after 100n iterations, where n is the number of jobs because, based on preliminary trials, 
the schedule is quite stable at this stage. 

6 Computational results 

We conducted extensive computational simulation tests to assess the performance of the 
branch-and-bound and SA algorithms. We coded all the algorithms in Fortran and ran 
them on a PC with a Intel(R) Core(TM)2 Quad CPU at 2.66 GHz and 4 GB RAM under 
XP Windows. Following Reeves (1995), we generated the processing times from a 
uniform distribution over the integers between 1 and 100, and the release times from a 
uniform distribution over the integers (0, 20nλ), where n is the number of jobs and λ is a 
control variable. We generated five different sets of problem instances by giving λ the 
values 1/n, 0.25, 0.5, 0.75, and 1.0. Moreover, following Fisher (1971), we generated the 
job due dates from a uniform distribution over the range of integers T(1 – τ – R / 2) to  
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T(1 – τ + R / 2), where τ is the tardiness factor, R is the due date range, and T is the sum 

of the job processing times, i.e., 
1

.
n

i
i

T p
=

=∑  The combination (τ, R) took the values  

(0.25, 0.25), (0.25, 0.5), (0.25, 0.75), (0.5, 0.25), (0.5, 0.5), and (0.5, 0.75). We fixed the 
proportion of A-jobs at pro = 0.5 in the tests. 

For the branch-and-bound algorithm, we recorded the average and the maximum 
numbers of nodes and CPU times (in seconds). For the five SA variants, we define IR1, 
IR2, and IR3 as follows: 

( ){ }
( ){ }

*
1

*
2

the number of ( ) 1 ,

the number of 1 ( ) 3 ,
T i T

T i T

IR U SA U BB

IR U SA U BB

= − ≤

= < − ≤
 

and 

( ){ }*
3 the number of ( ) 4 , 1, 2, ,5T i TIR U SA U BB i= − ≥ = …  

where UT(SAi) is the number of tardy jobs obtained by SAi and * ( )TU BB  is the number of 
tardy jobs of the optimal schedule produced by the branch-and-bound algorithm. We did 
not record the computational times of the SA variants because they are all fast in solving 
the problems within a second. 

We divided the experiments into two parts. In the first part, we fixed the number of 
jobs n = 14 and 18. In total, we tested 30 experimental cases in the first part and 
randomly generated 100 replications for each case. So we tested a total of 3,000 problem 
instances. For the branch-and-bound algorithm, we terminated its execution and 
proceeded to run the next set of data if the number of nodes exceeded 108. We recorded 
the instances with number of nodes fewer than 108 as solvable instances (SI). Tables 1 
and 2 summarise the performance of the branch-and-bound and SA algorithms. 

For the performance of the branch-and-bound algorithm, Tables 1 and 2 show that the 
number of nodes generated by it for instances with smaller values of λ are larger than 
those for instances with larger values of λ when other parameters are fixed. This trend 
becomes more significant when λ approaches 1. When λ and τ are fixed, the instances 
with a bigger value of R are easier to solve than those with a smaller value of R. On the 
other hand, when λ and R are fixed, the instances with a smaller value of τ are more 
difficult to solve than those with a large value of τ. 

As for the performance of the four simple SA variants, it can be seen that the ratios of 
IR1, IR2, and IR3 to the total number of solvable instances are 61%, 34%, and 5% for SA1; 
34%, 48%, and 18% for SA2; 33%, 45%, and 22% for SA3; and 33%, 45%, and 22% for 
SA4, respectively. These results indicate that SA1 performs better than its counterparts. 
Moreover, as shown in Table 2, 434 out of the 3,000 evaluations of solvable instances, 
the performance of SA1 is also slightly better than that of the other three simple SA 
variants. The performance of all the SA variants is not affected by λ, τ, or R. Since all the 
SA algorithms are fast in solving the problem within a second and the objective function 
belongs to the nominal scale, which easily causes a bigger gap between an optimal 
solution and a near-optimal solution, we take SA5 = min{SAi, i = 1, 2,…,4} as a 
compound SA variant. Tables 1 and 2 show that the ratio of the sum of IR1 and IR2 to the 
total number of solvable instances for SA5 increases up to 96% and 75%, respectively. 
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Table 1 Performance of the branch-and-bound and SA algorithms with n = 14 
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Table 1 Performance of the branch-and-bound and SA algorithms with n = 14 (continued) 
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Table 2 Performance of the branch-and-bound and SA algorithms with n = 18 
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Table 2 Performance of the branch-and-bound and SA algorithms with n = 18 (continued) 
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In the second part, we tested the proposed SA variants with the number of jobs fixed at  
n = 50 and 100 to further assess their performance in handling large job-sized problem 
instances. As a result, we examined 30 experimental cases. For each case, we randomly 
generated 100 replications. So we tested a total of 3,000 randomly generated problem 
instances. For the four simple SA variants, we define IR1, IR2, and IR3 as follows: 

