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Abstract: Support vector machines (SVMs) are hyperplane classifiers  
defined in a kernel induced feature space. The high computational and space 
requirements for solving the conventional SVM problem prohibit its use in 
applications involving large datasets. Core vector machine (CVM) is a suitable 
technique for scaling an SVM for large-scale pattern classification problems. 
But in applications where the datasets are unbalanced, the performance of 
CVM is observed to be poor both in terms of generalisation and training time. 
In such scenarios, the CVM performance highly depends on the orderings of 
data points belonging to the two classes within the dataset. In this paper, we 
propose two training schemes which improve the performance of CVM 
irrespective of the orderings of patterns belonging to different classes within 
the dataset. These methods employ a selective sampling-based training of CVM 
using novel kernel-based clustering algorithms. Empirical studies made on 
several synthetic and real world datasets show that the proposed strategies 
improve the performance of CVM on large datasets. 
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1 Introduction 

Kernel-based methods are considered as effective techniques by researchers in machine 
learning and exploratory data analysis. In these methods, kernel functions are used to 
compute the inner product of data vectors in an implicitly defined kernel induced feature 
space. By choosing a suitable kernel function any machine learning algorithm that 
requires only the inner product between data vectors can be transformed into a  
kernel-based method and this technique is known as kernel trick. One of the most 
celebrated kernel-based methods is support vector machine (SVM) for classification. 
SVMs are hyperplane classifiers defined in a kernel induced feature space. They achieve 
optimal separation of patterns by margin maximisation. Even though several novel 
classification algorithms (James and Dimitrijev, 2012; Gou et al., 2012) have been 
proposed in the recent past, SVM-based methods still enjoy popularity among 
practitioners and researchers due to the firm theoretical foundation in statistical learning 
theory (Vapnik, 1998), good generalisation performance in many domains, the geometric 
interpretability and ease of application in different fields. 

The classification problems involved in data mining applications typically deal with 
massive collection of data and hence the main issue in using SVM here is that of 
scalability. The SVM problem is usually formulated as a quadratic programming (QP) 
problem. The existing solution strategies for this problem have an associated time and 
space complexity that is (at least) quadratic in the number of data points. This makes the 
SVM very expensive to use even on datasets having a few thousands of elements. 

Several attempts are made to reduce the time and space complexities of SVM to make 
the training feasible for large datasets. Some of the major directions explored in the 
literature are 

a chunking (Vapnik, 1998; Platt, 1999) 

b incremental SVM formulations (Diehl and Cauwenberghs, 2003; Tax and Laskov, 
2003; Fung and Mangasarian, 2002; Cauwenberghs and Poggio, 2001) 

c low rank approximations of kernel matrix (Smola and Scholkopf, 2000;  
Williams and Seeger, 2001) 

d replacing the QP problem with a simpler optimisation problem (Mangasarian and 
Musicant, 2001a, 2001b; Suykens and Vandewalle, 1999; Fung and Mangasarian, 
2003; Mangasarian and Thompson, 2006) 

e reducing the training set size used with the SVM (Lee and Mangasarian, 2001;  
Cao and Boley, 2003; Wang et al., 2005; Yu et al., 2003; Pavlov et al., 2000) 

f other scaling up methods like Kernel-Adatron (Friess et al., 1998) and simple SVM 
(Viswanathan et al., 2003). 

Core vector machine (CVM) (Tsang et al., 2005) is a suitable technique for scaling up 
SVM to handle large datasets. In CVM, the quadratic optimisation problem involved in 
SVM is formulated as an equivalent minimum enclosing ball (MEB) problem. The MEB 
problem is then solved by using a faster approximation algorithm introduced by Badou 
and Clarkson (2002). The CVM is observed to have given good performance when the 
training dataset has roughly equal number of points from the two classes involved 
(balanced dataset). When the training dataset is unbalanced, the CVM gives good 
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performance only when the data points are obtained by uniformly sampling from a set of 
well behaved distributions (such as normal distributions) (Loosli and Canu, 2007). But in 
unbalanced datasets where the data points come from some arbitrary distributions and are 
not well distributed within the dataset, the performance of CVM is observed to be highly 
dependent on the orderings of points belonging to the two classes within the dataset. It is 
observed that when the data points belonging to the two classes in an unbalanced dataset 
are not uniformly distributed within the dataset, CVM gives poor performance both in 
terms of generalisation and training time. Existence of unbalanced training datasets is not 
rare in real world applications. In this case, a scenario involving most of the data points 
coming from well behaved distributions and having them well distributed within the 
dataset is far from the reality. Hence, CVM has to be used with some preprocessing for 
the training dataset to overcome such difficulties involved. 

In this paper, we propose two selective sampling-based training schemes for CVM 
namely incremental clustering-based CVM (ICBCVM) and hierarchical clustering-based 
CVM (HCBCVM) for improving the performance of a two class non-linear CVM. These 
methods can handle large balanced/unbalanced datasets irrespective of the orderings of 
points from the two classes involved within the dataset. 

The ICBCVM method employs a kernel-based incremental clustering (KBIC) 
algorithm to generate cluster abstractions of the training data in an arbitrary kernel 
induced feature space. Here, initially the CVM is trained using the cluster abstractions 
obtained from KBIC. Then only those clusters that can contribute to a refinement of the 
training process are expanded using a date base scan. The final training of CVM is then 
done using the training set obtained by this expansion process. 

