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Abstract: This paper considers a novel approach to system identification which allows accurate 
models to be created for both linear and nonlinear multi-input/output systems. In addition to 
conventional system identification applications, the method can also be used as a black-box tool 
for model order reduction. A nonlinear Kalman filter is extended to include slow-varying 
parameter states in a canonical model structure. Interestingly, in spite of all model parameters 
being unknown at the start, the filter is able to evolve parameter estimates to achieve 100% 
accuracy in noise-free test cases, and is also proven to be robust to noise in the measurements. 
The canonical structure ensures a well-conditioned model which simultaneously provides 
valuable dynamic information to the engineer. After extensive testing of a linear example, the 
model structure is extended to a generalised nonlinear form, which is shown to accurately 
identify the handling response of a full vehicle model. 
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1 Introduction 
Several publications explore system identification, most of 
which can be categorised by method, employing neural 
networks and/or genetic algorithms, frequency domain 
methods, probabilistic approaches and in a few cases 
Kalman filtering and recursive least squares. Numerous 
examples successfully employ neural networks to achieve 
excellent identified model performance, e.g., Ahmad 
(2015), but this is in a black-box format which offers no 
insight into the plant dynamics. They also typically employ 
high numbers of tuned parameters, which raises concern 
over parameter conditioning, repeatability and the range of 
inputs that will guarantee accuracy. 

Classical alternatives can achieve excellent conditioning 
by employing smaller parameter sets, and indeed those 
mathematically proven to be minimal. These include the 

well-known references on system identification  
(e.g., Soderstrom and Stoica, 1989) and also papers which 
use statistical probability methods (e.g., Aguero et al., 2012; 
Behzad et al., 2012; Hafayed et al., 2016. Though their 
effectiveness in solving both complex theoretical and 
practical identification cases is not questioned, these 
techniques are often too complicated for most engineers to 
apply in practice. Simpler techniques are available,  
e.g., using least-squares methods (Guo et al., 2015) or by 
identification in the frequency domain (e.g., Polifke, 2014; 
Ahn et al., 2003; Wang et al., 2015). The latter can be 
effective at replicating particular system resonances, 
particularly if they are well separated in frequency. 
However, they rely on sequential identification of SISO 
models and the combination of these into accurate multi 
input/output time domain models is not always easily 
achieved. 



 Extending the Kalman filter for structured identification of linear and nonlinear systems 115 

The well-known Kalman filter has also been applied to 
system identification in previous publications, but in most 
cases has only been effective in identifying a subset of 
unknown parameters in an existing known model structure. 
Examples include (Kallapur et al., 2008; Hassani et al., 
2009; Best, 2007; Best et al., 2000). In this paper, we  
re-visit the Kalman filter, but address many of the concerns 
above, identifying a MIMO model of unknown structure 
and minimum parameter set using an iterative time-domain 
approach. One existing publication (Ding et al., 2012) 
operates in a similar way to that considered here, except that 
it employs a recursive least-squares method and assumes a 
discrete model of known order. In the new method, the most 
appropriate model order is also identified, and we also see 
that the same Identifying Extended Kalman Filter (IEKF) 
can be configured to identify both linear and nonlinear 
systems. Ultimately, the best combination of good 
parameter conditioning and lowest order can be identified, 
and a further advantage lies in the modal canonical structure 
of the resulting model, which has the advantage of revealing 
the most significant system eigenvalues. 

2 The IEKF 
The conventional extended Kalman filter (EKF) employs a 
nonlinear system model f and sensor model h, based on 
system state vector x, to predict sensor set y in response to 
known input set u and model parameters θ. At a given time 
instant k: 

( ), ,k k k k k= +x f x u θ ω�  (1) 

( ), ,k k k k k= +y h x u θ υ  (2) 

An optimal filter, typically employed to provide accurate 
state estimates and/or filter the outputs, can be found from 
estimates of the error covariance matrices, 

( ) ( ) ( ), ,T T T
k k k k k kk k kE E E= = = =Q ω ω S ω υ 0 R υ υ  (3) 

where the sequence ω accounts for modelling errors, and υ 
is the sensor model error and noise. The EKF also needs 
state derivative matrices (Jacobians) to be available at each 
time step, defined 
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Examples which use the EKF for both state and parameter 
estimation are given in Best (2007) and Best et al. (2000). 