( ){ }
( ){ }

**
1

**
2

the number of ( ) 1 ,

the number of 1 ( ) 3
T i T

T i T

IR U SA U SA

IR U SA U SA

= − ≤

= < − ≤
 

and 

( ){ }**
3 the number of ( ) 4 , 1, 2, , 4,T i TIR U SA U SA i= − ≥ = …  

where UT(SAi) is the objective value generated by SAi and **( ) min{ ( ),T T iU SA U SA=   
i = 1, 2,…,4} is the smallest objective value obtained among SA1, SA2, SA3, and SA4. 
Tables 3 and 4 report the results. 

As shown in Table 3, the ratio of IR1 to the total number of solvable cases for SA1 is 
90% or higher, whereas those of SA2, SA3, and SA4 at 30%, 26%, and 26%, respectively. 
These results show that SA1 outperforms its counterparts. Table 4 shows that the SA 
variants have similar performance. Moreover, the performance of the all proposed SA 
variants are not affected by λ, τ, or R. In addition, there is no dominance relationship 
among them. Thus, we recommend that the compound SA5 be used since it has both 
accuracy and stability in solving the problem. 
Table 3 Performance of the simple SA variants with n = 50 

SA1 SA2 SA3 SA4 λ τ R 
IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 

1/n 0.25 0.25 98 2 0 22 25 53 22 25 53 22 25 53 
  0.5 57 20 23 56 10 34 56 10 34 56 10 34 
  0.75 72 12 16 53 10 37 53 10 37 53 10 37 
 0.5 0.25 100 0 0 8 29 63 8 29 63 8 29 63 
  0.5 100 0 0 0 11 89 0 11 89 0 11 89 
  0.75 100 0 0 0 6 94 0 6 94 0 6 94 
0.25 0.25 0.25 98 2 0 30 33 37 30 33 37 30 33 37 
  0.5 61 17 22 52 9 39 52 9 39 52 9 39 
  0.75 68 20 12 58 13 29 58 13 29 58 13 29 
 0.5 0.25 100 0 0 7 27 66 7 27 66 7 27 66 
  0.5 100 0 0 3 13 84 3 13 84 3 13 84 
  0.75 100 0 0 0 3 97 0 3 97 0 3 97 
0.5 0.25 0.25 93 7 0 35 27 38 35 27 38 35 27 38 
  0.5 54 12 34 60 5 35 60 5 35 60 5 35 
  0.75 76 12 12 47 25 28 47 25 28 47 25 28 
 0.5 0.25 100 0 0 7 27 66 7 27 66 7 27 66 
  0.5 100 0 0 1 14 85 1 14 85 1 14 85 
  0.75 100 0 0 0 2 98 0 2 98 0 2 98 
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Table 3 Performance of the simple SA variants with n = 50 (continued) 

