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Abstract: This paper addresses the problem of optimisation of the 
synchronisation for a class of uncertain chaotic systems from a control theoretic 
point of view. A robust adaptive feedback which accomplishes the 
synchronisation of chaotic systems using an optimal tuning scheme based on 
Riccatti equations is successfully adapted. The underlying idea is to optimise 
the synchronisation of chaotic systems by accounting the control effort  
despite the uncertainties. The approach developed considers incomplete state 
measurements and no detailed model of the systems to guarantee robust 
stability. This approach includes a high-order sliding mode estimator and  
leads to a robust adaptive feedback control scheme. A finite horizon can be 
arbitrarily established by ensuring that the chaos synchronisation is achieved at 
established time. An advantage is that the studied scheme accounts the energy 
wasted by the controller and the closed-loop performance on synchronisation. 
Both mathematic proof and numerical simulations are presented to show the 
feasibility of the optimisation strategy for establishing the synchronisation of 
chaotic systems even if there are some modelling mismatches and parametric 
variations. 

Keywords: chaos synchronisation; optimal feedback control; Ricatti equation. 
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1 Introduction 

Since the idea of synchronising chaotic systems was introduced by Pecora and Carroll 
(1990), chaos synchronisation has received increasing attention due to its theoretical 
challenge and its great potential applications in secure communication (Murali and 
Lakshmanan, 1998), chemical reaction and biological systems (Chen and Dong, 1998; 
Mao et al., 2009) and so on. Due to the wide potential applications of chaos 
synchronisation, various synchronisation schemes have been proposed in the last two 
decades both in theoretical analysis and experimental implementations, such as 
generalised synchronisation (Murali and Lakshmanan, 1998; Yang and Duan, 1998; 
Wang and Guan, 2006), phase synchronisation (Michael et al., 1996; Santoboni et al., 
2001), lag synchronisation (Taherion et al., 1999; Chen et al., 2007), anti-synchronisation 
(Li, 2005; Hu et al., 2005; Li and Zhou, 2006) and so on. But despite the amount of 
theoretical and experimental results already obtained, chaos synchronisation seems 
difficult task, over all if we think that: 

1 due to sensitive dependence of chaos on initial conditions, it is almost impossible to 
reduce the same starting conditions 

2 in matching exactly the master and slave systems, even infinitesimal parametric 
variations of any model will eventually result in divergence of orbits starting nearby 
each other 

3 parametric differences between chaotic systems (for instance, due to inaccuracy 
design or time variations) yield different attractors. 

However, in practice, due to the inconsistence of the operational conditions (such as the 
environment, the load, the operational frequency), system uncertainties are unavoidably 
existed; i.e., exact knowledge of the system dynamics is not possible. A more realistic 
situation is to know some nominal functions of the corresponding nonlinearities, which 
are employed in the control design. However, the use of nominal model nonlinearities 
can lead to performance degradation and even closed-loop instability. In fact, when the 
systems possess strong nonlinearities, the standard linearising, generic model, and active 
controllers cannot cancel completely such nonlinearities, and instabilities can be induced. 
The worst case occurs if knowledge of the nonlinearities is very poor or completely 
absent, such that conventional linearising techniques are inadequate. Robust 
synchronisation, however, may provide a possible candidate to deal with this problem, 
see examples (Han, 1995; Femat et al., 1999; Femat and Solís-Perales, 2008), and 
references therein. In particular, several authors have reported adaptively estimation 
techniques. The proposed techniques present an acceptable performance and allow 
synchronisation, although the parameters are not known (Kammogne and Fotsin, 2014; 
Mbe et al., 2014) or they are time-varying. But the only drawback of these strategies is 
that the structure of parameters for a given model must be known. Although the  
structure of the parameters can be known in some cases, it would be desirable to have a 
scheme to achieve synchronisation even if slave oscillator has little prior knowledge 
about the master system. This necessity of robustness can be required in some systems 
(for instance, the multimode laser, animal gait or oscillatory neural systems). 
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The geometric approach for the design of nonlinear controllers based on uncertainty 
observers has been employed, and these kinds of techniques show satisfactory 
capabilities for a wide range of systems (Aguilar et al., 2002; Aguilar-Lopez and 
Alvarez-Ramirez, 2002). The use of proportional observers coupled with linearising 
controllers has been very successful, but the proportional observers have several 
problems. Notably, they are very sensitive to noisy measurements, and robustness issues 
have not been completely addressed. For these reasons, more sophisticated observers 
have been designed, in order to generate better open-loop and closed-loop performances. 
For some, a high-order sliding mode observer has been designed to reconstruct the 
dynamics of the output error and its time derivatives. Then, based on the reconstructed 
information, a output-feedback control signal is constructed to force the slave converge to 
the master. This scheme does not require the priori information about the system model 
to carry out the chaos suppression (or synchronisation) and only one controller parameter 
is required to tune, thus making the complex control problem become physically 
realisable. 

However, despite the large amount of theoretical and experimental results already 
obtained, a great deal of effort is still required to determine the optimal parameters, in 
order to shorten the synchronisation time (Woafo and Kreankel, 2002; Chembo and 
Woafo, 2002), define the synchronisation threshold parameters (Pyragas, 1998),  
and avoid loss of synchronisation, instability during the synchronisation, process  
(Osipov et al., 1997). On the other hand, optimisation is a key-word for wide-spread 
applications, and efforts should be made to minimise the synchronisation time. This 
problem is important in all fields where synchronisation finds or will find practical 
interests. Then, it is fair to say that there is a need to study adaptive chaos 
synchronisation and optimisation problems of nonlinear systems with uncertainties. 

