

 Int. J. Shipping and Transport Logistics, Vol. 5, No. 1, 2013 75

 Copyright © 2013 Inderscience Enterprises Ltd.

Two-agent single-machine scheduling with release
times and deadlines

Yunqiang Yin
State Key Laboratory Breeding Base of
Nuclear Resources and Environment,
East China Institute of Technology,
Nanchang, 330013, China
E-mail: yunqiangyin@gmail.com

Shuenn-Ren Cheng
Graduate Institute of Business Administration,
Cheng Shiu University, Kaohsiung County, Taiwan
No. 840, Chengcing Rd., Niaosong Dist.,
Kaohsiung City 83347, Taiwan
E-mail: tommy@csu.edu.tw

T.C.E. Cheng
Dean’s Office,
Faculty of Business,
The Hong Kong Polytechnic University,
11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong
E-mail: Edwin.Cheng@inet.polyu.edu.hk

Wen-Hung Wu
Department of Business Administration,
Kang-Ning Junior College, Taipei, Taiwan
No. 137, Lane 75, Sec. 3, Kangning Rd.,
Neihu District, Taipei City 114, Taiwan
E-mail: wu410226@knjc.edu.tw

Chin-Chia Wu*
Department of Statistics,
Feng Chia University,
No. 100, Wenhwa Rd.,
Seatwen, Taichung, Taiwan
E-mail: cchwu@fcu.edu.tw
*Corresponding author

 76 Y. Yin et al.

Abstract: Multiple-agent scheduling has attracted considerable research
attention in recent years. However, studies of multiple-agent scheduling with
release times and deadlines are few. In the presence of ready times, sometimes
it is beneficial to wait for future job arrivals in constructing a schedule. Inspired
by the importance of ready times, we study the single-machine two-agent
scheduling problem with releases times and deadlines to minimise the number
of tardy jobs of one agent under the restriction that the maximum lateness of
the jobs of the other agent cannot exceed a given value Q. Having established
that the problem is strongly NP-hard, we provide a branch-and-bound and a
simulated annealing algorithm to search for the optimal and approximate
solutions, respectively. The results of computational experiments reveal that the
SA algorithm can generate near-optimal solutions quickly.

Keywords: scheduling; two agents; simulated annealing; release times.

Reference to this paper should be made as follows: Yin, Y., Cheng, S-R.,
Cheng, T.C.E., Wu, W-H. and Wu, C-C. (2013) ‘Two-agent single-machine
scheduling with release times and deadlines’, Int. J. Shipping and Transport
Logistics, Vol. 5, No. 1, pp.75–94.

Biographical notes: Yunqiang Yin received his BS, MS, and PhD from
Shandong University of Science and Technology, Kunming University of
Science and Technology, and Beijing Normal University, China, in 2003, 2006,
and 2009, respectively. He has worked at East China Institute of Technology
since 2009. His research covers semi-group theory, ring theory, module theory
and their applications, and algebraic hyper-structure theory, fuzzy sets, rough
sets and process scheduling. He has published more than 70 papers in these
fields and written a book on fuzzy hemi-rings.

Shuenn-Ren Cheng received his BS in Statistics from Tung Hui University,
MBA from St. John University in New York, and PhD from Manuel Quezon
University. He is a Vice Professor of Cheng Shiu University, Taiwan. His areas
of research include applied statistics and finance.

T.C.E. Cheng is Dean of the Faculty of Business and Chair Professor of
Management of The Hong Kong Polytechnic University. He obtained his PhD
and ScD from the University of Cambridge, England. His research interests are
in operations management and scheduling.

Wen-Hung Wu is an Associate Professor at the Kang-Ning College of Medical
Care and Management, Taiwan. He received his PhD in Management from
Fu-Jen Catholic University, Taiwan. His present research includes management
and scheduling.

Chin-Chia Wu is a Professor in the Department of Statistics, Feng Chia
University, Taiwan. He received his Doctoral degree from the Graduate
Institute of Management, School of Management, National Taiwan University
of Science and Technology, Taiwan in 1997. His teaching and research
interests include applied statistics and operations research.

 Two-agent single-machine scheduling with release times and deadlines 77

1 Introduction

Multiple-agent scheduling has received considerable research attention since Baker and
Smith (2003) and Agnetis et al. (2004) introduced the multi-agent concept to scheduling.
For example, Cheng et al. (2006) showed that the feasibility model of single-machine
multi-agent scheduling is a strongly NP-complete in general. Agnetis et al. (2007)
determined the complexity of some single-machine multi-agent scheduling problems and
developed solution algorithms for them. Cheng et al. (2008) studied the complexity of
two models of single-machine multi-agent scheduling, namely the feasibility model and
minimality model. Agnetis et al. (2009) applied a Lagrangian dual to obtain a good bound
and solved all the considered problems in strongly polynomial time. Leung et al. (2010)
generalised the results for some two-agent problems and solved one open problem
involving identical parallel machines. For more results on multi-agent scheduling, the
reader may refer to Yuan et al. (2005), Ng et al. (2006), Wan et al. (2010), Cheng et al.
(2011a, 2011b), Liu et al. (2010, 2011), Mor and Mosheiov (2010, 2011), Nong et al.
(2011), Li and Hsu (2012), and Yin et al. (2012), among others.

In the scheduling literature, studies involving due date-based objective functions, e.g.,
number of tardy jobs, and ready times are relatively limited. French (1982) points out that
in some real-life applications, the penalty incurred by a late job does not depend on how
late it is as a job that finishes a minute late might just as well be a century late. For
instance, if an aircraft is scheduled to land at a time after which it will have exhausted its
fuel, then the results are just as catastrophic whatever the scheduled landing time. In such
cases, a reasonable objective would be to minimise the number of tardy jobs. On the
other hand, generally each job has a different priority/weight, due date, and ready time. In
the presence of ready times, sometimes it is beneficial to wait for future job arrivals in
constructing a schedule. Despite multi-agent scheduling has become a popular research
topic, study of multiple-agent scheduling with release times is relatively limited,
especially involving the objective of minimising the number of tardy jobs. Inspired by
these observations, we consider the two-agent single-machine scheduling problem with
release times to minimise the number of tardy jobs of one agent with the restriction that
the maximum lateness of the jobs of the other agent cannot exceed a given value.

An application of the problem arises in the shipping industry (Lun et al., 2011;
Zhang et al., 2011). Ships from different shipping companies call at a port, which needs
to determine the order in which it will serve the ships that arrive over time. In this
context, the port is the single machine and the arriving ships are the jobs with ready
times. Assume that the ships belong to two major shipping firms, which constitute the
two agents. From the perspective of the port, it (the machine) wishes to find a schedule to
serve (process) the ships of one of the two shipping firms (the jobs of the two agents)
such that the number of tardy ships of one shipping firm is minimised, subject to the
maximum lateness of the ships of the other shipping firm cannot exceed a given limit.