Here, we start by identifying an unknown linear model 
from time-histories of one or more input(s) u and one or 
more output(s) y only. We do not know the physics of the 
model so we do not know the state vector x. 

k k k
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= +
= +
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We start by imposing a structure to the system (A) matrix. 
This could be any structure which suitably minimises the 
number of parameters in the model. Modal and companion 
canonical forms are valid, and we choose the modal form 
here, as this allows a smaller range in the magnitude of 
parameters in the model, giving advantages in conditioning; 
we will see later that the EKF assumes equal parameter 
variation (error) statistics. The modal form defines A in 
terms of its eigenvalues which also has advantages in 
providing information to the engineer on the system’s 
resonance frequencies and damping. An appropriate 
structure for a five state model is 
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This is easily expanded or contracted depending on the 
known number of inputs and outputs and for different 
estimates of model order. The eigenvalues are initially set in 
complex conjugate pairs, λ = σ + jω, λ = σ – jω as far as 
possible. This is a first assumption which is easily corrected 
to include more single (real) poles if necessary; as the filter 
identifies the model, ω estimates will reduce to zero if the 
modes are non-oscillatory, at which point the structure can 
be modified in an obvious way. 

A further constraint is then needed; in the form above, 
each state pair is excited by the inputs scaled by a pair of B 
matrix parameters, and each output is then scaled again by a 
parameter pair in the C matrix. If we consider a SISO case, 
only the B or C parameters need to be set to fully constrain 
the model; five of these parameters could be set arbitrarily. 
It happens that the required constraint for any n state model 
is to fix n of the c or b parameters however, many inputs or 
outputs there are. It is sensible to constrain only elements in 
the C matrix, however; we need to allow some parameters 
to be at or approaching zero in B, as any given input will not 
generally excite all states. Setting C = [1 1 1 ….] is 
appropriate in single output cases. For multiple outputs it is 
appropriate to ‘connect’ particular eigenvalue pairs to 
specific outputs; for example, in equation (6), choosing  
c11 = c12 = c23 = c24 = c25 = 1 associates the first output most 
strongly with the first eigenvalue pair, and the second to the 
remaining eigenvalues. Since the order of the eigenvalues 
(and hence states) is not fixed in advance, this allows the 
identified parameters to emerge naturally in the order which 
best represents the dynamic information in the outputs; we 
will see in Section 4 that this approach minimises the risk of 
poor conditioning. 



116 M.C. Best and K. Bogdanski  

The IEKF is formed by first defining one large state 
vector which incorporates all of the parameters in addition 
to all of the states, as follows (with m = 34 elements for the 
example above) 

1 2 5 1 1 2 2 3 11 12

52 11 12 25 11 22

[
      ]T

x x x σ ω σ ω σ b b
b c c c d d

=z " …
… …

 (7) 

The model f(z) is defined for the ‘true’ states using the 
linear state space model, and for the parameter states the 
expected propagation is set to zero: 
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The required Jacobian matrices [equation (4)] follow a 
simple structure, due to the above linear definitions. The 
easiest way to form them is to define f and h in a symbolic 
computing environment such as Maple, or MATLAB’s 
symbolic toolbox, and find the differential matrix with 
respect to the full state set z – e.g., using MATLAB’s 
Jacobian command. The shape of the Jacobian is easily 
illustrated for our example; given the definitions in 
equations (6) and (7) 
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and a similar simple structure appears for .∂=
∂
hH
z

 

The IEKF is computed using a sequence of equations 
which develop a time-varying estimate of state error 
covariance, Pk and Kalman gain Kk; at each time step of the 
recorded time histories, compute 

k k k kk k
−= +⎡ ⎤⎣ ⎦

1T TK P H H P H R  (11) 
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Equation (14) combines Euler integration of the system 
using time step T with state and parameter adaptation driven 
by the output error, (known as the innovation sequence). 
Due to the Euler integration, T must be set very small 
relative to the system dynamics to ensure filter accuracy. 