Two current questions are still open from the chaos synchronisation and suppression 
problem. The former is about how to set an arbitrary time in which the stabilisation of 
system be successfully achieved. The latter concerns to the estimation (and possibly 
reduction) of the control effort wasted during the execution of controller. On this issue, a 
research direction is being consolidated. Firstly, Femat et al. (1999, 2002) proposed an 
approach with low-parametrisation structure, which is a robust asymptotic feedback 
coupling (Femat et al., 2000). After that, Bowong et al. (2006) reported a scheme for the 
computation of the duration time departing from the robust asymptotic feedback 
coupling. However the control effort is not accounted. 

In the light of recent developments in chaos synchronisation, this paper addresses the 
optimisation problem of the synchronisation of chaotic systems by accounting the control 
effort departing from advances reported in Femat et al. (1999, 2000, 2002, 2009) and 
Bowong et al. (2006). The main idea behind our proposal is, departing from the 
discrepancy synchronisation error system, to construct an extended nonlinear system 
which should be dynamically equivalent to the original system. In this way, the 
discrepancy is lumped into a nonlinear function, which is rewritten into the extended 
nonlinear system as a state variable. We then propose a robust adaptive feedback which 
accomplish the synchronisation of chaotic systems using an optimal tuning scheme based 
on Riccatti equations. A high-order sliding mode observer is used to get the estimates of 
the output and its time derivatives, and then the estimated values are used to design a 
robust adaptive feedback to force the dynamics of the slave system to follow the master 
system in spite of uncertainties errors, mismatch parameter and external perturbations. 
The proposed approach is algebraic and only requires to solve a matrix equation. 
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Illustrative examples have been given to verify and validate analytical results. The results 
show that the control effort can be accounted under some conditions to set the time of 
convergence. 

The rest of the paper is organised as follows. In the next section, a design of robust 
synchronisation scheme is proposed. In Section 3, some illustrative examples are 
presented to testify the performance of our proposed design. Finally, some conclusions 
are drawn in Section 4. 

2 Main result 

2.1 Problem statement 

In this section, we describe the class of uncertain systems under study and state the 
synchronisation problem. The synchronisation objective is to design a robust direct 
feedback controller such that the slave system follows the master system at a finite time. 

Let us consider the following nonlinear dynamical system whose dynamical 
behaviour is chaotic: 

( )
( )

  ,  ,

,
m m

m m

x f x p

y h x

⎧ =⎪
⎨

=⎪⎩

�
 (1) 

where xm = [x1m, x2m, ..., xnm]  ∈ Rn denotes the state vector of the master system, f is an 
unknown smooth nonlinear function uniformly bounded in t, p is the parameters vector, 
ym ∈ R is the system output (measurable state) and h is a smooth function. 

Let us now take a chaotic dynamical system of the same order as equation (1): 

( ) ( )
( )

  ,   ,

  ,
s s s

s s

x f x q g x u

y h x

⎧ = +⎪
⎨

=⎪⎩

�
 (2) 

where xs = [x1s, x2s, ..., xns]  ∈ Rn denotes the state vector of the slave system, ys ∈ R the 
system’s output, f and g are a nonlinear function with appropriate dimension, q ≠ p is the 
parameters vector and u ∈ R is the feedback coupling. As we deal with chaotic systems, 
equations (1) and (2) can be considered to be bounded. 

System (1) is the so-called master, whereas system (2) represents the slave system. 
System (1) describes the goal dynamics while system (2) represents the experimental 
system to be controlled. The synchronisation problem can be stated as follows: given the 
transmitted signal ym and least prior information about the structure of the nonlinear 
filter, system (1), to design a feedback coupling u which synchronises the orbits of both 
the master and slave systems at an established finite time, i.e., 

lim ( )  ( ),  s mt T
x t x t

→
≈  (3) 

where T is the synchronisation established time. 
From the control viewpoint, the synchronisation problem can be seen as follows.  

Let us define the synchronisation error as follows 
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Then, the dynamics of the synchronisation error is given by 

( ) ( )
( )

,  ,  ,   ,  

,  ,
m s m

m

e f x x p q g e x u

y h e x

⎧ = Δ +⎪
⎨

=⎪⎩

�
 (5) 

where Δf = f(xs, q) − f(xm, p) is a smooth vector field, and h(e, xm) = h(e + xm) − h(xm) is a 
smooth function which determines the difference between the master and slave outputs. 
In this way, the synchronisation problem can be seen as the stabilisation of equation (5) at 
the origin in a finite horizon. In other words, the problem is to find a robust feedback 
coupling law u(t) such that lim || ( ) || 0

t T
e t

→
≈  (which implies that xs ≈ xm for all t ≥ T > 0). 