The rest of this paper is organised as follows: in Section 2, we introduce and
formulate the problem under consideration. In Section 3, we show that the problem is
strongly NP-hard while in Section 4, we show that two special cases of the problem are
polynomially solvable. In Section 5, we present some dominance properties and a lower
bound on the optimal solution, and exploit them to develop a branch-and-bound
algorithm to solve the problem. In Section 6, we provide five variants of a simulated
annealing (SA) algorithm to obtain approximate solutions for the problem. In Section 7,

 78 Y. Yin et al.

we report the results of extensive computational experiments conducted to assess the
performance of all the proposed algorithms. We conclude the paper in the last section.

2 Model formulation

We introduce the scheduling problem considered in this paper as follows: Consider
two competing agents, called agents A and B, respectively. Each of them has a set of
non-preemptive jobs to be processed on a single machine. Jobs arrive dynamically and
thus have unequal release times. Agent A has to execute the job set 1{ ,A AJ J=

2 , , },
A

A A
nJ J… whereas agent B has to execute the job set 1 2{ , , , }

B
B B B B

nJ J J J= … Let
X ∈ {A, B}. The jobs of agent X are called X-jobs. The processing time, due date, and
release time of job X

jJ in the set JX are positive integers , , and ,X X X
j j jp d r respectively,

for all j ∈ {1, 2,…,nx}. Let S denote a feasible schedule of the nA + nB jobs, i.e., a feasible
assignment of starting times to the jobs of both agents. The completion time of job X

jJ is

denoted as ()X
jC S and the lateness of job X

jJ is given by () () .X X X
j j jL S C S d= − We

write X
jC and X

jL for ()X
jC S and ()X

jL S respectively, whenever this does not cause
confusion. We consider the scheduling problem to minimise the number of tardy
jobs of agent A, subject to the maximum lateness of the jobs of agent B does not exceed
a given value Q. Using the three-field notation scheme α | β | γA: γB introduced by
Agnetis et al. (2004), we denote the problem by max1 : ,A B

j jr U L∑ where A
jU denotes

whether or not job A
jJ is tardy with 1A

jU = if A A
j jC d> and 0A

jU = otherwise, and

max max{ | }.B B B B
j jL L J J= ∈

3 NP-hardness of ∑ max1 :A B
j jr U L

In this section, we prove that problem max1 :A B
j jr U L∑ is strongly NP-hard by a

reduction from 3-PARTITION.

3-PARTITION: Given a set of 3n positive integers {a1, a2,…,a3n} and a positive integer b

such that ,
4 2j
b ba< < j = 1, 2,…,3n,

3

1
,

n
ii

a nb
=

=∑ are there n pairwise disjoint

three-element subsets Si such that
i

jj S
a b

∈
=∑ for i = 1, 2,…,n?

Theorem 1: Problem max1 :A B
j jr U L∑ is strongly NP-hard.

Proof: We reduce 3-PARTITION to problem 1 max 21 , .A B
j jr U Q L Q≤ ≤∑ Given an

instance of 3-PARTITION, we construct an instance of problem 11 ,A
j jr U Q≤∑

max 2
BL Q≤ as follows:

 Two-agent single-machine scheduling with release times and deadlines 79

2 , 1, 2, ,3A
jjp a j n= = …

(2 1), 1, 2, ,3
3

A
j

jd b j n⎡ ⎤= + =⎢ ⎥⎢ ⎥
…

0, 1, 2, ,3A
jr j n= = …

1, 1, 2, ,B
jp j n= = …

(2 1), 1, 2, ,B
jd j b j n= + = …

(2 1) 1, 1, 2, ,B
jr j b j n= + − = …

1 2 0.Q Q= =

It is easy to see that there is a solution to the 3-PARTITION instance if and only if there
is a feasible schedule for the constructed instance of the scheduling problem.

4 Two polynomially solvable cases of ∑ max1 :A B
j jr U L

Since problem max1 :A B
j jr U L∑ is strongly NP-hard, it is of interest to identify some of

its solvable special cases with a view to locating the exact boundary between the ‘easy’
and ‘hard’ problems. First, we consider the case where all the A-jobs have equal due
dates, i.e., 0A

jr = for all j = 1, 2,…,nA, denoted as max1 0 : : ,A B A B
j j jr r U L= ∑ and show

that this case can be solved in O(nAlognA + nBlognB) time by employing the idea of
Agnetis et al. (2004) for solving problem max1 : .A B

jU L∑

For each B-job ,B
jJ define a deadline B

jD such that B B
j jC d Q− ≤ for B B

j jC D≤ and
B B
j jC d Q− > for ,B B

j jC D> i.e., .B B
j jD d Q− = Re-arrange the B-jobs in non-decreasing

order of .B
jD Next, define the latest start time B

jLS of job B
jJ as the maximum value of

the starting time of B
jJ that permits a feasible schedule such that B B

j jC D≤ for all

.B B
jJ J∈ Starting from the last B-job ,

B
B
nJ set .B B B

B B
n n nLS D p= − Now, we consider the

following cases.

• Case 1: 1.B B
B

n nLS D −> Then set 1 1 1.B B B
B B

n n nLS D p− − −= −

• Case 2: If there is only one job 1B
B
nJ − such that 1,B B

B
n nLS D −≤ then set

1 1.B B B
B

n n nLS LS p− −= −

• Case 3: If there are more than one B-job whose deadlines are larger than BnLS and
assume that k is the smallest index such that ,B

B
n kLS D≤ then order the jobs in

1{ , , }
B

B B
k nJ J −… in non-decreasing order of B

jr and let 1
B

j j jLS LS p+= − for all
1, , .Bj n k= − …

 80 Y. Yin et al.

Continue backwards in this way until we obtain LS1. Clearly if all the jobs B
jJ start after

time LSj or ,B
jjr LS> then the generated sequence is feasible.

Now combining the idea developed by Agnetis et al. (2004) to construct a
polynomial-time algorithm for solving max1 : ,A B

jU L∑ we obtain the following result.

Theorem 2: Problem max1 0, :A B A B
j j jr r U L= ∑ can be solved in O(nAlognA + nBlognB)

time.

Proof: The proof is similar to that of Theorem 6.3 in Agnetis et al. (2004).

We now consider another special case where the processing times of all the
jobs are equal, i.e., X

jp p= for all j = 1, 2,…,nx, where X ∈ {A, B}, denoted as

max1 , : ,X A B
j j jr p p U L= ∑ and show that this case can be solved in O((nA + nB)7) time.

Theorem 3: Problem max1 , :X A B
j j jr p p U L= ∑ can be solved in O((nA + nB)7) time.

Proof: For each B-job ,B
jJ compute its deadline ,B

jD which can viewed as the modified

due date of job .B
jJ Assign to each A-job A

jJ a weight 1A
jw = and to each B-job

B
jJ a weight 1.B

Ajw n= + Now apply Baptiste’s (1999) algorithm to solve problem

1 ,
X X
j

X X
j j j j

J J

r p p w U
∈

= ∑ for the whole job set JA ∪ JB. Since the weights of the B-jobs

are so large, they are all on time in the schedule constructed by the algorithm. The
running time of Baptiste’s (1999) algorithm is O(n7), where n is the number of jobs.
Thus, problem 1 ,

X X
j

X X
j j j j

J J

r p p w U
∈

= ∑ can be solved in O((nA + nB)7) time, as required.