The HCBCVM method uses a novel kernel-based hierarchical clustering (KBHC) 
(Asharaf et al., 2006) algorithm to generate hierarchical cluster abstractions of the 
training data in Gaussian kernel induced feature space. Here the training process starts 
with a high level abstraction of the training data generated in the Gaussian kernel induced 
feature space by the KBHC algorithm. It is continued by selective declustering 
(expansion) of only those clusters that are needed during the subsequent iterations of the 
training process using the cluster hierarchy generated by KBHC. This process continues 
till there are no more clusters whose expansion will bring some improvement in the 
training process. 

The rest of the paper is organised as follows. In Section 2, a brief discussion on 
CVMs is given. Section 3 discusses the KBHC algorithms namely KBIC and KBHC. In 
Section 4, the proposed ICBCVM and HCBCVM methods are introduced. Results are 
given in Section 5 and Section 6 deals with conclusions. 

2 Core vector machines 

CVM applies kernel methods to data intensive applications involving large datasets. In 
CVM, the quadratic optimisation problem involved in SVM is formulated as an 
equivalent MEB problem. It is then solved using a fast approximate MEB finding 
algorithm employing the concept of core sets (Tsang et al., 2005). 

Given a set of data points 1{ }N
i iS x ==  where xi ∈ Rd (here d is the dimenisionality of 

the input space), the MEB of S [denoted as MEB(S)] is the smallest ball that contains all 
the points in S. Let k be a kernel function with the associated feature map φ defining a 
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high dimensional kernel induced feature space. Now the primal problem for the MEB in 
the kernel induced feature space to find the MEB B(a, R) with centre a and radius R can 
be stated as 

( )

2

2 2

min

s.t. i

R

x a R i− ≤ ∀
 (1) 

The corresponding Wolfe dual form (Fletcher, 2000) is 

( ) ( )
, 1 1

1

min , ,

s.t. 1 0

N N

i j i j i i i
i j i

N

i i
i

k x x k x x

i

= =

=

−

= > ∀

∑ ∑

∑

αα α

α α

 (2) 

Now consider a situation where 

( , ) , a constant.k x x κ=  

This is true for kernels like Gaussian given by 

( )
2

, i jq x x
i jk x x e− −=  

where || · || represents the L2 norm and q is a user given parameter. 
The dot product kernel like polynomial kernel given by k(xi, xj) = (< xi · xj > + 1)λ with 

normalised inputs xi and xj also satisfy the above said condition. Here λ is a non-negative 
integer and < · > represents the dot product. 

The Wolfe dual form of the MEB problem can now be written as 
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When the kernel function satisfies k(x, x) = κ, any QP of the above form can be regarded 
as an MEB problem. 

2.1 A two class SVM problem as an MEB problem 

Given a training dataset 1{( , )}N
i i iS x y ==  where xi ∈ Rd and yi ∈ {+1, –1}, the primal for 

the two class SVM problem can be stated as 

( )( )

2 2 2

, 1

min 2
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i j

i i i

w b ρ C ξ
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The Wolfe dual form is 
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Here δij is the Kronecker delta function. 
The above equation can be rewritten as 

( )
, 1

1

min ,

s.t. 1 0

N

i j i j
i j
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i i
i

k x x

i
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=

= ≥ ∀
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where 

( ) ( ), , .ij
i j i j i j i j

δ
k x x y y k x x y y

C
= + +�  

When k(x, x) = κ is satisfied this transformed kernel function k�  satisfies the condition 

1( , ) , some constant.k x x κ=�  

Hence, the above mentioned problem is an MEB problem. We now describe the 
algorithm to find approximate MEB. 

2.2 Approximate MEB finding algorithm 

The traditional algorithms for finding exact MEBs are not efficient for d > 30 (Tsang  
et al., 2005) and hence the CVM method adopts a faster approximation algorithm 
introduced by Badou and Clarkson (2002). It returns a solution within a multiplicative 
factor of (1 + ε) to the optimal value, where ε is a small positive number. 

The (1 + ε) approximation of the MEB problem is obtained by solving the problem on 
a subset of the dataset called core set. Let BS(a, R) be the exact MEB with centre a and 
radius R for the dataset S and ( , )QB a R��  be the MEB with centre a�  and radius R�  found 
by solving the MEB problem on a subset of S called core set (Q). Given an ε > 0, a ball 

( , (1 ) )QB a R+ �� ε  is an (1 + ε)-approximation of MEB(S) = BS(a, R) if ( , (1 ) )QS B a R⊂ + �� ε  

and .R R≤�  
Formally, a subset Q ⊆ S is a core set of S if an expansion by a factor (1 + ε) of its 

MEB contains S (i.e., ( , (1 ) ))QS B a R⊂ + �� ε  as shown in Figure 1. 
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Figure 1 The dotted circle is the exact MEB of the entire data 

 

Note: The inner circle is the exact MEB of core set (the set of points enclosed in squares) 
and its (1 + ε) expansion (the outer circle) covers all points. 

The approximate MEB finding algorithm uses a simple iterative scheme: at the tth 
iteration, the current estimate ( , )Q t tB a R��  is expanded incrementally by including that 
data point in S that is farthest from the centre a�  and falls outside the (1 + ε)-ball 

( , (1 ) ).Q t tB a R+ �� ε  The computation to find the farthest point becomes very expensive 
when the number of data points in S is very large. Hence, to speed up the process CVM 
uses a probabilistic method. Here a random sample S′ having 59 points is taken from the 
points that fall outside the (1 + ε)-ball ( , (1 ) ).Q t tB a R+ �� ε  Then the point in S′ that is 
farthest from the centre ta�  is taken as the approximate farthest point from S. The iterative 
strategy to include the farthest point in the MEB is repeated until all the points in S are 
covered by ( , (1 ) ).Q t tB a R+ �� ε  The set of all such points that got added forms the core set 
of the dataset. 