First, since the functions f(xs, q), f(xm, p) and h are sufficiently smooth, and the output 
y is assumed to have a relative degree ρ for all (e, u) ∈ Ω × R where Ω ⊂ Rn, there exists 
an invertible change of coordinates z = Φ(e) such that the synchronisation error system 
(5) can be written in the following canonical form (Isidori, 1989; Kocarev et al., 1998; 
Femat et al., 1999; Femat, 2002): 

1

1

,     1,  2,  ...,  1
( , ) ( , ) ,

( , ),
,

i iz z i
z z z u

z
y z

ρ

ρ
ζ ζ

ζ ζ

+= = −⎧
⎪ = +⎪
⎨

=⎪
⎪ =⎩

�
�
� Ψ

α β
 (6) 

where y is the system output, ρ the relative degree of system (6) (ρ is equal to the lowest 
order time-derivative of the output y that is directly related to the feedback coupling u) 
and ζ ∈ Rn−ρ is the unobservable states vector (internal dynamics). 

To ensure the achievement of the synchronisation’s objective, we make the following 
assumptions. 

1 There is only a single system state as the output. Without loss of generality, it is 
letting ym = h(xm) = x1m, i.e., only the first system state is measurable. 

2 There are some unknown model mismatches between the master and the slave,  
i.e., Δf = f(xs, q) −f(xm, p) ≠ 0. 

3 The error dynamics system can be transformed into a canonical form, i.e., there 
exists a diffeomorphism transformation of coordinate given by system (5). 

4 System (5) is minimum phase system. 
Some comments regarding the above assumptions are in order. The first assumption 

is realistic. For instance, in the secure communication case, only the transmitted signal 
and receiver signal are available for feedback from measurements. Another example can 
be found in neuron synchronisation where master neuron transmits a scalar signal. The 
slave neuron tracks the signal of the master neuron. Concerning the second assumption, 
we claim that it is a general and practical situation because the mismatches between the 
master and the slave are unavoidably existed in real cases, and hence Δf always exists. 
The source of such uncertainties are: 
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1 unknown values of the model parameters or time-varying parameters 

2 since the master and slave systems are chaotic, their trajectories depend on the initial 
conditions which are often unknown 

3 structural differences between models of the master and slave systems. 

Concerning the third assumption, several systems subjected to chaotic synchronisation 
can be transformed into the canonical form (6). For example, the Lorenz dynamical and 
several types of Chua’s circuits can be transformed into the canonical form (6) with a 
relative degree ρ < n. Also non-autonomous second-order chaotic systems such as 
Duffing and Van der Pol oscillators can be written as the canonical form (6) with ρ = n. 
Regarding the last assumption, the minimum phase assumption implies that the zero 
dynamics (0, )ζ ζ=� Ψ  converges to the origin. In other words, the closed-loop system is 
internally stable (Kocarev et al., 1998). From the control viewpoint this is a strong 
assumption. But this is reasonable for the boundedness of the chaotic attractor in the state 
space and the interaction of all the trajectories inside the attractor in region Υ. So when 
we have taken actions to achieve lim ( ) 0,  it T

z t
→

=  the part Ψ(z, ζ) → Ψ(0, ζ) → 0 as t → ∞ 

asymptotically for the so-called minimum-phase character. However, several interesting 
chaotic systems satisfy this internal stability assumption. 

Now, since f(xs, q) and f(xm, p) are uncertain, the mapping z = Φ(e) is an uncertain 
nonlinear change of coordinates, hence α(z, ζ) and β(z, ζ) in the transformed system (6) 
are also unknown. The idea to deal with the uncertain terms α(z, ζ) and β(z, ζ) is to lump 
them into a new function which can be interpreted as a new observable state. By an 
observable state we mean that the dynamics of such state can be reconstructed from 
online measurements (for example y = z1). Thus, let us suppose that sgn[βE(z)] is equal to 
sgn[β(z, ζ)] where sgn() stands for the sign function. In addition, let η = zρ+1 = Θ(z, ζ, u) 
with Θ(z, ζ, u) = α(z, ζ) + δ (z, ζ)u and δ(z, ζ) = β(z, ζ) − βE(z). In this way, system (5) 
can be rewritten in the following extended form (Femat et al., 1999, 2009; Femat, 2002; 
Femat and Solís-Perales, 2008): 

1
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,            1,  2,  ...,  1,
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where 
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with ∂iΘ(z, ζ, u) = ∂Θ(z, ζ, u)/∂zi, i = 1, ..., ρ. From system (7), it is to see that the 
mismatches between the master and slave have been lumped into a nonlinear function  
η = Θ(z, ζ, u), which has been interrupted as an augmented state variable zρ+1. 

The scalar function u and a state estimator for the states (z, η) can be designed from 
the system (7). This fact can be proved because the system (7) is dynamically externally 
equivalent to system (6) (Femat et al., 1999, 2009; Femat, 2002; Femat and Solís-Perales, 
2008). 

2.2 Optimal robust control design 

To achieve the finite time synchronisation stated in the previous section, a suitable robust 
feedback u will be designed. In what follows, the problem of designing u is addressed in 
such a manner that energy wasted by the feedback is accounted. Towards the 
optimisation, the first step in our approach is to consider the transitive of states. To this 
end, the following quadratic criterion is defined by quantifying the transient trajectory of 
the synchronisation error (Anderson and Moor, 1990): 

0

( , ) ( )  ( ) ( ) ( ) ,
T

T T
f

t
J z u z T Q z T z t Qz t dt= + ∫  (8) 

where t0 ≥ 0 is the time at which the control starts and T > t0 is the time for which the 
synchronisation error system (7) achieves the desired trajectory (e = 0); Q > 0 and Qf ≥ 0 
are positive symmetric matrices. This paper deals with the problem of finding a control 
law u which synchronises both the master (1) and slave (2) systems at an established 
finite time T meanwhile minimising the cost function (8). 