5 Branch-and-bound algorithm

While no efficient algorithm is likely to exist to solve an NP-hard scheduling problem in
theory, it is still necessary to solve such a problem or find near-optimal solutions in a fast
and effective manner in practice (see Flavia Monaco and Sammarra, 2011). In this
section, we provide a branch-and-bound and a SA algorithm to search for the optimal and
approximately solutions for problem max1 : .A B

j jr U L∑ In order to speed up the search

process in the branch-and-bound algorithm, we derive some dominance properties of the
optimal solution in the following.

5.1 Dominance properties

Assume that schedule S has two adjacent jobs X
iJ and Y

jJ with X
iJ immediately

preceding ,Y
jJ where X, Y ∈ {A, B}. Create from S a new schedule S′ by swapping the

 Two-agent single-machine scheduling with release times and deadlines 81

jobs X
iJ and Y

jJ and leaving the other jobs unchanged in schedule S. In addition, assume

that the starting time to process X
iJ in S is t. We have the following results.

Lemma 1: If , , max{ , } max{ , }, max{max{ , } , }X Y A A A A A A A
i j j i j i i jJ J J r t r t d r t p r∈ ≥ ≥ +

A
jp+ and max{max{ , } , } max{ , } ,A A A A A A A

j j i i i i ir t p r p d r t p+ + > ≥ + then S dominates S′.

Proof: The completion times of the jobs A
iJ and A

jJ in S and S′ are, respectively,

{ }
{ }{ }

{ }

() max ,

() max max , ,

(') max ,

A A A
i i i

A A A A A
j i i j j

A A A
j j j

C S r t p

C S r t p r p

C S r t p

= +

= + +

= +

and

{ }{ }() max max , , .A A A A A
i j j i iC S r t p r p′ = + +

It is easy to see that () ()A A
i iC S C S′ > and () ().A A

j jC S C S ′≥ Moreover, it follows from

{ }{ }max max , ,A A A A A
j i i j jd r t p r p≥ + +

and

{ }{ } { }max max , , max ,A A A A A A A
j j i i i i ir t p r p d r t p+ + > ≥ +

that () () 1 0 () (),A A A A
j i i jU S U S U S U S′ ′+ = > = + and from max{ , } max{ , }A A

j ir t r t≥ that

() ().A A
j iC S C S ′≤ The result follows.

Lemma 2: If , ,X Y A
i jJ J J∈ max{ , } max{ , },A A

j ir t r t≥ max{ , }A A A
j j jr t p d+ > and

max{max{ , } , }A A A
j j ir t p r+ then S dominates S′.

Proof: Analogous to the proof of Lemma 1, if the given conditions hold, we have
() () 2 1 () ()A A A A

j i i jU S U S U S U S′ ′+ = > = + and () ('),A A
j iC S C S≤ as required.

We can easily establish the following results in the same way as we proved Lemmas 1
and 2.

Lemma 3: If , ,X Y A
i jJ J J∈ max{ , } ,A A A

j i ir r t p≥ + and max{ , } ,A A A
i i id r t p≥ + then S

dominates S′.

Lemma 4: If , ,X Y B
i jJ J J∈ max{ , } max{max{ , } , }B B B B B B B

i i i j j i ir t p d Q r t p r p+ − ≤ < + +

,B
id− and max{max{ , } , } ,B B B B B

i i j j jr t p r p d Q+ + − ≤ then S dominates S′.

Lemma 5: If , ,X A Y B
i jJ J J J∈ ∈ max{ , } max{ , },B A

j ir t r t≥ and max{max{ , }A
ir t

, } ,A B B B
i j j jp r p d Q+ + − ≤ then S dominates S′.

 82 Y. Yin et al.

Next, we present two lemmas to determine the feasibility of a partial sequence. Let
(π, -, -) be a sequence of the jobs, where π is the scheduled part with k jobs. Moreover, let
US be the unscheduled job set and C[*] the completion time of the last job in π.

Lemma 6: If there is a B-job B
jJ in US such that []max{ , } ,B B B

k j j jC r p d Q+ − > then any
sequence (π, π′) is not a feasible solution, where π′ is a sequence of the job set US.

Lemma 7: If all the unscheduled jobs belong to JA and there exists an A-job JA such that
[]max{ , }A A A
k j j kC r p r+ ≤ for all the jobs \{ },A A

jkJ US J∈ then job A
jJ may be assigned

to (k + 1)th position.

Now let A(t) be the set of available unscheduled jobs at time t, i.e., () { X
jA t J= ∈

| },X
jUS t r≥ and B(t) the set of unavailable and unscheduled jobs at time t, i.e.,

() { | }.X X
j jB t J US t r= ∈ <

Lemma 8: If ()()
min { }YX kj

X Y
j J B t kJ A t

p t r∈∈
+ ≤∑ or B(t) = ∅, and A(t) ⊆ JA, then there is

an optimal schedule such that the early A-jobs in A(t) are scheduled in the earliest due
date (EDD) order, and the tardy A-jobs in A(t) are scheduled in any order after the
completion of all the processed jobs.

Proof: The first part can be proved by the insertion argument and the second part can be
easily observed.

5.2 A lower bound for max1 :A B
j jr U L∑

The efficiency of a branch-and-bound algorithm largely depends on the effectiveness of
lower bounds for curtailing the partial sequences. In this subsection, we propose a lower
bound. Let AS be a partial sequence in which the order of the first k jobs is determined
and US be the unscheduled part with n1 A-jobs and n2 B-jobs, where n1 + n2 = nA + nB – k.
We develop a optimal solution for max1 0, : ,A B A B

j j jr r U L= ∑ which is evidently a lower

bound for max1 :A B
j jr U L∑ in the following.

Algorithm 1:

Step 1 Compute the latest start time B
jLS of job B

jJ in US and enumerate the A-jobs in

US such that
1(1) (2) () .A A A

nd d d≤ ≤ ≤"

Step 2 Foe each B-job B
jJ in US, let it start processing at time .B

jLS

Step 3 Define block i as the ith set of contiguously processed B-jobs. Let there be
2n n≤β blocks and let the starting time and finishing time of each block i be s(i)

and f(i), respectively.

Step 4 For each job A
jJ in US, if A

jd falls outside any reserved interval,

subtract from A
jd the total length of all the blocks preceding ,A

id i.e.,

 Two-agent single-machine scheduling with release times and deadlines 83

()

(() ()).
A
j

A A
j j

f i d

d f i s i
≤

Δ = − −∑ If A
jd falls within block i, do the same, but

instead of A
jd use the left extreme of block k, i.e., let

()

() (() ())
A
j

A
j

f i d

s k f i s i
≤

Δ = − −∑

Step 5 Solve problem 1 A A
j jUΔ ∑ using Moore’s algorithm as follows:

Step 5.1 Order the A-jobs in US in non-decreasing order of A
jΔ (i.e., in the

EDD order).