The CVM method is observed to have given good performance when the training 
dataset is balanced in terms of the number of points belonging to the two classes 
involved. When the training dataset is unbalanced, the CVM gives good performance 
only when the data points are obtained by uniformly sampling from a set of well behaved 
distributions (such as normal distribution). But in unbalanced training datasets where the 
data points come from some arbitrary distributions and are not well distributed (not 
uniformly sampled from the a set of distributions) within the dataset, the performance of 
CVM is observed to be highly dependent on the orderings of points belonging to the two 
classes within the dataset. In most of these orderings, the CVM gives poor performance 
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both in terms of generalisation and computational expense. The bad performance of 
CVM in this scenario is due to the poorly sampled subset S′ of the dataset S, that is used 
for finding the farthest point from the current centre ta�  of the MEB found at any iteration 
t. Usually in real world applications we may have to deal with unbalanced training 
datasets belonging to some arbitrary distributions. Here a scenario where the points from 
the two classes are well distributed within the dataset is far from reality. Hence, CVM has 
to be used with some preprocessing for the training dataset to reduce the difficulties 
arising due to the data ordering dependent behaviour of CVM in unbalanced datasets. The 
proposed ICBCVM and HCBCVM schemes employ such an approach. 

3 Kernel-based clustering methods 

The novel kernel-based clustering schemes namely KBIC used in ICBCVM and KBHC 
used in HCBCVM are discussed in this section. 

3.1 Kernel-based incremental clustering 

The KBIC algorithm is a kernalised form of leader (Spath, 1980) algorithm. It can 
construct cluster abstractions in any arbitrary kernel induced feature space using a single 
dataset scan. KBIC starts with a singleton cluster containing any arbitrarily chosen initial 
data point. For each cluster, the first data point that gets assigned to that cluster is taken 
as its representative. At any point, the algorithm assigns the current data point to its most 
similar cluster or the data point itself may get added as a singleton cluster. The new 
singleton cluster is added when the current data point does not get qualified to be added 
to any of the currently available clusters based on a user given similarity (dissimilarity) 
threshold (Thr). The dissimilarity function used in KBIC is the squared Euclidean 
distance between the images of a pair of points xi and xj in the kernel induced feature 
space. It is given by 

( ) ( ) ( )
( ) ( ) ( )

2
, –

, – 2 , ,

i j i j

i i i j j j

D x x x x

k x x k x x k x x

=

= +

φ φ
 (7) 

This is computed using a Mercer kernel function k(xi, xj) giving the dot product  
φ(xi) · φ(xj) in the kernel induced feature space. 

The KBIC algorithm uses a set data structure namely CP to maintain the cluster 
prototypes obtained. To describe the algorithm, let us define N and nc as the number of 
points in the dataset and the current number of clusters respectively. Now the algorithm 
can be given as 

KBIC (Training Data, Parameters) 
1 Initialize: nc = 1, CP = {x1} 
2 For each data point xi, i = 2...N do 
 • Find the Winning Cluster j for xi from the available clusters Ck ∈ CP, k = 1..nc as 
  ( )min ,k i

k
j D C x=  
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 • Assign xi to the winning cluster j if 
  D(Cj, xii) <= Thr 
 • Else add a singleton cluster as 
  nc = nc + 1, CP = CP ∪ {xi} 

3.2 Kernel-based hierarchical clustering 

KBHC algorithm is a kernalised form of BIRCH (Zhang et al., 1996). Using a single 
dataset scan this algorithm can generate a hierarchical cluster indexing structure similar 
to the CF tree in a Gaussian kernel induced feature space. The concept of modified 
clustering feature (MCF) and MCF tree are at the core of KBHC. Here each MCF is a 
triple that summarises the information that we maintain about a cluster in the kernel 
induced feature space. 

Given the data points 1{ }N
i ix =  we find μ, the data space representation of the best 

prototype in the least squares error sense for a cluster C defined in the kernel induced 
feature space, by solving the following problem: 

( ) 2
min ( ) min – ( )

i

i
μ μ

x C

J μ x μ
∈

= ∑ φ φ  (8) 

where φ is the non-linear transformation implicitly achieved by the kernel function.  
The objective function in equation (8) can now be expanded using Mercer kernel  
k(x, y) = φ(x) · φ(y) giving the dot product in the kernel induced feature space. 

For Gaussian kernel we have k(x, x) = 1 and hence can write the objective function as 

( )min ( ) max ,
i

i
μ μ

x C

J μ k x μ
∈

= ∑  (9) 

The solution of this problem results in the fixed point equation 

( )

( )

,

,
i

i

i i
x C

i
x C

k x μ x

μ
k x μ

∈

∈

=
∑
∑

 (10) 

This minimisation is performed by starting with an initial guess for μ and then iteratively 
recomputing the μ until some stopping criterion is met. The stopping criterion used can 
be based on a user given tolerance (Tol) defining a threshold for the change in μ values in 
consecutive iterations. 