The feedback coupling is designed as follows: 

0
1 1( ) ,      ,
( ) 2E

u z B Pz t t T
z

η− ⎡ ⎤= + ≤ ≤⎢ ⎥⎣ ⎦β
 (9) 

where T is given, P ∈ Rρ×ρ is a symmetric positive matrix, solution of the Riccati 
equation: 

,
( ) ,f

P A P PA PBB P Q
P T Q

⎧− = + − +⎪
⎨ =⎪⎩

�
 (10) 

with A ∈ Rρ×ρ and B ∈ Rρ two matrices defined as 

0 1 0 0 0
0

0 0 1 0 0
 and  .

0
0 0 0 0 1

1
0 0 0 0 0

A B

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
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⎣ ⎦⎢ ⎥⎣ ⎦
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From optimal control theory (Anderson and Moor, 1990), it is known that the linear 
optimal control depends mainly on the relative sizes of the system state and the control 
weighting matrices Q of the quadratic functional. We also refer the reader in Femat et al. 
(2009). 

We have the following result. 

Proposition 1. The state feedback control (9) stabilises the error system (7) in the sense 
that the solution (z(t), η(t), ζ(t)) → (0, η*, ζ*), where ζ* and η* = α (0, ζ*) + δ(0, ζ*)u* are 
respectively vector and scalar constant, as t → T < ∞, for any initial conditions  
(z0, η0, ζ) ∈ U0 × Ξ ⊂ Rn × R, where Ξ = {η0 ∈ R: η0 = Θ(z0, ζ0, u*)}, with suitable 
matrices Q and Qf. Moreover, the closed loop performs a value of the functional (8) 

0 0( , ) (0) ,J z u z P z=  where z0 is the initial condition of the error system (7). 

Proof. Substituting the feedback control law (9) in the error system (7), the closed-loop 
can be written as 

1 ,
2

 ( , , , , ),

z A BB P z

z u uη η ζ

⎧ ⎛ ⎞= −⎪ ⎜ ⎟
⎝ ⎠⎨

⎪ = Γ⎩

�

� �
 (11) 

and 

 ( ,  ).zζ ζ=� Ψ  (12) 

By the Assumption 2, the subsystem (12) is stable as (z, η) → (0, 0) for any (z(0), η(0), 
ζ(0)) in a subset U0 ∈ Rn containing the (regular) point e0 ∈ Rn. Therefore, the proof is 
focused on the first equation of (11). The time dependence has been omitted in this proof 
for seeking simplicity in notation. 

Consider the following Lyapunov candidate function: 

  . V z Pz=  (13) 
Its time derivative satisfies 

( )

  ( )   ,

1 1
2 2

 ,

( ) ( ).

V z Pz z P t z z Pz

z A BB P Pz z P A BB P z

z A P PA PBB P Q z

z t Qz t

= + +

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − − + −

= −

� �� �

 (14) 

which is negative definite. Hence, the state z(t) converges to zero for all t. This implies 
that z = 0 is a stable point. Since z(t) and ζ(t) belong to some attractor, functions α(z, ζ) 
and β(z, ζ) in the error system (7) are smooth and bounded, hence, the function 

( , , , , )z u uη ζΓ �  is also bounded and smooth. Moreover, the state ζ(t) under the state 
feedback is bounded and converges to zero since the system is in cascade form. In 
addition, the matrix Q determines the convergence rate. Then, by integrating equation 
(14) from t0 to T and by using equation (13), we have 



   

 

   

   
 

   

   

 

   

   60 M. Kountchou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

0

( ) ( )  (0) (0) (0) ( ) ( ) ,
T

t
z T Pz T z P z z t Qz t dt− = −∫  (15) 

from where 0 0( , ) (0) .J z u z P z=  This completes the proof. 
 � 

We stress that the feedback (9) is defined in the interval t0 ≤ t ≤ T and the stabilisation is 
achieved for some matrices Q and Qf if solutions of equation (10) exist in such interval. 
Also, note that the proposed feedback requires availability of the complete state. This can 
be seen as drawback; hence an approach of the state feedback is required to avoid 
dependence on the full information of the system. Additionally, other approach to derive 
result in Proposition 1 can be stated by introducing the following definitions 

[0...0, ( )]EB z=� β  with .
( )u

E
u

z
η

= −
β

 The control uu can be named the ‘unavoidable’ 

part of feedback control because it represents the force necessary to compensate the  
non-linear function η. In this sense, as a second step is derived to design the feedback 
such that the control effort can be accounted. That is, the criterion (8) can be re-defined to 
include the ‘avoidable’ control effort as follows: 

0

( , ) ( )  ( ) ( ) ( ) ,
T

f
t

J z u z t Q z t z t Qz t u Ru dt⎡ ⎤= + +⎣ ⎦∫� � � �  (16) 

with a given symmetric matrix R > 0 and .uu u u= −�  Hence, the control law becomes 

.
( )u

E
u u

z
η

= − + �
β

 (17) 

Therefore, the closed loop takes the form: 

  ,
 ( , , , , ),

 ( ,  ).

z Az Bu
z u u

z

η η ζ

ζ ζ

⎧ = +
⎪ = Γ⎨
⎪ =⎩

� ��
� �
� Ψ

 (18) 

which allows to set the standard LQ problem as in Anderson and Moor (1990): 

min  ( , ),
u

J z u� �  (19) 

such that 

 ,  z Az Bu= + � ��  (20) 
whose solution for controller is given by 

1
0( ) ,   ,u R B P t z t t T−= − ≤ ≤�  (21) 

where P(t) is now the solution of the following Riccati equation: 