Step 5.2 If no job in the sequence is late, stop. The schedule is optimal.

Step 5.3 Find the first late job in the schedule and denote it by .A
uJ

Step 5.4 Find a job A
vJ with

1
max .A A

v i
i u

p p
≤ ≤

= Remove job A
vJ from the

schedule and process it after the completion of all the processed jobs.
Go to Step 5.2.

Let m be the optimal solution value of problem 1 .A A
j jUΔ ∑ Then a lower bound for the

partial sequence PS is []
1

,
k

X
Xj

i

LB U I m
=

= +∑ where X ∈ {A, B} and IX = 1 if X = A, and 0

otherwise.

5.3 Branch-and-bound algorithm

We adopt the depth-first search and assign jobs in a forward manner starting with the first
position. In the searching tree, we choose a branch and systematically work down the tree
until we either eliminate it by virtue of the dominance properties or the lower bound, or
we reach its final node, in which case the resulting sequence either replaces the initial
incumbent solution or is eliminated. The branch-and-bound algorithm runs as follows:

Step 1 Initialisation: Use a SA heuristic (to be discussed below) to obtain an initial
incumbent solution.

Step 2 Branching: Apply the depth-first search in the branching procedure until all the
nodes are explored or eliminated.

Step 3 Eliminating: Apply Lemmas 1–6, to eliminate the dominated partial
sequences. Use Lemma 7 to determine the job in the (k + 1)th position. For the
non-dominated nodes, use Lemma 8 to determine the order of the unscheduled
jobs.

Step 4 Bounding: Calculate a lower bound on the number of tardy jobs for each
unfathomed partial sequence or the number of tardy jobs of the completed
sequence for agent A. If the lower bound for an unfathomed partial sequence is
larger than the initial incumbent solution, eliminate that node and all the nodes
beyond it in the branch. If the value of the completed sequence is less than the

 84 Y. Yin et al.

incumbent solution, adopt the completed sequence as the new incumbent
solution. Otherwise, eliminate it.

Step 5 Stopping rule: Repeat Steps 2 to 4 until no more nodes to explore.

5.4 SA algorithm

SA is a well-known meta-heuristic method widely applied to solve combinatorial
optimisation problems (Kirkpatrick et al., 1983; Ekren and Ekren, 2010; Lin et al., 2011;
Song et al., 2012; Stahlbock and Voβ, 2010; Li and Pang, 2011). Adopting hill climbing
moves governed by a control parameter, SA has the advantage of avoiding getting
trapped in a local optimum.

We present an SA algorithm to treat problem max1 :A B
j jr U L∑ as follows: the SA

algorithm commences with four initial solutions. In order to guarantee that the initial
solution is feasible, we first arrange the jobs of agent B in the EDD order, followed by
arranging the jobs of agent A in four ways, giving rise to four simple variants of the SA:
SA1, in which the A-jobs are in the smallest processing time (SPT) order; SA2, in which
the A-jobs are in the smallest ready time (SRT) order; SA3, in which the A-jobs are in the
EDD order; and SA4, in which the A-jobs are in the weighted smallest processing time
(WSPT) order. Moreover, in order to improve solution quality, we define a compound SA
variant as SA5 = min{SA1, SA2, SA3, SA4}. For neighbourhood generation, we employ the
pairwise interchange (PI) generation method to generate neighbourhood solutions. For
the acceptance probability, we adopt the following acceptance probability

()() exp ,TP accept δ U= − ×Δ

where δ is a control parameter, which changes in the kth iteration according to the method
proposed by Ben-Arieh and Maimon (1992) as follows:

,kδ =
β

where β is an experimental constant and ΔUT is change in the objective value. After
preliminary trials, we set β = 2. As for the stopping rule, all the SA variants are stopped
after 100n iterations, where n is the number of jobs because, based on preliminary trials,
the schedule is quite stable at this stage.

6 Computational results

We conducted extensive computational simulation tests to assess the performance of the
branch-and-bound and SA algorithms. We coded all the algorithms in Fortran and ran
them on a PC with a Intel(R) Core(TM)2 Quad CPU at 2.66 GHz and 4 GB RAM under
XP Windows. Following Reeves (1995), we generated the processing times from a
uniform distribution over the integers between 1 and 100, and the release times from a
uniform distribution over the integers (0, 20nλ), where n is the number of jobs and λ is a
control variable. We generated five different sets of problem instances by giving λ the
values 1/n, 0.25, 0.5, 0.75, and 1.0. Moreover, following Fisher (1971), we generated the
job due dates from a uniform distribution over the range of integers T(1 – τ – R / 2) to

 Two-agent single-machine scheduling with release times and deadlines 85

T(1 – τ + R / 2), where τ is the tardiness factor, R is the due date range, and T is the sum

of the job processing times, i.e.,
1

.
n

i
i

T p
=

=∑ The combination (τ, R) took the values

(0.25, 0.25), (0.25, 0.5), (0.25, 0.75), (0.5, 0.25), (0.5, 0.5), and (0.5, 0.75). We fixed the
proportion of A-jobs at pro = 0.5 in the tests.

For the branch-and-bound algorithm, we recorded the average and the maximum
numbers of nodes and CPU times (in seconds). For the five SA variants, we define IR1,
IR2, and IR3 as follows:

(){ }
(){ }

*
1

*
2

the number of () 1 ,

the number of 1 () 3 ,
T i T

T i T

IR U SA U BB

IR U SA U BB

= − ≤

= < − ≤

and

(){ }*
3 the number of () 4 , 1, 2, ,5T i TIR U SA U BB i= − ≥ = …

where UT(SAi) is the number of tardy jobs obtained by SAi and * ()TU BB is the number of
tardy jobs of the optimal schedule produced by the branch-and-bound algorithm. We did
not record the computational times of the SA variants because they are all fast in solving
the problems within a second.

We divided the experiments into two parts. In the first part, we fixed the number of
jobs n = 14 and 18. In total, we tested 30 experimental cases in the first part and
randomly generated 100 replications for each case. So we tested a total of 3,000 problem
instances. For the branch-and-bound algorithm, we terminated its execution and
proceeded to run the next set of data if the number of nodes exceeded 108. We recorded
the instances with number of nodes fewer than 108 as solvable instances (SI). Tables 1
and 2 summarise the performance of the branch-and-bound and SA algorithms.

For the performance of the branch-and-bound algorithm, Tables 1 and 2 show that the
number of nodes generated by it for instances with smaller values of λ are larger than
those for instances with larger values of λ when other parameters are fixed. This trend
becomes more significant when λ approaches 1. When λ and τ are fixed, the instances
with a bigger value of R are easier to solve than those with a smaller value of R. On the
other hand, when λ and R are fixed, the instances with a smaller value of τ are more
difficult to solve than those with a large value of τ.