The MCF vector representing a cluster Ci in the Gaussian kernel induced feature 
space can now be defined as a triple: 

( ), ,i i i iMCF N LS μ=  

where Ni is the number of data points in the cluster Ci and LSi is the linear sum which is 
detailed in the next section. For each cluster found, KBHC maintains only its MCF vector 
from which the needed statistics used in computations involving that cluster can be 
obtained. 
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3.2.1 Merging clusters 

KBHC constructs the hierarchical cluster abstraction of a dataset by arranging the MCF 
vectors in the form of an MCF tree. In this cluster hierarchy the MCF vectors 
corresponding to the lower level clusters are merged to form the higher level abstractions. 
The merging process involved here can be explained as follows. Let 

( ), , , 1j j j jMCF N LS μ j m= = …  

be the MCF vectors of m disjoint clusters, 1{ } ,m
j jC =  which are to be merged. The KBHC 

algorithm finds the MCF vector 

( ), ,new new new newMCF N LS μ=  

for the merged cluster Cnew by minimising the objective function given in equation (8). 
Here 

1

m

new j
j

N N
=

=∑  

The initial value of μnew used in the minimisation process is computed as 

1(0)

1

m

j j
j

new m

j
j

N μ

μ
N

=

=

=
∑

∑
 

At iteration t, the algorithm computes the new value of the prototype vector ( )t
newμ  as 
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( )

( –1)

( )
( –1)

,

,
k new

k new

t
k new k

x Ct
new t

k new
x C

k x μ x

μ
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∈

∈

=
∑
∑

 (11) 

The iterations continue till 

( 1) ( )t t
new newµ µ Tol− − <  

To simplify this computation process we will now make an assumption 

( ) ( )( ) ( ),  , 1, 2t t
k new j new k jk x μ k μ μ x C j m≈ ∀ ∈ = …  (12) 

With this assumption it requires only one kernel evaluation per cluster and also reduces 
the space requirement significantly because it has to maintain only the MCF vector for 
any cluster instead of all the data points belonging to that cluster. Empirically this is 
found to be a good approximation. Using this assumption we can write equation (11) as 
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Note that a linear sum appears in equation (13) and this is defined as the LSi entry of the 
MCF vector representing cluster Ci, where 

.
k i

i k
x C

LS x
∈

= ∑  

The MCF tree is a height balanced tree with two parameters: branching factor B and 
threshold T. Here each node contains at most B entries of the form 1{[ , ]} .B

i i iMCF child =  
Here MCFi is the MCF of a subcluster of the cluster represented by this node and childi is 
the pointer to this subcluster if it is a non-leaf node and NULL pointer if it is a leaf node. 
So a node represents a cluster made up of all the subclusters represented by its MCF 
entries. All the entries in a leaf node must satisfy a threshold requirement, with respect to 
a threshold value T: the radius r of the cluster has to be less than T. The radius ri of a 
cluster Ci is given by 

( ) ( )
1

2 2–
j i

j i
x C

i
i

x μ

r
N

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎝ ⎠

∑ φ φ

 (14) 

For each cluster Ci this is computed using the μl, l = 1…p values of its p subclusters. Now 
using the assumption given in equation (12) we can write equation (14) as 

( )( )
1
2

1

1

2 – 2 ,
p

l l i
l

i p

l
l

N k μ μ
r

N

=

=

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
 

The tree size is a function of T. Larger the value of T, smaller is the tree size. Once the 
space requirement for a data point is known, the space required for an MCF vector can be 
calculated. Now the parameters B and T can be determined based on the size of the tree 
that can be accommodated in the available memory. In the proposed KBHC algorithm we 
treat B and T as user given. 

The MCF tree is dynamically built as new data points are inserted. The construction 
of the MCF tree starts with a single leaf node having only one MCF vector representing a 
singleton cluster containing any arbitrarily chosen initial data point. Then tree is grown 
by inserting the data points one at a time as in BIRCH. Except the cluster merging 
process as explained above the MCF tree construction of KBHC proceeds in the same 
manner as the CF tree construction in BIRCH. 
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3.2.2 KBHC with buffering 

In the KBHC method discussed above, while constructing the MCF tree every data point 
has to be checked for possible inclusion within an already generated cluster abstraction 
(MCF vector) found so far. This checking process requires multiple levels of comparison 
from the root until the leaf with the most similar cluster (MCF vector) of the MCF tree. If 
the data point does not get added to an existing cluster it will get added as a new cluster 
and this information may have to be communicated up until the root in the hierarchy 
given by the MCF tree. To speed up the MCF tree construction process here we employ a 
buffering scheme which is explained below. 

A data buffer F of size L is used here. Initially, L data points are read into the buffer 
from the dataset. The MCF tree construction process starts with an MCF tree having a 
singleton cluster containing an arbitrarily chosen data point from the dataset. At any 
iteration t the algorithm selects the data point xt ∈ F which is farthest from the centre of 
the cluster represented by the root of the currently obtained MCF tree for addition. If xt 
gets added to an existing cluster MCFr of the MCF tree, the algorithm removes all those 
points from F which are within a distance of T (the threshold value used by KBHC) from 
the cluster represented by MCFr. Once this is done, more points are read from the dataset 
to fill the buffer F and the process repeats till all the points in the dataset are considered. 

4 Clustering-based CVMs 

The ICBCVM method and HCBCVM method are introduced in this section. 