1  ,
( )  ,f

P A P PA PBR B Q
P T Q

−⎧− = + − +⎪
⎨ =⎪⎩

� � �
 (22) 
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and a value of functional (16) given by 

0 0( , ) (0) . J z u z P z=� �  (23) 

We stress that, at this point, the full knowledge of states is required by this approach. 
Nevertheless, the linearising feedback control law (9) is not physically realisable because 
it requires measurements of the state z and the uncertain state η which is a very stringent 
demand for the literature of chaotic secure communication. In order to increase the 
security of communication, the least possible information about the transmitter should be 
contained in the communication channel. According to the Assumption 1, only the state 
z1 is available for feedback. Some strategies have been developed to achieve this, such as 
the linearising feedback-based estimator (Femat et al., 1999, 2009; Femat and  
Solís-Perales, 2008), the nonlinear geometric-based estimator (Li et al., 2005), and so on. 
In the next section, the full knowledge situation is relaxed by using a state estimator. The 
cost to pay is a higher control effort because of estimation than those due to the use of all 
states in feeding back. 

2.3 A suboptimal robust feedback coupling 

There are two basic reasons to relax the optimal condition presented previously. The 
former, recall that the optimal result in the previous section concerns to the perfect 
knowledge of the whole state, the dynamics and the augmented state η, therefore if we 
consider the Assumption 1, the optimality of the previous section is not achieved 
perfectly. The latter concerns to the controversy on the optimal, the robust and the 
fragility notion in feedback interconnections (Keel and Bhattacharyya, 1997, 1998; 
Mäkilä, 1998; Femat, 2002). Then, the construction of an state estimator yields in 
suboptimal robust approach. As it has been established in Femat et al. (1999, 2009), 
Femat (2002) and Femat and Solís-Perales (2008), the problem of estimating (z, η) can be 
addressed by using a high-gain observer. Here, the dynamics of the states z and η can be 
reconstructed from measurements of the output y = z1 by using the following high-order 
sliding mode-based time differentiator estimating systems: 

1
1 2 1 1 1 1 1

1
2

1 1 1 1 1
1
2

1 1 1 1

1
1 1 1

ˆ ˆ ˆ ˆ | | sgn( ),

ˆ ˆ ˆ ˆ | | sgn( ),       1 ,

ˆˆ ˆ ˆ ˆ | | sgn( ) ( ) ,

ˆ ˆsgn( ),

i
i i

i i i

E

z z L z z z z

z z L z z z z i

z L z z z z z u

L z z

ρ
ρ

ρ
ρ

ρ
ρ ρ

ρ
ρ

λ

λ ρ

η λ

η λ

+

− +
− +

+

+
+

⎧
⎪ = − − −
⎪
⎪⎪ = − − − < <⎨
⎪

= − − − +⎪
⎪

= − −⎪⎩

�

�

�

�
β

 (24) 

where L > 0 is the so-called high-gain parameter, λi, i = 1, ..., ρ + 1 and ˆ( )E zβ  are 
suitable selected positive constants. 

Let 1
ie ρ+∈� R  be the estimation error vector whose components are defined as 

follows: ˆ ,    1,  ...,i i ie z z i ρ= − =�  and 1 ˆ .eρ η η+ = −�  By subtracting (ρ + 1)th subsystem of 
system (7) and system (24), one has 



   

 

   

   
 

   

   

 

   

   62 M. Kountchou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

1
1 2 1 1 1

1
2

1 1 1
1
2

1 1 1

1
1 1 1

 | | sgn( ),

 | | sgn( ),    2 ,

 | | sgn( ),

sgn( ) (.),

i
i i

i i i

e e L e e

e e L e e i

e e L e e

e L e

ρ
ρ

ρ
ρ

ρ
ρ ρ ρ

ρ
ρ ρ

λ

λ ρ

λ

λ

+

− +
− +

+

+

+
+ +

⎧
⎪ = −
⎪
⎪⎪ = − ≤ ≤⎨
⎪
⎪ = −
⎪

= − −Γ⎪⎩

�� � � �

�� � � �

�� � � �
�� �

 (25) 

We define the following variables 

( )1
1 1 1

1
1 1 2

1

+1 +1

| | sgn ,

| |  ,     2 ,
.

i
i i

i i

w L e e

w L e e i
w e

ρ
ρ ρ

ρ ρ
ρ ρ ρ

ρ ρ

ρ

+

− +
−

+ − + − +

⎧
⎪ =
⎪
⎨

= ≤ ≤⎪
⎪ =⎩

� �

� �
�

 (26) 

Note that 

( ) ( )1
1 1 1 1 1ˆ| | sgn ,w L e e z z

ρ
ρ ρ+
⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

�� � � �  

where superscript [.] denotes the first derivative of time. Due to the boundedness of 
chaotic systems, z1 is bounded. Therefore, to track the dynamics of z1, 1̂z  must be 

bounded too. Then, it can be derived that 
1
2

1 1[| |  sgn( )],  1,...,
i
ie e i

ρ
ρ ρ
− +
− + =� �  is also bounded. 