The error covariance matrices are set R = I and ,ρ ′=Q I  
where ′I  is the m × m identity matrix modified to have 
zeros set on the leading diagonal for each of the constrained 
c parameters and also for the true states (first five diagonal 
elements in this example). This defines the models for these 
states as error-free, which has the effect of fixing the 
constrained parameters and evolving the true states using 
the model alone. The filter now has only one tuning 
parameter, ρ which is the expected mean square error in 
each of the parameters. This should initially be set ρ < 1; 
higher setting facilitates faster parameter migration, but this 
must be balanced against a risk of instability in the filter if ρ 
is too large. 

3 Linear identification example 
To illustrate efficient data collection and explore the 
performance, convergence and robustness of the IEKF we 
consider identification of a nominal linear model: 
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Here, the model elements (parameters) are set arbitrarily, 
with some – particularly in the B matrix – deliberately set 
zero, but with A and the first row of C set according to a 
possible identified model structure. This is in order for 
performance to be seen both in terms of parameter match 
and accuracy of the outputs. 

In order to achieve successful identification, the input 
test data must excite the plant fully – with a suitably high 
magnitude across the full frequency range. Here, we set test 
data using a 100 second sequence of normally distributed 
white noise, sampled at an appropriately high rate of 500 Hz 
(T = 0.002) and digitally filtered in the frequency domain to 
remove content above 25 Hz. A small offset is also applied: 

1 2(0,1) 0.1 (0,1) 0.1 (0 25 Hz) zHzu N u N= + = − −  (16) 

In practice, the white noise can be achieved using a vector 
of 5,000 normally distributed random numbers, treating 
these as points timed in the range 0–100 seconds at 50 Hz. 
The filtering effect can then be approximated by 
interpolating the data to increase the sampling rate to  
500 Hz. 

White noise data is used to ensure excitation of the 
system dynamics across all frequencies, making no prior 
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assumptions about system resonance frequencies. The  
25 Hz low pass filter is not required for correct function of 
the IEKF, but it improves the speed of convergence by 
allowing the tuning parameter ρ to be set at a higher level. 
The offset on each input provides a zero frequency element 
in the I/O data which assists in the separate identification of 
the D matrix. One potential symptom of poor conditioning 
in the identification is propagation of one or more σ 
parameters to high (negative) values; unless very fast 
dynamics exist in the model, this approximates direct  
feed-through from input to output via A, B, C rather than D. 
Offset of the input signals helps to prevent this by 
promoting early convergence of D parameters. 

No significant prior knowledge of the system has been 
assumed here; the 25 Hz filter frequency just needs to be 
‘well above’ the highest dynamic frequencies of interest, 
and the appropriate maximum can easily be found for any 
plant by observation of output PSD in response to high 
bandwidth white noise inputs. 

Output data is obtained by simulation of model equation 
(15) from zero initial conditions and with outputs sampled 
at the same rate as the inputs. In general, it is also wise to 
normalise u and y prior to identification as this maximises 
conditioning in the identified model parameters, but this is 
unnecessary in the given example as the outputs naturally 
emerge with similar magnitudes to the inputs. 

The IEKF is initialised with ‘true’ states z1–n = 0, with 
eigenvalue parameter states, z(n+1)–2n = –1 and with most of 
the remaining parameter states z(2n+1)–m = 0. Constrained c 
parameters within z(2n+1)–m are set to 1. This ensures the 
identified model initialises in a stable form but with no 
assumptions about the unknown parameters. Alternative 
starting conditions, using randomised stable initial 
parameter sets have been tested without variation of the 
converged model. A high setting of ρ = 1 is used for the 
majority of the results discussed below and P can sensibly 
be initialised as P0 = Q. 