4.1 Incremental clustering-based CVM 

This is a two phase algorithm. In the first phase KBIC is used to generate a high level 
description of the data (clusters) in an appropriate kernel induced feature space. The 
cluster prototypes obtained are used to train a CVM and the corresponding core set and 
support vectors (SVs) are identified. In the second phase the training set for the 
subsequent training of CVM is obtained by a declustering (expansion) process that 
expands all those clusters that falls on or outside the MEB found by the previous CVM 
training process as shown in Figure 2. The declustering phase expands a cluster i with 
cluster prototype(leader) xrep if 

( )repG x R≥  (15) 

where G(xrep) is the distance of the cluster prototype xrep from the centre of the MEB and 
R is the radius (Tsang et al., 2005) of the MEB computed in the previous iteration. 

The distance G(xi) of a point xi from the centre a of the MEB is given by 

( ) ( )

( ) ( ) ( )

22

1 , 1

–

, 2 , ,

i i

n n

i i j j i j k j k
j j k

G x x a
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φ

α α α
 (16) 
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Figure 2 ICBCVM: data space to kernel induced feature space transformation (implicitly done by 
the kernel function) and the declustering process in the kernel induced feature space 

 

Note: Here the core points are shown inside small circles. 

This is obtained using the expression 

( )
1

n

i i
i

a x
=

=∑α φ  

given by the KKT conditions on the Lagrangian for equation (1). Here n is the number of 
points in the core set from which the MEB was obtained in the previous iteration. 

Now the radius R of the MEB computed at current iteration can be given as 

( ) where 0i iR G x C= < <α  (17) 

Now the algorithm can be stated as 

ICBCVM(Data, parameters) 
1 Generate cluster abstractions of the training data using KBIC. 
2 Train SVM with the cluster prototypes. 
3 Expand the clusters (declustering) near the boundary to obtain the refined training set. 
4 Train SVM on the new training set obtained. 

Please note that a proper selection of the user defined parameter threshold used by KBIC 
is crucial for the ICBCVM method and can be chosen based on the available RAM size. 

4.2 Hierarchical clustering-based CVM 

HCBCVM is aimed at scaling CVMs with Gaussian kernel function to handle very large 
datasets. This algorithm employs a selective sampling strategy for the training process as 
in CBSVM (Yu et al., 2003). Here KBHC with Buffering is used to construct two 
hierarchical cluster indexing structures (MCF trees) in Gaussian kernel induced feature 
space from the datasets corresponding to the positive and negative classes as shown in 
Figure 3. This CVM training process starts with the μ values computed from the MCF 
entries of the root node. At any iteration of the selective sampling-based training of 
CVM, the training set for the subsequent iterations is obtained by selectively declustering 
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the MCF entries corresponding to those clusters that are either on the boundary of the 
MEB or outside as shown in Figure 4. The declustering phase expands a cluster 
represented by MCFi if 

( )iG μ R≥  

where G(μi) is the distance of the ith cluster from the centre of the MEB as given by 
equation (16) and R is the radius (Tsang et al., 2005) of the MEB computed in the 
previous iteration as given by equation (17). The selective sampling process and 
retraining of CVM continues till leaf nodes of the MCF trees are encountered. 

Figure 3 HCBCVM: data space to kernel induced feature space transformation (implicitly done 
by the kernel function) and the MCF trees constructed for positive class and negative 
class in kernel induced feature space 

 

Figure 4 HCBCVM: declustering of clusters (MCF vectors) falling on or outside the MEB found 
in the current iteration of CVM training to get the training set for the subsequent 
training step 
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4.3 The algorithm 

The HCBCVM algorithm employs two sets of user defined parameters. They are 

• the parameters B, T, tolerance (Tol) and buffer_size (B_S) used in MCF tree 
construction 

• the parameter q of the Gaussian kernel function. 

Now we summarise the HCBCVM algorithm as 

 HCBCVM(Training data, Parameters) 
1 Construct two MCF trees from positive and negative class examples respectively using 

KBHC with Buffering algorithm. 
2 Perform CVM training using the iterative selective sampling based training strategy 

discussed above. 

In a recent technical report by Loosli and Canu (2007), it was pointed out that the 
performance of CVM is highly dependent on the choice of its hyper parameters viz. the 
slack trade-off (C), the tolerance (ε) and the kernel parameter q when Gaussian (RBF) 
kernel function is used. In the case of RBF kernel functions the bandwidth (q) can be 
estimated using the distance between points from opposite classes (Tsang et al., 2005). 
All the CVM experiments cited in Tsang et al. (2005) have used a fixed ε value of 10–6. 
About the choice of parameter C, some of their observations are 

• The ijδ
C

 term in the modified kernel function k�  used by CVM has a non-negligible 

regularisation effect in the performance of CVM (Loosli and Canu, 2007). 

• The stopping tolerance ε used in CVM is scaled (Loosli and Canu, 2007) by a factor 

of 1
C

 when compared to the ε value used in ν-SVM formulation. 

• For small C values, the kernel k�  becomes well conditioned and thus CVM gives 

good generalisation performance. But due to the scaling factor 1
C

 in the stopping 

tolerance, the training time is high in this case. 

• Regarding training time medium C value is the best configuration, with some 
compromise in generalisation performance 

• For large C values, CVM gives poor generalisation performance. 

They have also observed that the effect of the hyper parameter C increases with the 
increase in training set size (Loosli and Canu, 2007). It may be noted that the proposed 
ICBCVM and HCBCVM methods train the CVM using a reduced training set obtained 
by the selective sampling strategy. Hence, the variability in performance of CVM with 
the choice of the hyper parameter C will be less in ICBCVM and HCBCVM compared to 
the CVM. 