As for the performance of the four simple SA variants, it can be seen that the ratios of
IR1, IR2, and IR3 to the total number of solvable instances are 61%, 34%, and 5% for SA1;
34%, 48%, and 18% for SA2; 33%, 45%, and 22% for SA3; and 33%, 45%, and 22% for
SA4, respectively. These results indicate that SA1 performs better than its counterparts.
Moreover, as shown in Table 2, 434 out of the 3,000 evaluations of solvable instances,
the performance of SA1 is also slightly better than that of the other three simple SA
variants. The performance of all the SA variants is not affected by λ, τ, or R. Since all the
SA algorithms are fast in solving the problem within a second and the objective function
belongs to the nominal scale, which easily causes a bigger gap between an optimal
solution and a near-optimal solution, we take SA5 = min{SAi, i = 1, 2,…,4} as a
compound SA variant. Tables 1 and 2 show that the ratio of the sum of IR1 and IR2 to the
total number of solvable instances for SA5 increases up to 96% and 75%, respectively.

 86 Y. Yin et al.

Table 1 Performance of the branch-and-bound and SA algorithms with n = 14

Br
an

ch
 a

nd
 b

ou
nd

 a
lg

or
ith

m

N
od

es

C
pu

 ti
m

e
SA

1
SA

2
SA

3
SA

4
SA

5
λ

τ
R

M
ea

n
M

ax

M
ea

n
M

ax

IS

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

1/
n

0.
25

0.

25

15
,7

46
,6

02

45
,8

74
,7

19

10
8.

91

30
6.

27

10
0

10

0
0

0
78

22

0

78

22

0

78

22

0

10
0

0
0

0.
5

13
,2

92
,1

10

57
,7

25
,5

00

93
.5

7
38

9.
33

10

0

76

24

0
54

30

16

54

30

16

54

30

16

83

17

0

0.
75

1,

33
6,

80
9

16
,8

59
,0

39

9.
99

12

2.
59

10

0

39

56

5
47

27

26

47

27

26

47

27

26

56

39

5

0.

5
0.

25

4,
98

8,
14

0
15

,7
17

,8
23

34

.1
1

98
.5

2
10

0

96

4
0

48

52

0
48

52

0

48

52

0

96

4

0

0.

5
2,

26
2,

21
4

17
,9

04
,0

84

17
.4

4
13

1.
20

10

0

65

35

0
7

87

6
7

87

6

7
87

6

65

35

0

0.
75

1,

48
2,

72
3

13
,9

38
,3

65

11
.7

4
11

2.
86

10

0

35

63

2
4

47

49

4
47

49

4
47

49

36

62

2
0.

25

0.
25

0.

25

17
,0

74
,7

64

52
,3

84
,9

35

11
7.

84

31
1.

69

10
0

98

2

0
83

17

0

83

17

0

83

17

0

10
0

0
0

0.
5

12
,2

52
,9

25

52
,8

90
,2

51

85
.4

2
28

8.
36

10

0

76

24

0
51

34

15

51

34

15

51

34

15

80

20

0

0.
75

1,

51
6,

40
6

16
,8

11
,1

31

11
.2

7
11

3.
56

10

0

52

43

5
45

37

18

45

37

18

45

37

18

61

34

5

0.

5
0.

25

5,
56

4,
83

8
24

,5
51

,8
45

36

.6
6

12
0.

34

10
0

96

4

0
58

42

0

58

42

0

58

42

0

96

4
0

0.
5

2,
15

2,
23

0
13

,0
36

,7
59

16

.0
1

83
.7

5
10

0

69

31

0
8

83

9
8

83

9

8
83

9

69

31

0

0.
75

1,

17
4,

61
8

10
,2

39
,5

91

9.
50

83

.8
1

10
0

41

56

3

3
56

41

3

56

41

3

56

41

41

56

3

0.
5

0.
25

0.

25

18
,0

01
,0

16

41
,3

03
,0

07

12
1.

96

26
6.

98

10
0

10

0
0

0
85

15

0

85

15

0

85

15

0

10
0

0
0

0.
5

13
,0

83
,4

52

41
,1

81
,1

68

92
.2

2
27

7.
50

10

0

76

24

0
50

40

10

50

40

10

50

40

10

80

20

0

0.
75

91

5,
67

4
12

,0
03

,7
37

6.

74

81
.6

1
10

0

53

43

4
47

29

24

47

29

24

47

29

24

65

31

4

 Two-agent single-machine scheduling with release times and deadlines 87

Table 1 Performance of the branch-and-bound and SA algorithms with n = 14 (continued)

Br
an

ch
 a

nd
 b

ou
nd

 a
lg

or
ith

m

N
od

es

C
pu

 ti
m

e
SA

1
SA

2
SA

3
SA

4
SA

5
λ

τ
R

M
ea

n
M

ax

M
ea

n
M

ax

IS

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

0.
5

0.
5

0.
25

5,

38
4,

73
0

21
,5

88
,6

43

36
.0

9
11

9.
23

10

0

95

5
0

44

56

0
44

56

0

44

56

0

95

5

0

0.

5
1,

96
3,

96
0

14
,6

07
,1

11

15
.0

8
83

.2
2

10
0

60

40

0

8
85

7

8
85

7

8

85

7

60

40

0

0.

75

1,
26

0,
47

2
16

,3
11

,9
63

10

.1
2

11
3.

98

10
0

35

61

4

3
41

56

3

41

56

3

41

56

35

61

4

0.
75

0.

25

0.
25

17

,2
07

,3
49

39

,5
76

,0
63

11

8.
66

26

4.
59

10

0

10
0

0
0

77

23

0
77

23

0

77

23

0

10

0
0

0

0.

5
10

,7
20

,4
54

37

,2
25

,5
46

76

.3
1

24
8.

28

10
0

73

26

1

56

27

17

56

27

17

56

27

17

77

22

1

0.

75

2,
25

4,
79

2
30

,1
52

,4
71

16

.2
7

20
6.

20

10
0

41

55

4

37

37

26

37

37

26

37

37

26

53

43

4

0.
5

0.
25

5,

27
1,

56
0

21
,3

57
,7

99

36
.3

4
11

6.
75

10

0

98

2
0

42

58

0
42

58

0

42

58

0

98

2

0

0.

5
1,

92
6,

28
4

10
,3

86
,9

61

15
.3

1
76

.3
9

10
0

59

40

1

4
89

7

4
89

7

4

89

7

59

40

1

0.

75

1,
12

9,
34

1
10

,9
44

,7
81

9.

22

85
.5

8
10

0

38

58

4
6

45

49

6
45

49

6
45

49

38

58

4
1

0.
25

0.

25

6,
08

1,
43

3
47

,3
48

,2
16

54

.4
0

38
6.

11

10
0

38

52

10

11

63

26

6

31

63

6

31

63

39

51

10

0.

5
3,

97
6,

94
9

36
,0

23
,9

47

34
.4

7
27

9.
16

10

0

11

52

37

5
42

53

5

8
87

5
8

87

13

56

31

0.

75

1,
07

5,
97

4
7,

53
0,

73
9

9.
36

72

.4
5

10
0

6

54

40

4
42

54

2

11

87

2

11

87

10

57

33

0.
5

0.
25

1,

20
6,

93
6

5,
81

3,
24

1
8.