The available data is repeatedly applied to the IEKF. At 
the start of each iteration, the true states are (appropriately) 
reset to zero, but all the parameter states, Kk and Pk 
matrices are carried over from the last step of the previous 
iteration. This has the effect of ‘rinsing’ the parameters with 
the available I/O data, with the innovations slowly varying 
them to improve the fit and reduce expected parameter  
error Pk. 

4 Linear identification results 
4.1 Convergence 
Consider a simple first test, identifying model equations 
(15) from the two inputs to just the first output. The first 
two iterations of the filter are illustrated in Figure 1, which 
shows all the parameters rapidly diverging before the 
majority start to converge. 

A commonly used measure of performance, ‘percentage 
explanation’ can be used to quantify quality of fit in the 
output from any given model: 
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Taking the set of parameters at the end of iteration 2  
(at 200 seconds above) as the (fixed) model provides output 
accuracy R = 99.4%. 

Figure 1 Development of parameter values in the first two 
iterations 
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Figure 2 Explanation and parameter convergence metrics  
(to one output) 
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A full optimisation of this case over many iterations is 
illustrated in Figure 2. Output explanation quickly 
approaches 100% (plot a) and the parameters take around 
100 iterations to converge finally to a settled, final value 
(plot b). On the mid-range PC used to conduct these tests, 
100 iterations takes around 4.4 minutes, so the process is not 
overly time consuming. The P matrix is the covariance of 
expected error in the states, so when all parameter states 
converge, so do their expected error. The trace of P provides 
a simple single value which can be used to confirm 
convergence (plot c), though alternatively a sum of the 
parameter states could be used for the same purpose. Note 
how different combinations of parameters achieve very 
close to 100% accuracy through iterations 2–100, yet the 
final parameter values conform very accurately to the 
original model (Table 1). Interestingly, some of the 
parameters prove to be insensitive in their influence on the 
output; parameter b51 is not accurate, and one of the 
eigenvalues has converged with real part –9.5 rather than  
–8. This is also the case in most of the identification results 
shown later. 

Figure 3 Explanation and parameter convergence metrics  
(to three outputs) 
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If we repeat the exercise with the filter applied to all three 
outputs, the influence of individual parameter combinations 
adapting unexpectedly is illustrated further. Figure 3 shows 
parameter and trace(P) divergence in spite of 100% 
accuracy, and Table 2 shows some unexpected results 
(highlighted), including a coupled pair of ill-conditioned 

and relatively insensitive modes. Also note however that 
any model taken beyond around the 10th iteration is 
accurate and successful. 

Table 1 Final identified parameters (to one output) 

Identified parameters (source model parameters) 

–4.09 
(–4) 

0 0 0 0 0.104 
(0.1) 

0.106 
(0.1) 

0 –14.89 
(–15) 

9.83 
(10) 

0 0 0.307 
(0.3) 

–2.87 
(–3) 

0 –9.83 
(–10) 

–14.89 
(–15) 

0 0 1.45 
(1.5) 

0.019 
(0) 

0 0 0 –9.51 
(–8) 

39.32 
(40) 

9.86 
(10) 

–0.413 
(–0.5) 

0 0 0 –39.32 
(–40) 

–9.51 
(–8) 

–0.096 
(0.7) 

1.02 
(1) 

1 1 1 1 1 0.0123 
(0) 

–0.002 
(0) 

Table 2 Final identified parameters (to three outputs) 

Identified parameters (source model parameters) 

–15.95 
(–4) 

0 0 0 0 0.029 
(0.1) 

–37.6 
(0.1) 

0 –13.94 
(–15) 

0.57 
(10) 

0 0 4.39 
(0.3) 

41.55 
(–3) 

0 –0.57 
(–10) 

–13.94 
(–15) 

0 0 –2.19 
(1.5) 

–6.94 
(0) 

0 0 0 –9.46 
(–8) 

39.32 
(40) 

9.75 
(10) 

–0.36 
(–0.5) 

0 0 0 –39.32 
(–40) 

–9.46 
(–8) 

–0.17 
(0.7) 

1.00 
(1) 

1 1 1 1 1 0.0108 
(0) 