Without loss of generality, assuming that its upper bound is ε, which can be chosen as a 
large enough number, then we get 1 1 1ˆ( ). w L z zρε≤ −�� �  We point out that the value of ε is 
unknown in practice. Generally, it can be approximated based on the prior information of 
the system upper bound. In this way, system (26) can be changed into the following 
‘estimation system’: 

  (. ),w LDw= + Ω�  (27) 

where 1 1( ,  . . . , )Tw w wρ+=  and Ω(.) = [0, 0, ..., −Γ(.)]T and D is defined as follows 

1

2

1

0 0
0 1 0

.
0 0 1
0 0 0

D

ρ

ρ

λ ε ε
λ

λ
λ +

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
−⎢ ⎥

⎢ ⎥−⎣ ⎦

…
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Since system (7) is contained in an attractor, the time derivative of zρ�  is bounded and 
thus Γ(.) is also a bounded function. Thus, by choosing suitable constants λi, i = 1, ...,  
ρ + 1 such that the matrix D has all its eigenvalues in the left-half complex plane, we 
have wi → 0, 1 ≤ i ≤ ρ + 1. That is, the ‘estimating error’ system w  is globally 
asymptotically stable at zero, which implies that 1̂ ,  1 1. iz z i ρ→ < ≤ +  So, the estimates 
of unmeasurable state zi, 1 < i ≤ ρ and model uncertainties η can be duly obtained. 

By using the estimated values ˆˆ( , ),z η  the feedback (9) can be written as 

0
1 1ˆˆ ˆ( ) ,      .
ˆ( ) 2E

u z B Pz t t T
z

η− ⎡ ⎤= + ≤ ≤⎢ ⎥⎣ ⎦β
 (28) 

while, after transient, the feedback can be expressed by 

1 1ˆˆ ˆ( ) ,      ,
ˆ( ) 2E

u z B Pz t T
z

η− ⎡ ⎤= + >⎢ ⎥⎣ ⎦β
 (29) 

where P  is a constant positive definite matrix such that the error system (7) remains in e 
= 0 for t > T, thus P  is also a tuning parameter. Notice that the control effort on the 
suboptimal robust controller is higher than the ideal one. As a matter of fact, the waste of 
energy increases due to the estimation since 

0
0 0 ˆ ˆ( , ) (0) ( ) ( ).

T

t
J z u z P z z z Q z z= + − −∫� �  (30) 

as a consequence, the choice of parameters becomes important and present a trade-off 
between optimisation and estimation. The tuning parameter P  is also very important 
because it can be adjusted after the achievement of the synchronisation (t > T). Therefore, 
it permits to reduce and keep the error system to zero in case of loss of synchronisation. 

3 Illustrative examples 

In this section, the implementation of the synchronisation of two chaotic systems via the 
proposed robust adaptive feedback combined with the high-order sliding mode observer 
is illustrated. The underlying idea is to evaluate the performance of the proposed robust 
synchronisation strategy. In the numerical simulations, the program uses the Runge-Kutta 
integration algorithm which is one classical method for ordinary differential equations. 

3.1 Synchronisation of two Chua’s oscillators 

Here, we study the synchronisation of two Chua’s oscillators with parameter 
mismatching. The aim is to show that the synchronisation can be attained in spite of 
parametric variation and to illustrate that the chaotic minimum-phase assumption is 
satisfied. The Chua oscillator is an electronic circuit which consists of one linear 
inductor, two linear resistors, two linear capacitors and a nonlinear resistor which is the 
so-called Chua diode. It is a typical chaotic oscillator with its dynamics governed by the 
following equation: 
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( )1 1 2 1 1

2 1 2 3

3 2 2

   ( ) ,
  ,
 ,

m m m m

m m m m

m m

x p x x f x
x x x x
x p x

⎧ = − −
⎪

= − +⎨
⎪ = −⎩

�
�
�

 (31) 

where 

( )1 1 1 1( )   0.5(   ) |   1 |   |   1 | .m m m mf x bx a b x x= + − + − −  

The slave system can be constructed as: 

( )1 1 2 1 1

2 1 2 3

3 2 2

    ( )  ,
    ,

,

s s s s

s s s s

s s

x q x x f x u
x x x x
x q x

⎧ = − − +
⎪

= − +⎨
⎪ = −⎩

�
�
�

 (32) 

where 

( )1 1 1 1( )   0.5( ) |   1 |   |   1 | .s s s sf x bx a b x x= + − + − −  

Subtracting equation (31) from equation (32) and using the notation e1 = x1s − x1m,  
e2 = x2s − x2m and e3 = x3s −x3m yields 

1

2 1 2 3

3 2 2

  ,
   ,
  ,

e F u
e e e e
e q e G

= Δ +⎧
⎪ = − +⎨
⎪ = − +⎩

�
�
�

 (33) 

where ΔF and G are unknown functions defined as follows: 

1 2 1 1 1 2 1 1 1 1 1 1 1 1

2 2 2

  ( ) ( ) ( ) ( ) ( )
and    ( ) .

m m m m

m

F q e e q p x p q x p f x q f e x
G p q x

Δ = − + − + − + − +

= −
 

Now, defining the master output by ym = x1m and the slave output by ys = x1s, one has that 
y = h(e) = e1. This implies that the smallest integer is ρ = 1. In this way, the coordinates 
transformation is globally defined by z1 = e1, ζ1 = e2 and ζ2 = e3. Then, the uncertain 
system (33) can be rewritten as follows: 