69

49
.8

1
10

0

53

46

1
34

65

1

31

68

1

31

68

1

53

46

1

0.

5
52

6,
31

6
5,

40
1,

50
8

4.
25

51

.1
4

10
0

25

70

5

13

76

11

6
79

15

6
79

15

26

69

5

0.

75

53
4,

14
4

3,
63

2,
07

8
4.

31

29
.8

9
10

0

22

66

12

10

64

26

3
59

38

3
59

38

22

66

12

 88 Y. Yin et al.

Table 2 Performance of the branch-and-bound and SA algorithms with n = 18

Br
an

ch
 a

nd
 b

ou
nd

 a
lg

or
ith

m

N
od

es

C
pu

 ti
m

e
SA

1
SA

2
SA

3
SA

4
SA

5
λ

τ
R

M
ea

n
M

ax

M
ea

n
M

ax

IS

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

1/
n

0.
25

0.

25

7,
03

9,
60

1
7,

03
9,

60
1

10

2.
98

10

2.
98

1

1

0
0

0

0
1

0

0
1

0

0
1

1

0
0

0.
5

3
3

0

0
1

1

0
0

1

0
0

1

0
0

1

0
0

1

0
0

0.
75

20

,6
67

,6
30

94

,9
76

,9
90

30
9.

34

1,
57

9.
55

39

17

15

7

19

11

9

19

11

9

19

11

9

24

10

5

0.
5

0.
25

14

,9
82

,5
61

14

,9
82

,5
61

19
7.

45

19
7.

45

1

1
0

0

0
1

0

0
1

0

0
1

0

1
0

0

0.

5
38

,8
46

,8
60

92

,6
73

,7
94

61
9.

21

1,
50

8.
11

12

4
8

0

0
4

8

0
4

8

0
4

8

4
8

0

0.

75

46
,4

28
,1

01

97
,8

26
,4

72

70

4.
34

1,

59
2.

36

18

1

10

7

0
1

17

0

1
17

0
1

17

1

10

7
0.

25

0.
25

0.

25

0

0.
5

0

0.
75

15

,4
18

,0
26

95

,4
55

,7
83

20
4.

45

1,
38

6.
19

31

12

19

0

23

4
4

23

4

4

23

4
4

23

8

0

0.
5

0.
25

0

0.

5
43

,3
70

,6
22

90

,5
65

,8
90

68
4.

08

1,
38

9.
31

15

3
8

4

0
3

12

0

3
12

0
3

12

3

8
4

0.
75

34

,2
11

,7
23

96

,2
13

,1
92

51
5.

82

1,
71

1.
31

30

6
18

6

0

4
26

0
4

26

0

4
26

6
18

6

0.
5

0.
25

0.

25

0

0.
5

0

0.
75

6,

03
7,

13
7

59
,4

16
,6

77

90

.4
8

87
1.

38

36

13

18

5

22

8

6

22

8
6

22

8

6

24

10

2

 Two-agent single-machine scheduling with release times and deadlines 89

Table 2 Performance of the branch-and-bound and SA algorithms with n = 18 (continued)

Br
an

ch
 a

nd
 b

ou
nd

 a
lg

or
ith

m

N
od

es

C
pu

 ti
m

e
SA

1
SA

2
SA

3
SA

4
SA

5
λ

τ
R

M
ea

n
M

ax

M
ea

n
M

ax

IS

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

IR
1

IR
2

IR
3

0.
5

0.
5

0.
25

0

0.
5

54
,3

66
,5

57

93
,3

78
,1

19

78

5.
91

1,

35
6.

44

10

5

5
0

0

9
1

0
9

1

0
9

1

5
5

0

0.

75

36
,3

80
,9

45

77
,4

95
,1

37

55

3.
77

1,

17
5.

06

30

3

23

4

0
2

28

0
2

28

0

2
28

3
23

4

0.
75

0.

25

0.
25

43

,2
56

,2
43

80

,3
72

,1
65

62
7.

63

1,
14

8.
56

2

2

0
0

0

0
2

0
0

2

0
0

2

2
0

0

0.

5

0

0.
75

19

,5
47

,7
42

88

,5
48

,4
54

29
0.

13

1,
32

7.
63

32

9
22

1

23

7

2
23

7

2

23

7
2

24

7

1

0.
5

0.
25

0

0.
5

54
,0

49
,7

21

99
,4

59
,0

69

82

0.
19

1,

57
3.

25

16

4

12

0

2
2

12

2
2

12

2

2
12

4
12

0

0.
75

31

,2
98

,3
89

95

,9
35

,9
81

47
2.

82

1,
48

1.
81

32

6
16

10

0
6

26

0
6

26

0

6
26

6
16

10

1

0.
25

0.

25

0

0.

5
79

,2
58

,7
68

97

,7
87

,5
18

1,
34

5.
41

1,

58
7.

38

4

1
1

2

0
1

3
0

0
4

0

0
4

1

1
2

0.
75

40

,5
57

,4
68

97

,5
02

,7
95

64
1.

86

1,
56

5.
88

31

0
7

24

0

2
29

0

2
29

0
2

29

0

8
23

0.
5

0.
25

35

,4
23

,4
04

93

,3
19

,3
81

52
6.

00

1,
42

6.
50

8

2

6
0

2

4
2

2
4

2

2
4

2

2
6

0

0.

5
40

,2
93

,2
82

94

,3
57

,5
46

61
0.

07

1,
41

5.
38

36

0
20

16

1
12

23

0

11

25

0

11

25

1

19

16

0.
75

43

,9
12

,1
41

93

,9
34

,9
85

66
5.

57

1,
62

7.
94

49

2
17

30

1
8

40

1
2

46

1

2
46

2
18

29

 90 Y. Yin et al.

In the second part, we tested the proposed SA variants with the number of jobs fixed at
n = 50 and 100 to further assess their performance in handling large job-sized problem
instances. As a result, we examined 30 experimental cases. For each case, we randomly
generated 100 replications. So we tested a total of 3,000 randomly generated problem
instances. For the four simple SA variants, we define IR1, IR2, and IR3 as follows:

(){ }
(){ }

**
1

**
2

the number of () 1 ,

the number of 1 () 3
T i T

T i T

IR U SA U SA

IR U SA U SA

= − ≤

= < − ≤

and

(){ }**
3 the number of () 4 , 1, 2, , 4,T i TIR U SA U SA i= − ≥ = …

where UT(SAi) is the objective value generated by SAi and **() min{ (),T T iU SA U SA=
i = 1, 2,…,4} is the smallest objective value obtained among SA1, SA2, SA3, and SA4.
Tables 3 and 4 report the results.