–0.002 
(0) 

–0.367 
(2) 

–0.606 
(0.3) 

–1.55 
(0.35) 

–1.36 
(–1.35) 

–0.054 
(–0.06) 

1.49 
(1.5) 

0.670 
(0.67) 

7.25  
(–2.75) 

9.45 
(–1.3) 

16.84 
(3.6) 

1.41 
(1.4) 

0.756 
(0.77) 

–0.182 
(–0.2) 

1.40 
(1.4) 

Thus far, the c parameters have been constrained only in the 
first output, to allow easier comparison of identified 
parameters. However, the suggested method prescribes 
sharing the c constraints across all three outputs. It was 
suggested that constraining as 

13 14 15

21 22 25

31 32 33 34

1 1
1 1

1

c c c
c c c
c c c c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C  (18) 

would have permitted a better conditioned model to evolve. 
Indeed this is true; Figure 4 shows results with C 

constrained as in equation (18), and Table 3 shows the final 
model. The revised constraints make many variables in the 
C and B matrices more difficult to compare. Also note that 
the eigenvalues (and hence states) are, in practice identified 
in a different order to that of equation (15). They have been 
re-ordered before presentation in the table, which explains 
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why the C constraints do not appear the same in Table 3 as 
in equation (18). However, with this configuration of 
constraint, we see better convergence in trace(P), the 
eigenvalues are now all correctly identified, and as in  
Table 1, only parameter b51 is now ‘incorrect’. 

Figure 4 Explanation and parameter convergence metrics  
(with better constraints to three outputs) 
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Table 3 Final identified parameters (with better constraints to 
three outputs) 

Identified parameters (source model parameters only given 
here where comparison is meaningful) 

–4.10 
(–4) 

0 0 0 0 –0.285 –0.290 

0 –14.93 
(–15) 

9.67 
(10) 

0 0 0.129 –0.923 

0 –9.67 
(–10) 

–14.93 
(–15) 

0 0 0.452 0.07 

0 0 0 –9.51 
(–8) 

39.32 
(40) 

9.86 
(10) 

–0.41 
(–0.5) 

0 0 0 –39.32 
(-40) 

–9.51 
(–8) 

–0.103 
(0.7) 

1.02 
(1) 

–0.360 3.33 2.98 1 1 0.0123 
(0) 

–0.002 
(0) 

0.73 1 1 –1.35 
(–1.35)

–0.060 
(–0.06) 

1.49 
(1.5) 

0.670 
(0.67) 

1 –3.44 11.7 1.40 
(1.4) 

0.770 
(0.77) 

–0.181 
(–0.2) 

1.40 
(1.4) 

4.2 Robustness to noise 
Considering the single output case again, zero mean white 
noise is now added to the output, prior to identification in 
proportion to its RMS in ratios 10, 30, 50 and 70%. In all 
cases, the IEKF converged as previously, though with 
predictably lower performance (Table 4, R values). 
However, most of the error in these values is due to the 
added noise; when the converged models are compared with 
noise-free original data (R0 in the table) explanation is 
above 99% even in the worst case. Not shown here, the 
identified model parameters do vary slightly as noise 
increases, but the technique and ultimate performance of the 
models remains robust. Similar results were also seen from 
models identified for all three outputs. Of course any 
systematic bias in the noise would, unavoidably, result in a 
model with parameters identified to explain that bias. 

Table 4 Converged model explanations under the influence of 
noise in the output 

 Added noise ratio 

Explanation 10% 30% 50% 70% 

R (of noisy data) 98.97 91.75 79.45 66.84 
R0 (of clean data) 99.96 99.97 99.60 99.90 

4.3 Reduced and higher order models 
In practice, we would not know the required order of the 
plant to be identified. However, we can reasonably assume 
that the desired model is that which delivers very high 
output explanations from the lowest possible order; this is 
certainly the objective in the identification of reduced-order 
models. Since the IEKF identification process is not overly 
time-consuming, we can establish the best order choice by 
running a series of identifications with incremental n. 
Consider for example, identifications from all three outputs 
of model equation (15) as follows: 
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Accuracy, trace(P) and parameter convergence results are 
given for all five optimised models from 3rd to 7th order, in 
Figure 5. Some results in plots b and c have been scaled, 
since the intention is to illustrate their divergent or 
convergent nature, and for the same reason plot b illustrates 
only the most divergent parameter in the set. 