1

1 1 1 2

2 2 1

1

    ,

  ,

 ,
  ,

z F u

z

q G
y z

ζ ζ ζ

ζ ζ

= Δ +⎧
⎪

= − +⎪
⎨

= − +⎪
⎪ =⎩

�
� � �
� �  (34) 

where y denotes the output of the error uncertain system. In order to illustrate that system 
(34) satisfies the minimum phase assumption, one may prove that 1 1 1 2  zζ ζ ζ= − +� � �  and 

2 2 1 q Gζ ζ= − +� �  converge asymptotically to zero when z1 = 0. Note that ζ = (ζ1, ζ2)T is 
uncertain. However, it is clear that ζ is bounded. Thus, the zero dynamics can be  
written as 
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,E Hζ ζ= +�  

where H = [0, G]T and 

2

1   1
,

0
E

q
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

which is Hurwitz because q2 > 0. Since G is bounded, the zero dynamics subsystem 
E Hζ ζ= +�  is asymptotically stable. Hence, system (34) is minimum phase. Since 

Assumptions 1 and 2 are satisfied, the dynamical system (34) can be transformed into its 
equivalent canonical form (6) (with η = ΔF as the augmented state). So, the extended 
state observer (24) can be described in the following form: 

1
2

1 1 1 1 1 1
2

2 1 1

ˆˆ ˆ ˆ|   | sgn(   ) ,

ˆ ˆ  sgn( ).

z L z z z z u

L z z

η λ

η λ

⎧
⎪ = − − − +⎨
⎪ = − −⎩

�

�
 (35) 

Hence, the robust adaptive feedback law (28) and (29) can be described as 

0

1 0

1

0 ,
1ˆ ˆ  ,ˆ( ) 2
1ˆ ˆ
2

t t

B Pz t t Tu z

B Pz t T

η

η

<⎧
⎪
⎪− − ≤ ≤= ⎨
⎪
⎪− − >
⎩

 (36) 

In the numerical simulations, the initial conditions of the master and slave systems were 
chosen to be (x1m(0), x2m(0), x3m(0)) = (0.1, 0.02, 0.001) and (x1s(0), x2s(0), x3s(0))  
 = (0.2, 1, 2). The initial condition of ˆˆ( , ),z η  is chosen to be 1 ˆˆ( (0),  (0))  (0.1,  0).z η =  

The true parameter values of the master are: p1 = 9 and p2 = 100 / 7, while the 
parameter values of the slave are: q1 = 8.82, q2 = 14 corresponding to 2% of parameter 
mismatches. The parameter values of piecewise-linear nonlinear resistor are a = −8 / 7 
and b = −5 / 7. The high gain parameter value was chosen as L = 20 and the constants are 
chosen as: λ1 = 1, λ2 = 2. The controller parameters were Q = 40,000, Qf = 200 and 

200.P =  The finite horizon is established at T = 0.1 sec (i.e., the convergence should be 
attained at time t ≡ T). 

Figure 1 provides a graphical representation of the synchronisation process between 
two Chua oscillators obtained numerically. From this figure, one can observe that the 
synchronisation error is stabilised at the origin by the output-feedback controller (35) and 
(36) in spite of the fact that both master and slave circuits have different parameters 
values. From Figure 1(b), one can see that a fairly good convergence of e1 is obtained in 
about 0.1 sec which corresponds to the finite horizon. Note that although the control input 
is acting only on the state e1, the synchronisation errors e2 and e3 are also stabilised at the 
origin. 
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Figure 1 Numerical simulation results of synchronisation between two Chua oscillators,  
(a) chaotic attractor corresponding to the master system during synchronisation; 
dynamics of the synchronisation errors with 2% of parameter mismatches  
(b) e1 = x1s − x1m (c) e2 = x2s − x2m (d) e3 = x3s −x2m 

  
(a)     (b) 

  
(c)     (d) 

The time evolution of the control signal is depicted in Figure 2(a). From this figure, it is 
evident that the control signal is also stabilised at the origin. In order to add evidence of 
the effectiveness and efficiency of the proposed robust adaptive feedback, we have 
plotted in Figures 2(b) to 2(d) the phase portrait of the state variables of slave versus the 
state variables of master. It is evident that the manifolds x1s = x1m, x2s = x2m and x3s = x3m 
are stable, and one can conclude that the chaotic oscillations of the drive and response 
systems are synchronised in the complete sense and our synchronisation objective has 
been attained. 

Now let us investigate the robustness of the proposed scheme in front of noise and 
mismatches. we suppose that the signal coming from the master x1m is intrinsically 
modified by the channel noise and thus the channel output signal form is awgn(x1m, snr), 
where snr represent the signal-noise rate. Figure 3 shows the behaviour of the errors 
norm |e1| with numerical time and the signal-noise ratio snr with 2% of parameter 
mismatch between the master and slave systems. It appears from this 3D graph that, when 
snr increases the synchronisation is better. One can also observe that, a fairly good 
convergence of |e1| can be obtained in spite of the simultaneous presence of the noise and 
parameter mismatch between the master and slave systems. 
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Figure 2 Performance of the proposed feedback control u(t), (a) phase portraits of  
(b) x1s versus x1m, (c) x2s versus x2m and (d) x3s versus x3m 

  
(a)     (b) 

  
(c)     (d) 

Figure 3 Time evolution of error norm |e1| when snr is varied (see online version for colours) 

 