Since ICBCVM and HCBCVM work with separate cluster abstractions made for each 
of the two classes, the problems caused due to the unbalancing in datasets are less here. 
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Further, the use of cluster abstractions generated for the training data in the CVM training 
process reduces the effect of different ordering of data points within the dataset in the 
selective sampling-based CVM training. 

5 Experimental results 

Experiments are done with four synthetic datasets and four real world datasets.  
In all the experiments, we used CVM Tsang et al. (2005) implementation available at 
‘http://www.cs.ust.hk/~ivor/cvm.html’. We compared the results obtained with CVM 
trained on the full dataset, the proposed ICBCVM algorithm and the HCBCVM 
algorithm. In all the experiments we used Gaussian kernel function. For ICBCVM and 
HCBCVM, the reported training time includes the time used for generating cluster 
abstractions of the training data and time taken by the selective sampling-based training 
of CVM. All the experiments were done on a Intel Xeon(TM) 3.06 GHz machine with  
2 GB RAM. 

5.1 Synthetic datasets 

To evaluate the performance of CVM and the proposed ICBCVM and HCBCVM 
methods we have generated four synthetic datasets. One of them has equal number of 
data points from both the classes involved. The rest three synthetic datasets generated are 
unbalanced in terms of the number of data points belonging to two classes involved. All 
the four synthetic datasets generated have 400,000 data points in the training set and 
100,000 points in the test set. These are obtained from ten multivariate (five dimensional) 
normal distributions. In the case of balanced synthetic dataset (BSYN), five of these 
distributions are labelled as belonging to class +1 and the rest five as belonging to class  
–1. In the unbalanced synthetic datasets (USYN1, USYN2 and USYN3), the points from 
only one of the distributions are labelled as class +1 and all the points form the other nine 
distributions are labelled as class –1. To study the effect of different orderings of data 
points belong to the two classes within the dataset on the performance of CVM, we have 
made two orderings for the balanced dataset BSYN and four orderings for each of the 
unbalanced datasets USYN1, USYN2 and USYN3. A detailed description of the ordering 
strategy used will be explained later. Please note that the performance of ICBCVM and 
HCBCVM is independent of the orderings. 

To discuss the synthetic data generation process, let us make use of the following 
formalisations. Let the dataset D be made up of disjoint chunks of points as 

1 2 for some 1kD d d d k= ∪ ∪ ≥…  

where each di is a chunk of points generated from one of the ten normal distributions 
mentioned above. Further, each of these ten normal distributions may contribute multiple 
disjoint chunks in the dataset. Now for training datasets, we have | D | = 400,000 and for 
the test set | D | = 100,000. Here | · | denote the cardinality. 

The number of points in each of the chunks di are different in the four synthetic 
datasets. Now the generation of the synthetic datasets viz. BSYN, USYN1, USYN2 and 
USYN3 can be explained as 
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5.1.1 BSYN 

In BSYN, each chunk di has only one data point. So we have 

1 2 kD d d d= ∪ ∪…  

where | di | = 1. 
So we have k = 400,000 for the training set and k = 100,000 for the test set. 
Each of these data points (here each chunk) is generated by uniformly selecting 

(using a uniform random number generator between 1 and 10) one distribution from the 
ten normal distributions used for the data generation. A single data point is generated 
from this distribution and it is given the label (class +1 or class –1) of that distribution  
(as explained above). 

5.1.2 USYN1 

As in BSYN here also each chunk di is having only one data point. So we have 

1 2 kD d d d= ∪ ∪…  

where | di | = 1. 
So we have k = 400,000 for the training set and k = 100,000 for the test set. 
Each of these data points (here each chunk) is generated by uniformly selecting 

(using a uniform random number generator between 1 and 10) one distribution from the 
ten normal distributions used for the data generation. A single data point is generated 
from this distribution and it is given the label (class +1 or class –1) of that distribution  
(as explained above). 

5.1.3 USYN2 

In this dataset we have 

1 2 kD d d d= ∪ ∪…  

where | di | = 40,000 for the training set and | di | = 10,000 for the test set and hence  
k = 10. 

In the case of both training set and test set, the points in each of the chunks di,  
i = 1…9 are generated from one of the nine distributions labelled as belonging to class –1 
and the chunk d10 is generated from the distribution labelled as class +1. 

5.1.4 USYN3 

In the case of USYN3 we have 

1 2 kD d d d= ∪ ∪…  

where for the training set we have 

40,000  if is even
4,000 if is oddi

i
d

i
⎧

= ⎨
⎩
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and for the test set we have 

10,000 if is even
1,000 if is oddi

i
d

i
⎧

= ⎨
⎩

 

Hence, K = 19. 
In the case of both training set and test set, the points in each of the even numbered 

chunks di, i = 2, 4,…,18 are generated from one of the nine distributions labelled as 
belonging to class –1 and the points in the odd numbered chunks di, i = 1, 3,…,19 are 
generated from the distribution labelled as class +1. 

Thus, we get four datasets which are composed of different size chunks generated 
from the ten multivariate normal distributions. For the balanced synthetic dataset (BSYN) 
we have made two orderings viz. the points belonging to class +1 at the end (EBSYN) 
and the points from the two classes distributed (DBSYN). For each of the unbalanced 
synthetic datasets (USUN1, USYN2 and USYN3) four orderings of points belonging to 
the two classes viz. the points belonging to class +1 at the beginning (BUSYN), at the 
middle (MUSYN), at the end (EUSYN) and distributed (DUSYN), are made. For each of 
these orderings the performance of CVM is evaluated for BSYN, USYN1, USYN2 and 
USYN3. The parameters used in these experiments are given in Table 1 and the results in 
Table 2, Table 3 and Table 4 and Table 5 for BSYN, USYN1, USYN2 and USYN3 
respectively. 