These results provide further insight on the full output 
5th order results seen earlier. Here, all order choices apart 
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from n = 4 and n = 5 result in divergent P with some 
divergent or slowly varying parameters; conversely we see 
very fast convergence in the 4th order result. All results 
with n above three produce excellent explanations, and as 
we would expect, final accuracy increases with model order; 
clearly any well-posed model with more parameters will be 
able to fit the data with greater accuracy. The result at n = 3 
would be rejected due to poor performance, but results at  
n = 6 or 7 are also undesirable, since P diverges markedly, 
and the parameters continue to drift. This behaviour 
illustrates poor conditioning, with more parameters than are 
required to explain the outputs. 

Figure 5 Explanation and parameter convergence metrics  
(with varying n) 
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We know the original model has five eigenvalues, but the 
best trade-off between accuracy and a consistent  
(well-conditioned) identified model is achieved with four 
states. This is because the dynamic influence of the source 
model’s eigenvalue at –4 is very weak in combination with 
the other modes; although it was derived arbitrarily, the 
source model itself has been defined with relatively poor 
conditioning. Identifications with five states and more than 
one output can yield unreliable estimates for that single 
eigenvalue, along with corresponding divergent parameters 
associated with it (in the B and C matrix). 

As the latter results show however, provided the 
objective of any real identification is extraction of the best 
possible model to describe the outputs, the four-state  
model here provides an excellent solution, regardless  
of the fact that it does not replicate the original model 
parameters. For comparison, its eigenvalues are identified at 
λ1,2 = –9.57 ± 39.38j and λ1,2 = –12.68 ± 10.27j. 

5 Extension to nonlinear model identification 
The EKF is naturally adapted to estimation of states and 
parameters of nonlinear models, and several authors have 
already used it for parameter or combined state and 
parameter estimation of structured nonlinear models 
(Kallapur et al., 2008; Hassani et al., 2009). The new IEKF 
is consequently also well-suited to identification of 
nonlinear models in the form of equations (1) and (2), and 
this can be achieved quite generally; for any smooth 
functions f, h, it can operate using the same set of equations 
(4), (11) to (14). The only challenge is to prescribe a form 
that allows sufficient freedom to map the nonlinearity while 
ensuring adequate conditioning. General polynomial 
combinations (terms) of x, u could be used, as could any 
differentiable function of them. However, the problem 
arises that (to retain conditioning) we cannot introduce a 
large number of terms at the outset, so a form of iterative 
term selection would be needed. Correlation methods could 
be used to select most significant terms, but with no known 
state structure at the outset, these methods cannot easily be 
used to decide the best candidates for inclusion in f or h. 
Also, as model order increases the number of potential 
terms increases disproportionately, and with an entirely free 
state structure the resulting model can no longer be 
interpreted modally. 

Without dismissing the potential of an entirely free 
structure (if a suitable process for term selection can be 
developed) the nonlinearity considered here is applied on to 
the state space framework used earlier. Using cubic splines, 
each of the previously scalar parameters within the A, B, C 
and D matrices is allowed to vary across the domain of the 
state or input it multiplies. For example, parameter c13 might 
vary as illustrated in Figure 6. 