As shown in Table 3, the ratio of IR1 to the total number of solvable cases for SA1 is
90% or higher, whereas those of SA2, SA3, and SA4 at 30%, 26%, and 26%, respectively.
These results show that SA1 outperforms its counterparts. Table 4 shows that the SA
variants have similar performance. Moreover, the performance of the all proposed SA
variants are not affected by λ, τ, or R. In addition, there is no dominance relationship
among them. Thus, we recommend that the compound SA5 be used since it has both
accuracy and stability in solving the problem.
Table 3 Performance of the simple SA variants with n = 50

SA1 SA2 SA3 SA4 λ τ R
IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3

1/n 0.25 0.25 98 2 0 22 25 53 22 25 53 22 25 53
 0.5 57 20 23 56 10 34 56 10 34 56 10 34
 0.75 72 12 16 53 10 37 53 10 37 53 10 37
 0.5 0.25 100 0 0 8 29 63 8 29 63 8 29 63
 0.5 100 0 0 0 11 89 0 11 89 0 11 89
 0.75 100 0 0 0 6 94 0 6 94 0 6 94
0.25 0.25 0.25 98 2 0 30 33 37 30 33 37 30 33 37
 0.5 61 17 22 52 9 39 52 9 39 52 9 39
 0.75 68 20 12 58 13 29 58 13 29 58 13 29
 0.5 0.25 100 0 0 7 27 66 7 27 66 7 27 66
 0.5 100 0 0 3 13 84 3 13 84 3 13 84
 0.75 100 0 0 0 3 97 0 3 97 0 3 97
0.5 0.25 0.25 93 7 0 35 27 38 35 27 38 35 27 38
 0.5 54 12 34 60 5 35 60 5 35 60 5 35
 0.75 76 12 12 47 25 28 47 25 28 47 25 28
 0.5 0.25 100 0 0 7 27 66 7 27 66 7 27 66
 0.5 100 0 0 1 14 85 1 14 85 1 14 85
 0.75 100 0 0 0 2 98 0 2 98 0 2 98

 Two-agent single-machine scheduling with release times and deadlines 91

Table 3 Performance of the simple SA variants with n = 50 (continued)

SA1 SA2 SA3 SA4
λ τ R

IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3

0.75 0.25 0.25 97 2 1 29 32 39 29 32 39 29 32 39

 0.5 59 16 25 56 11 33 56 11 33 56 11 33

 0.75 64 17 19 54 11 35 54 11 35 54 11 35

 0.5 0.25 100 0 0 11 22 67 11 22 67 11 22 67

 0.5 100 0 0 0 12 88 0 12 88 0 12 88

 0.75 100 0 0 0 7 93 0 7 93 0 7 93

1 0.25 0.25 100 0 0 30 38 32 12 33 55 12 33 55

 0.5 100 0 0 33 42 25 7 19 74 7 19 74

 0.75 99 1 0 26 47 27 0 7 93 0 7 93

 0.5 0.25 99 1 0 83 15 2 79 18 3 79 18 3

 0.5 100 0 0 76 23 1 64 32 4 64 32 4

 0.75 99 1 0 63 33 4 29 48 23 29 48 23

Table 4 Performance of the simple SA variants with n = 100

SA1 SA2 SA3 SA4 λ τ R
IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3

1/n 0.25 0.25 99 0 1 12 9 79 12 9 79 12 9 79

 0.5 64 3 33 46 3 51 46 3 51 46 3 51

 0.75 75 11 14 43 11 46 43 11 46 43 11 46

 0.5 0.25 100 0 0 0 4 96 0 4 96 0 4 96

 0.5 100 0 0 0 0 100 0 0 100 0 0 100

 0.75 100 0 0 0 0 100 0 0 100 0 0 100

0.25 0.25 0.25 98 2 0 5 12 83 5 12 83 5 12 83

 0.5 66 4 30 42 7 51 42 7 51 42 7 51

 0.75 80 7 13 37 8 55 37 8 55 37 8 55

 0.5 0.25 100 0 0 0 5 95 0 5 95 0 5 95

 0.5 100 0 0 0 1 99 0 1 99 0 1 99

 0.75 100 0 0 0 0 100 0 0 100 0 0 100

0.5 0.25 0.25 100 0 0 3 7 90 3 7 90 3 7 90

 0.5 58 6 36 51 1 48 51 1 48 51 1 48

 0.75 74 6 20 37 8 55 37 8 55 37 8 55

 0.5 0.25 100 0 0 0 7 93 0 7 93 0 7 93

 0.5 100 0 0 0 0 100 0 0 100 0 0 100

 0.75 100 0 0 0 0 100 0 0 100 0 0 100

 92 Y. Yin et al.

Table 4 Performance of the simple SA variants with n = 100 (continued)

SA1 SA2 SA3 SA4
λ τ R

IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3 IR1 IR2 IR3

0.75 0.25 0.25 99 1 0 10 15 75 10 15 75 10 15 75

 0.5 56 3 41 50 0 50 50 0 50 50 0 50

 0.75 72 6 22 41 14 45 41 14 45 41 14 45

 0.5 0.25 100 0 0 3 3 94 3 3 94 3 3 94

 0.5 100 0 0 0 0 100 0 0 100 0 0 100

 0.75 100 0 0 0 0 100 0 0 100 0 0 100

1 0.25 0.25 100 0 0 22 23 55 10 20 70 10 20 70

 0.5 100 0 0 14 26 60 1 4 95 1 4 95

 0.75 99 1 0 18 26 56 0 0 100 0 0 100

 0.5 0.25 100 0 0 94 6 0 92 8 0 92 8 0

 0.5 99 1 0 77 22 1 66 25 9 66 25 9

 0.75 94 6 0 43 30 27 5 29 66 5 29 66

7 Conclusions

In this paper, we consider a two-agent single-machine scheduling problem with different
job release times. The objective is to find an optimal schedule that minimises the number
of the tardy jobs of one agent with the restriction that the maximum lateness of the jobs
of the other agent cannot exceed a given value. We first establish that the problem is
strongly NP-hard and then show that two special cases of the problem are solvable in
polynomial time. Following that, we present some dominance properties and a lower
bound on the optimal solution, and exploit them to develop a branch-and-bound
algorithm to solve the problem. In addition we provide five variants of a SA algorithm to
obtain approximate solutions for the problem. The computational results show that with
the help of the proposed initial SA-derived solutions, the branch-and-bound algorithm
can solve instances with up to 18 jobs. Moreover, the results also show that the
compound variant of the SA performs well in terms of both accuracy and stability.

Acknowledgements

The authors would like to thank to editor and the referees for their interest in our
work and their valuable comments for improving the paper. This paper was supported in
part by the Natural Science Foundation for Young Scholars of Jiangxi, China
(2010GQS0003); in part by the Science Foundation of Education Committee for Young
Scholars of Jiangxi, China (GJJ11143); in part by the NSC under grant number NSC
99-2221-E-035-057-MY3.