From the results on BSYN, it can be seen that the performance of CVM is not 
affected by the orderings of data points from different classes within the dataset. Here 
ICBCVM also gave a comparable generalisation performance. The HCBCVM gave good 
generalisation performance at a much lesser computational expense. 
Table 1 Parameters used with synthetic datasets for CVM, ICBCVM and HCBCVM 

algorithms 

CVM ICBCVM HCBCVM 
Dataset 

C 

 

q Thr1 Thr2 B BS T1 T2 Tol q 
BSYN 1,000  0.25 1.17 1.173  50 50 0.85 0.83 0.0001 0.25 
USYN1 1,000  0.0075 0.065 0.0.04  100 50 0.095 0.97 0.0001 0.1 
USYN2 10,000  0.0075 0.059 0.0375  50 100 0.002 0.39 0.0001 0.055 
USYN3 10,000  0.0075 0.059 0.0375  50 100 0.08 0.39 0.0001 0.055 

Table 2 Results on balanced synthetic dataset 

Training Testing 
Dataset Algorithm 

#TR #SVs TT 
 

CT GP 

ICBCVM on BSYN  387,755 77 137  1 99.988 

HCBCVM on BSYN  10,018 27 14  1 99.985 

EBSYN CVM 400,000 105 162.73  2.46 99.994 

DBSYN CVM 400,000 105 173.38  2.46 99.994 

Note: The abbreviations used are: number of training points (# TR), number of support 
vectors (# SVs), training time (TT) in seconds, classification time (CT) for test data 
in seconds and generalisation performance (GP) on test data in percentage. 
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Table 3 Results on unbalanced synthetic dataset 1 

Training Testing 
Dataset Algorithm 

#TR #SVs TT 
 

CT GP 
ICBCVM on USYN1  62,575 1,203 375  17 98.454 
HCBCVM on USYN1  35,263 17 88  1 99.594 
BUSYN1 CVM 400,000 1,699 6,910.16  24.63 99.831 
MUSYN1 CVM 400,000 1,703 7,174.55  24.79 99.832 
EUSYN1 CVM 400,000 1,699 8,082.96  24.63 99.831 
DUSYN1 CVM 400,000 1,700 7,785.12  24.77 99.834 

Note: The abbreviations used are: number of training points (# TR), number of support 
vectors (# SVs), training time (TT) in seconds, classification time (CT) for test data 
in seconds and generalisation performance (GP) on test data in percentage. 

Table 4 Results on unbalanced synthetic dataset 2 

Training Testing 
Dataset Algorithm 

#TR #SVs TT 
 

CT GP 

ICBCVM on USYN2  59,840 641 716  10 97.315 
HCBCVM on USYN2  35,825 32 81  3 98.63 
BUSYN2 CVM 400,000 257 1,400  8 90.029 
MUSYN2 CVM 400,000 48 16  3 98.609 
EUSYN2 CVM 400,000 253 14,875  7 90.163 
DUSYN2 CVM 400,000 416 25,947  11 90.138 

Note: The abbreviations used are: number of training points (# TR), number of support 
vectors (# SVs), training time (TT) in seconds, classification time (CT) for test data 
in seconds and generalisation performance (GP) on test data in percentage. 

Table 5 Results on unbalanced synthetic dataset 3 

Training Testing 
Dataset Algorithm 

#TR #SVs TT 
 

CT GP 
ICBCVM on USYN3  51,981 607 408  14 99.023 
HCBCVM on USYN3  13,105 24 145  4 98.805 
BUSYN3 CVM 400,000 321 16,153  11 92.097 
MUSYN3 CVM 400,000 632 26,717  19 89.14 
EUSYN3 CVM 400,000 401 20,135  13 91.909 
DUSYN3 CVM 400,000 260 4,898  9 94.957 

Note: The abbreviations used are: number of training points (# TR), number of support 
vectors (#SVs), training time (TT) in seconds, classification time (CT) for test data 
in seconds and generalisation performance (GP) on test data in percentage. 

In the case of USYN1, the results show that the performance of CVM is good irrespective 
of the orderings of patterns belonging to the two classes within the dataset. In all the 
orderings of USYN1, CVM gave good generalisation performance at comparable 
computational expense. This is due to the success of the sampling method used in CVM 
on this dataset having uniform distribution of points generated from the most of the 
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normal distributions (all except the one labelled as class +1 which is placed differently in 
the four different orderings of USYN1) within the dataset. Here ICBCVM and HCBCVM 
methods also gave reasonable generalisation performance at lesser computational 
expense. 

In the case of USYN2 and USYN3, the performance of CVM is highly dependent on 
the orderings of the points within the dataset. Further, in most of these orderings CVM 
gives only moderate generalisation performance at a very high computational expense. 
This behaviour can be attributed to the sensitivity of the sampling method used in CVM 
on the orderings of data points within the dataset. Thus, the different orderings of points 
within the dataset results in highly variable performance for the CVM. For both USYN2 
and USYN3, the ICBCVM and the HCBCVM algorithms are found to give good 
performance compared to CVM at a lesser computational expense. 