Figure 6 Nonlinear spline-based variation of example parameter 
c13 
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One advantage of this structure is that the splines are 
uniquely determined by a few node points. Introducing  
(χi, γi) as the coordinate position of node i, if we fix the χ 
ordinates such that the p nodes are spread evenly in x, each 
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of the model coefficients can be described by just p nodal γ 
ordinates. Also, although the number of parameters in the 
model then increases by a factor of p, each parameter 
remains well-conditioned as it represents a unique subspace 
in the range of x, u. Note that in most cases the parameter 
will vary with state or input magnitude, as illustrated in 
Figure 6, but we do not constrain the nodes to reflect exactly 
in the y axis. The resulting spline set has p + 1 regions with 
a unique cubic function of x (or u) describing the output 
from each. To allow predictable extrapolation the first and 
last regions are simplified to linear functions (dashed in the 
figure). For example, 
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where the L are logical operators, 
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The coefficient set 
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can be written in terms of the γ ordinates of the nodes using 
constraint equations achieving continuity of value, rate and 
curvature at each node except the central node, which is 
constrained by value and with zero curvature. E.g., for  
p = 5 the set of coefficients for negative x (nodes 1–3) is 
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Coefficients for positive x and corresponding sets for larger 
p are found by obvious repetition and expansion 
respectively of equations (22). 

By first fixing a set of node χ ordinates, expressing the 
model symbolically in the form of equation (6) with each 
component coefficient in the form of equation (20) and 
solving for the cubic coefficients using equation (22), a final 

set of equations for f and h emerges, together with a set of 
logical operators L, for each x and u. The extended set of 
states z comprises true states and γ ordinates of the nodes 
only for each coefficient. Similar to equation (7), here 
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And the required Jacobians F and H are also easily 
symbolically computed from these. The most convenient 
way to create executable code for the whole IEKF is to 
define a template function with core equations (11) to (14) 
and write strings of code for L, f, h, F and H into it when 
the symbolic functions are evaluated in a build process. The 
symbolic strings become large, but remain manageable 
within MATLAB up to p = 9 nodes. 

6 Nonlinear handling model identification 
The splined IEKF is tested by identification of the handling 
response of a full vehicle model. The model comprises a 
rigid vehicle body which is free to move in all six degrees of 
freedom and is suspended above four massless tyre nodes 
on a flat road surface by quarter-car suspensions. Lateral 
and longitudinal tyre forces are created using a load 
dependent, combined-slip Pacejka tyre model which 
employs wheel-spin degrees of freedom along with  
first-order relaxation lags. In the tests conducted here, 
torques are applied to the (front wheel) driven wheels from 
a PI controller maintaining a constant forward speed of  
20 m/s. The source model is highly, but smoothly nonlinear 
and comprises 23 states. 

Three outputs, lateral acceleration ay, yaw angular rate r 
and roll angle φ, are recorded in response to input steer 
angle δ. The identification input signal adopts the principles 
discussed earlier for equation (16), but adds a sinusoidal 
sweep over 30 seconds in order to cover the full range of 
nonlinearity in the output – in this case –7 m/s2 < ay <  
7 m/s2. 

5 0.1 3 20, sin
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(rad, 0 25 Hz)
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−
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With this nonlinear structure, constraints in the B or C 
parameters cannot be applied as in Section 2, but it turns out 
these are no longer required; the identification is 
automatically self-constraining due to the setting of the x 
ordinate node positions, χi. These are first distributed in the 
range –1 < χi < 1 for all true states and inputs, and since the 
input is now normalised, the node spacings relevant to B 
and D terms stay fixed. Those for A and C are simply 
redistributed (and the filter rebuilt) periodically, as the filter 
iterates, in order to cover the range that evolves in each 
modal state or state pair. With the output also normalised, 
the states self-regulate, also approximately in the range  
–1 < x < 1, provided the number of states has been chosen 
appropriately. 
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The filter is further modified to take full advantage of 
known error covariance information; although R = I 
achieves correct identification, we can improve the speed of 
convergence by substituting the known error covariance, 

( )( )
1

1cov( )
N

T
k k k k

kN =

= − = − −∑R y h y h y h  

with h re-evaluated at all N time points using a fixed 
parameter set (model), e.g., the model at time N, and with R 
recomputed at each iteration of the ‘rinsing’ process. 