 Two-agent single-machine scheduling with release times and deadlines 93

References
Agnetis, A., Mirchandani, P.B., Pacciarelli, D. and Pacifici, A. (2004) ‘Scheduling problems with

two competing agents’, Operations Research, Vol. 52, No. 2, pp.229–242.
Agnetis, A., Pacciarelli, D. and Pacifici, A. (2007) ‘Multi-agent single machine scheduling’, Annals

of Operations Research, Vol. 150, No. 1, pp.3–15.
Agnetis, A., Pascale, G. and Pacciarelli, D. (2009) ‘A Lagrangian approach to single-machine

scheduling problems with two competing agents’, Journal of Scheduling, Vol. 12, No. 4,
pp.401–415.

Baker, K.R. and Smith, J.C. (2003) ‘A multiple criterion model for machine scheduling’, Journal of
Scheduling, Vol. 6, No. 1, pp.7–16.

Baptiste, P. (1999) ‘Polynomial time algorithms for minimizing the weighted number of late
jobs on a single machine with equal processing times’, Journal of Scheduling, Vol. 2, No. 6,
pp.245–252.

Ben-Arieh, D. and Maimon, O. (1992) ‘Annealing method for PCB assembly scheduling on two
sequential machines’, International Journal of Computer Integrated Manufacturing, Vol. 5,
No. 6, pp.361–367.

Cheng, T.C.E., Ng, C.T. and Yuan, J.J. (2006) ‘Multi-agent scheduling on a single machine to
minimize total weighted number of tardy jobs’, Theoretical Computer Science, Vol. 362,
No. 1, pp.273–281.

Cheng, T.C.E., Ng, C.T. and Yuan, J.J. (2008) ‘Multi-agent scheduling on a single machine with
max-form criteria’, European Journal of Operational Research, Vol. 188, No. 2, pp.603–609.

Cheng, T.C.E., Cheng, S.R., Wu, W.H., Hsu, P.H. and Wu, C.C. (2011a) ‘A two-agent
single-machine scheduling problem with truncated sum-of-processing-times-based learning
considerations’, Computers & Industrial Engineering, Vol. 60, No. 4, pp.534–541.

Cheng, T.C.E., Wu, W.H., Cheng, S.R. and Wu, C.C. (2011b) ‘Two-agent scheduling with
position-based deteriorating jobs and learning effects’, Applied Mathematics and
Computation, Vol. 217, No. 21, pp.8804–8824.

Ekren, O. and Ekren, B.Y. (2010) ‘Size optimization of a PV/wind hybrid energy conversion
system with battery storage using simulated annealing’, Applied Energy, Vol. 87, No. 2,
pp.592–598.

Fisher, M.L. (1971) ‘A dual algorithm for the one-machine scheduling problem’, Mathematical
Programming, Vol. 11, No. 1, pp.229–251.

Flavia Monaco, M. and Sammarra, M. (2011) ‘Quay crane scheduling with time windows, one-way
and spatial constraints’, International Journal of Shipping and Transport Logistics, Vol. 3,
No. 4, pp.454–474.

French, S. (1982) Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop,
Ellis Horwood Limited, Chichester, West Sussex and New York.

Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983) ‘Optimization by simulated annealing’, Science,
Vol. 220, No. 4598, pp.671–680.

Leung, J.Y.T., Pinedo, M. and Wan, G. (2010) ‘Competitive two-agent scheduling and its
applications’, Operations Research, Vol. 58, No. 2, pp.458–469.

Li, C-L. and Pang, K-W. (2011) ‘An integrated model for ship routing and berth allocation’,
International Journal of Shipping and Transport Logistics, Vol. 3, No. 3, pp.245–260.

Li, D. and Hsu, P. (2012) ‘Solving a two-agent single-machine scheduling problem considering
learning effect’, Computers & Operations Research, Vol. 39, No. 7, pp.1644–1651.

Lin, C.C., Lee, Y.Y. and Ye, H.C. (2011) ‘Mental map preserving graph drawing using simulated
annealing’, Information Sciences, Vol. 181, No. 19, pp.4253–4272.

Liu, P., Tang, L.X. and Zhou, X.Y. (2010) ‘Two-agent group scheduling with deteriorating jobs on
a single machine’, International Journal of Advanced Manufacturing Technology, Vol. 47,
Nos. 5–8, pp.657–664.

 94 Y. Yin et al.

Liu, P., Yi, N. and Zhou, X.Y. (2011) ‘Two-agent single-machine scheduling problems
under increasing linear deterioration’, Applied Mathematical Modelling, Vol. 35, No. 5,
pp.2290–2296.

Lun, Y.H.V., Lai, K.H., Ng, C.T., Wong, C.W.Y. and Cheng, T.C.E. (2011) ‘Research in shipping
and transport logistics’, International Journal of Shipping and Transport Logistics, Vol. 3,
No. 1, pp.1–5.

Mor, B. and Mosheiov, G. (2010) ‘Scheduling problems with two competing agents to minimize
minmax and minsum earliness measures’, European Journal of Operational Research,
Vol. 206, No. 3, pp.540–546.

Mor, B. and Mosheiov, G. (2011) ‘Single machine batch scheduling with two competing agents to
minimize total flowtime’, European Journal of Operational Research, Vol. 215, No. 3,
pp.524–531.

Ng, C.T., Cheng, T.C.E. and Yuan, J.J. (2006) ‘A note on the complexity of the
two-agent scheduling on a single machine’, Journal of Combinatorial Optimization, Vol. 12,
No. 4, pp.387–394.

Nong, Q.Q., Cheng, T.C.E. and Ng, C.T. (2011) ‘Two-agent scheduling to minimize the total cost’,
European Journal of Operational Research, Vol. 215, No. 4, pp.39–44.

Reeves, C. (1995) ‘Heuristics for scheduling a single machine subject to unequal job release times’,
European Journal of Operational Research, Vol. 80, No. 2, pp.397–403.

Song, S-Z., Ren, J-J. and Fan, J-X. (2012) ‘Improved simulated annealing algorithm used for
job shop scheduling problems’, Advances in Intelligent and Soft Computing, Vol. 139, No. 3,
pp.17–25.

Stahlbock, R. and Voβ, S. (2010) ‘Efficiency considerations for sequencing and scheduling of
double-rail-mounted gantry cranes at maritime container terminals’, International Journal of
Shipping and Transport Logistics, Vol. 2, No. 1, pp.95–123.

Wan, G., Vakati, R.S., Leung, J.Y.T. and Pinedo, M. (2010) ‘Scheduling two agents with
controllable processing times’, European Journal of Operational Research, Vol. 205, No. 3,
pp.528–539.

Yin, Y., Cheng, X.R. and Wu, C.C. (2012) ‘Scheduling problems with two agents and a linear
non-increasing deterioration to minimize earliness penalties’, Information Sciences, Vol. 189,
No. 8, pp.282–292.

Yuan, J.J., Shang, W.P. and Feng, Q. (2005) ‘A note on the scheduling with two families of jobs’,
Journal of Scheduling, Vol. 8, No. 6, pp.537–542.

Zhang, F., Ng, C.T., Tang, G., Cheng, T.C.E. and Lun, Y.H.V. (2011) ‘Inverse scheduling:
applications in shipping’, International Journal of Shipping and Transport Logistics, Vol. 3,
No. 3, pp.312–322.