5.2 Real world datasets 

The real world datasets used are: IJCNN1 and Adult(a9a) datasets from the LIBSVM 
page available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html’ 
and the extended USPS and forest cover type datasets available at ‘http://www.cs.ust.hk/ 
~ivor/cvm.html’. The parameters used for the experiments with IJCNN1 dataset, adult 
dataset and extended USPS dataset are shown in Table 6. 
Table 6 Parameters used with IJCNN1 dataset, adult dataset and extended USPS dataset for 

CVM, ICBCVM and HCBCVM algorithms 

CVM ICBCVM HCBCVM 
Dataset 

C 

 

q Thr1 Thr2 B BS T1 T2 Tol q 
IJCNN1 10,000  0.75 0.25 0.15  40 100 0.1 0.09 0.0001 3.0051 
Adult 0.1  0.0075 0.115 0.115  60 135 1.75 9e-5 0.0001 2.2 
EUSPS 100  0.0004 0.22 0.27  60 150 0.96 0.89 0.0001 0.00569 

5.2.1 IJCNN1 dataset 

This dataset pertains to a two class problem with 49,990 patterns in the training set and 
91,701 patterns in the test set. Each pattern here is described using 22 numerical features. 
The results obtained on this dataset are shown in Table 7. 

5.2.2 Adult dataset 

This dataset pertains to a two class problem with 32,561 patterns in the training set and 
16,281 patterns in the test set. Each pattern here is described using 123 numerical 
features. The results obtained on this dataset are shown in Table 7. 

5.2.3 Extended USPS dataset 

This dataset pertains to a two class problem with 266,079 patterns in the training set and 
75,383 patterns in the test set. Each pattern here is described using 676 numerical 
features. The results obtained on this dataset are shown in Table 7. 
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Table 7 Results on IJCNN1, adult and extended USPS datasets 

Training Testing 
Dataset Algorithm 

#TR #SVs TT 
 

CT GP 

IJCNN1 CVM 49,990 866 372  26.4 95.832 

 ICBCVM 16,637 485 62  10 95.832 

 HCBCVM 4,641 310 22  13 96.003 

Adult CVM 32,561 21,595 5,216  94 85.265 

 ICBCVM 1,317 829 193  3 81.365 

 HCBCVM 16,923 12,438 3,249  167 83.25 

EUSPS CVM 266,079 996 470  134 99.556 

 ICBCVM 208,885 834 467  69 99.4773 

 HCBCVM 3,376 239 182  75 99.014 

Note: The abbreviations used are: number of training points (# TR), number of support 
vectors (# SVs), training time (TT) in seconds, classification time (CT) for test data 
in seconds and generalisation performance (GP) on test data in percentage. 

5.2.4 Forest cover type dataset 

This dataset pertains to a two class problem with 522,910 patterns in the training set and 
58,102 patterns in the test set. Each pattern here is described using 54 numerical features. 
Here the HCBCVM got trained in 3,166 seconds using 46,058 pattern obtained from the 
original training set. In this experiment the HCBCVM algorithm gave a generalisation 
performance of 90.105%. The parameter values used in the experiment are: B = 80, 
buffer size = 200, T1 = 1.982, T2 = 1.982, tolerance = 0.001 and q = 1e – 4. 

To study the scalability of CVM, ICBCVM method and HCBCVM method we have 
done experiments with IJCNN1 dataset, EUSPS dataset and a synthetic dataset generated 
using the technique employed to generate USYN3. In these experiments, we have 
sampled the training set keeping the class distributions. Training samples of different 
sizes are obtained and the corresponding training time taken by CVM, ICBCVM and 
HCBCVM algorithms are recorded. A plot of the increase in training time (in seconds) 
with the increase in training samples size for IJCNN1 dataset, EUSPS dataset and a 
synthetic dataset are shown in Figure 5, Figure 6 and Figure 7 respectively. It  
can be observed that the increase in training time for ICBCVM and HCBCVM are 
comparatively slower when compared to that of CVM with the increase in the training set 
size. This is particularly visible in experiments with IJCNN1 and synthetic dataset. 

From all these empirical results we have observed that the proposed ICBCVM 
method and the HCBCVM method improves the performance of CVM both in terms of 
generalisation results and the training time involved. Both ICBCVM and HCBCVM 
methods are able to produce good results even in unbalanced datasets irrespective of the 
orderings of data points belonging to the different classes within the dataset. Since these 
methods work with cluster abstractions generated using incremental clustering techniques 
they are scalable and hence can handle larger datasets compared to the ones handled by 
CVM. 
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Figure 5 A plot of training time (in seconds) of CVM, ICBCVM and HCBCVM with the training 
set size for IJCNN1 dataset 

 

Figure 6 A plot of training time (in seconds) of CVM, ICBCVM and HCBCVM with the training 
set size for EUSPS dataset 
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Figure 7 A plot of training time (in seconds) of CVM, ICBCVM and HCBCVM with the training 
set size for synthetic dataset 

 

6 Conclusions 

Two selective sampling-based training schemes for CVM to handle large datasets, 
irrespective of the orderings of data points belonging to different classes within the 
dataset, are proposed in this paper. Some merits of the proposed methods are: 

• They can handle large datasets with linear/non-linear decision boundaries. 

• They can handle datasets irrespective whether they are balanced/unbalanced in terms 
of the number of data points belonging to the two classes involved. 

• They generate the required cluster abstractions in the kernel induced feature space 
using a single dataset scan and hence the methods are scalable. 

• The performance of these methods does not depend on the orderings of data points 
within the dataset. 
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