Figure 7 Identified model fits to identification data 

 

 

 

The nonlinear IEKF is initialised using values identified 
from a linear model identification on the same data; this 
linear model also provides a useful comparator to examine 
model performance. It is run with much lower ρ = 10–6, to 
ensure that adaptation of Pk and Kk happens slowly, taking 
account of the whole 30 second data set; this is necessary 
since different parameters in the model are now active at 
different times in the data. A summary of results for 
increasing order choice is given in Table 5; the best-fit 
linear model eigenvalues are given, together with 
performance figures for the identification data and also for a 
validation test considering various magnitudes of step 

response (see Figure 9 later). Tabled performance figures 
show the last percentage in the average R value across the 
three outputs, so 80 represents average R = 99.80%. 

Figure 8 Splines for nonlinear variation of λ and two other 
typical splined coefficients 
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The best compromise of performance and conditioning 
occurs at the (highlighted) 4th order, where we can also see 
the linear eigenvalues reflecting an expected 0.4 Hz  
yaw-sideslip vehicle handling mode combined with a 1.5 Hz 
mode which correlates with expectations of the roll degree 
of freedom. Figure 7 shows the detailed dynamic fit 
comparison of linear vs. nonlinear models for a section of 
the response time history at high lateral acceleration and this 
more clearly illustrates the capability of the nonlinear 
model. Figure 8 shows the splines mapping the nonlinear 
eigenvalue parameters along with typical splines for 
components in the B and C matrices. Note particularly the 
change in the first mode which shows reducing frequency 
and also reducing damping as state magnitude increases; 
both are expected yaw-sideslip behaviours, which the fixed 
linear λ cannot achieve. 

Finally, the validation test attempts to fully test 
performance using a different type of input; in the first half 
of this test, steps are added to a sweep across the range of 
nonlinearity and in the second half a range of higher 
magnitude steps is applied. Figure 9 shows how the 
nonlinear model matches the source model more accurately 
on this test, both dynamically and across magnitude. 
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Table 5 Linear and nonlinear identified model performance 

Linear λ and linear and nonlinear model performance (average output R = 99.xx%) 

n Linear model eigenvalues Linear identn Nonlinear identn Linear validation Nonlinear validation 

2 –2.3 ± 1.7j   60 73 29 56
3 –9.3 ± 2.5j –3.3  72 92 19 59 
4 –2.4 ± 2.5j –13.0 ± 9.3j  79 96 37 80 
5 –5.3 ± 5.4j –12.1 ± 8.7j –4.9 81 98 35 53 
6 –2.5 ± 2.5j –3.7 ± 10.0j –20.7±10.2j 82 99 40 88 

 
The results here are not claimed as the best possible reduced 
order nonlinear handling model; by constraining the 
nonlinearity to operate effectively as a variable linear 
model, nonlinear inter-relationships between states in the 
source model are not able to be replicated. The results do 
provide an effective illustration of the flexibility of 
extension of the IEKF method to a nonlinear structure 
though. Further research will consider how more general 
state combinations can be explored without predefined state 
definition or structure. All indications suggest that any 
smooth state nonlinearity can be identified using the IEKF. 

Figure 9 Identified model fits to validation data 

 

 

 

7 Conclusions 
A novel method for system identification and/or model 
order reduction has been successfully demonstrated on both 
linear and nonlinear multi input/output systems. The IEKF 
is capable of defining and self-ordering a state-space model 
from input/output data alone, without any prior knowledge 
of the system dynamics. The method provides rapid 
convergence of model parameters in a uniquely constrained 
modal canonical form and hence also provides information 
on the system dynamics in terms of the identified 
eigenvalues. The proposed method has just one easily tuned 
parameter, which governs speed of convergence without 
influencing accuracy in the identified model. Clear 
convergence criteria have been demonstrated, and these can 
also be used to determine the most appropriate model order 
for an accurate yet also well-conditioned reduced-order 
model. 

Linear model tests show the technique is robust to high 
levels of noise, provided the noise is not correlated with the 
system dynamics. A nonlinear model structure using spline 
interpolation of coefficient variations with states and inputs 
has also been tested. This exhibits expected eigenvalue 
migration and delivers an accurate reduced order model of 
vehicle handling behaviour. 
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