SA1 SA2 SA3 SA4 
λ τ R 

IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 

0.75 0.25 0.25 97 2 1 29 32 39 29 32 39 29 32 39 

  0.5 59 16 25 56 11 33 56 11 33 56 11 33 

  0.75 64 17 19 54 11 35 54 11 35 54 11 35 

 0.5 0.25 100 0 0 11 22 67 11 22 67 11 22 67 

  0.5 100 0 0 0 12 88 0 12 88 0 12 88 

  0.75 100 0 0 0 7 93 0 7 93 0 7 93 

1 0.25 0.25 100 0 0 30 38 32 12 33 55 12 33 55 

  0.5 100 0 0 33 42 25 7 19 74 7 19 74 

  0.75 99 1 0 26 47 27 0 7 93 0 7 93 

 0.5 0.25 99 1 0 83 15 2 79 18 3 79 18 3 

  0.5 100 0 0 76 23 1 64 32 4 64 32 4 

  0.75 99 1 0 63 33 4 29 48 23 29 48 23 

Table 4 Performance of the simple SA variants with n = 100 

SA1 SA2 SA3 SA4 λ τ R 
IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 

1/n 0.25 0.25 99 0 1  12 9 79  12 9 79  12 9 79 

  0.5 64 3 33  46 3 51  46 3 51  46 3 51 

  0.75 75 11 14  43 11 46  43 11 46  43 11 46 

 0.5 0.25 100 0 0  0 4 96  0 4 96  0 4 96 

  0.5 100 0 0  0 0 100  0 0 100  0 0 100 

  0.75 100 0 0  0 0 100  0 0 100  0 0 100 

0.25 0.25 0.25 98 2 0  5 12 83  5 12 83  5 12 83 

  0.5 66 4 30  42 7 51  42 7 51  42 7 51 

  0.75 80 7 13  37 8 55  37 8 55  37 8 55 

 0.5 0.25 100 0 0  0 5 95  0 5 95  0 5 95 

  0.5 100 0 0  0 1 99  0 1 99  0 1 99 

  0.75 100 0 0  0 0 100  0 0 100  0 0 100 

0.5 0.25 0.25 100 0 0  3 7 90  3 7 90  3 7 90 

  0.5 58 6 36  51 1 48  51 1 48  51 1 48 

  0.75 74 6 20  37 8 55  37 8 55  37 8 55 

 0.5 0.25 100 0 0  0 7 93  0 7 93  0 7 93 

  0.5 100 0 0  0 0 100  0 0 100  0 0 100 

  0.75 100 0 0  0 0 100  0 0 100  0 0 100 
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Table 4 Performance of the simple SA variants with n = 100 (continued) 

SA1 SA2 SA3 SA4 
λ τ R 

IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 

0.75 0.25 0.25 99 1 0  10 15 75  10 15 75  10 15 75 

  0.5 56 3 41  50 0 50  50 0 50  50 0 50 

  0.75 72 6 22 41 14 45 41 14 45 41 14 45 

 0.5 0.25 100 0 0  3 3 94  3 3 94  3 3 94 

  0.5 100 0 0  0 0 100  0 0 100  0 0 100 

  0.75 100 0 0  0 0 100  0 0 100  0 0 100 

1 0.25 0.25 100 0 0  22 23 55  10 20 70  10 20 70 

  0.5 100 0 0  14 26 60  1 4 95  1 4 95 

  0.75 99 1 0  18 26 56  0 0 100  0 0 100 

 0.5 0.25 100 0 0  94 6 0  92 8 0  92 8 0 

  0.5 99 1 0  77 22 1  66 25 9  66 25 9 

  0.75 94 6 0  43 30 27  5 29 66  5 29 66 

7 Conclusions 

In this paper, we consider a two-agent single-machine scheduling problem with different 
job release times. The objective is to find an optimal schedule that minimises the number 
of the tardy jobs of one agent with the restriction that the maximum lateness of the jobs 
of the other agent cannot exceed a given value. We first establish that the problem is 
strongly NP-hard and then show that two special cases of the problem are solvable in 
polynomial time. Following that, we present some dominance properties and a lower 
bound on the optimal solution, and exploit them to develop a branch-and-bound 
algorithm to solve the problem. In addition we provide five variants of a SA algorithm to 
obtain approximate solutions for the problem. The computational results show that with 
the help of the proposed initial SA-derived solutions, the branch-and-bound algorithm 
can solve instances with up to 18 jobs. Moreover, the results also show that the 
compound variant of the SA performs well in terms of both accuracy and stability. 
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