In comparison, one more simulation study is conducted to show the effect of the 
controller parameters on the time evolution of synchronisation error norm |e1| (because 
the controller is applied only on this state variable). Then without loss of generality, we 
set fQ P Q= =  to appreciate the simultaneous influence of all the controller 
parameters when only Q is varied. Figure 4 shows the effect of the controller parameters 
on the time evolution of error norm |e1| when Q is varied. As expected, the error norm |e1| 
and the synchronisation time T decreases as parameter Q increases and vice versa. 
Therefore one can conclude that, when the parameter Q increases the synchronisation is 
better. 
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Figure 4 Time evolution of error norm |e1| when parameter Q is varied (see online version  
for colours) 

 

3.2 Synchronisation of two Lorenz oscillators 

Herein, we take the Lorenz system as our second illustrative example, which has been 
frequently studied for synchronisation of chaotic systems. The Lorenz system is a typical 
chaotic oscillator and its dynamics governed by the following equation: 

1 1 2 1

2 2 1 2 1 3

3 1 2 3 3

  (   ),
      ,
    ,

m m m

m m m m m

m m m m

x p x x
x p x x x x
x x x p x

= −⎧
⎪ = − −⎨
⎪ = −⎩

�
�
�

 (37) 

where p1, p2 and p3 are positive constants which are chosen such that system (37) has a 
chaotic behaviour. We take system (37) as the master system. The slave system is defined 
as follows 

1 1 2 1

2 2 1 2 1 3

3 1 2 3 3

  (   ) ,
      ,
    ,

s s s

s s s s s

s s s s

x q x x u
x q x x x x
x x x q x

= − +⎧
⎪ = − −⎨
⎪ = −⎩

�
�
�

 (38) 

where we have introduced a feedback control law u. We have assumed that the 
parameters q1, q2 and q3 are different from the parameters of the master system (37). 
Subtracting equation (37) from equation (38) and using the notation e1 = x1s − x1m,  
e2 = x2s −x2m and e3 = x3s −x3m yields 

1

2 2 1 2 1 3 1

3 1 2 3 3 2

    ,
        ,
      ,

e F u
e q e e e e G
e e e q e G

= Δ +⎧
⎪ = − − +⎨
⎪ = − +⎩

�
�
�

 (39) 

where 

1 2 1 1 1 2 1 1 1

1 2 2 1 1 3 3 1

2 3 3 3 1 2 2 1

  (   ) (   )   (   ) ,
  (   )     
  (   )     .

m m

m m m

m m m

F q e e q p x p q x
G q p x e x e x
G p q x e x e x

Δ = − + − + −

= − − −

= − + +
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Now, defining the master system output by ym = x1m and the slave system output by  
ys = x1s, the error system output is y = h(e) = e1. With this in mind, the smallest integer is 
ρ = 1. In this way, the coordinates transformation is globally defined by z1 = e1, ζ1 = e2 
and ζ2 = e3. Then, the uncertain system (39) can be rewritten as follows: 

1

1 2 1 1 1 2 1

2 1 1 3 2 2

1

    ,

  ,

 ,
  ,

z F u

q z z G

z q G
y z

ζ ζ ζ

ζ ζ ζ

= Δ +⎧
⎪

= − − +⎪
⎨

= − +⎪
⎪ =⎩

�
�
� �  (40) 

where y denotes the output of the error uncertain system. In order to illustrate that system 
(40) satisfies the minimum phase assumption, one may prove that 

1 2 1 1 1 2 1  q z z Gζ ζ ζ= − − +�  and 2 1 1 3 2 2 z q Gζ ζ ζ= − +� �  converge asymptotically to zero 
when z1 = 0. Note that ζ = (ζ1, ζ2)T is uncertain and ζ is bounded. Thus, the zero 
dynamics can be written as 

,E Hζ ζ= +�  

where H = (G1, G2)T and 

3

1    0
,

  0 
E

q
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

which is Hurwitz because q3 > 0. Since G1 and G2 are bounded, the zero dynamics 
subsystem E Hζ ζ= +�  is asymptotically stable. Hence, system (40) is minimum phase. 
Since Assumptions 1 and 2 are satisfied, the dynamical system (40) can be transformed 
into its equivalent canonical form (6) (with η = ΔF as the augmented state). So the 
extended state observer (24) can be described in the following form: 

1
2

1 1 1 1 1 1
2

2 1 1

ˆˆ ˆ ˆ|   | sgn(   ) ,

ˆ ˆ  sgn( ).

z L z z z z u

L z z

η λ

η λ

⎧
⎪ = − − − +⎨
⎪ = − −⎩

�

�
 (41) 

Hence, the robust adaptive feedback (28) and (29) can be described as 

0

1 0

1

0 ,
1ˆ ˆ  ,ˆ( ) 2
1ˆ ˆ
2

t t

B Pz t t Tu z

B Pz t T

η

η

<⎧
⎪
⎪− − ≤ ≤= ⎨
⎪
⎪− − >
⎩

 (42) 

In the numerical simulations, the initial conditions of the master and slave systems are 
respectively (x1m(0), x2m(0), x3m(0)) = (8, 3, 1) and (x1s(0), x2s(0), x3s(0)) = (10, 15, 9). We 
choose 1 ˆˆ( (0),  (0))  (2,  0).z η =  The master parameter values are the following: p1 = 10, 
p2 = 28, p3 = 8 / 3 and the slave parameters values are: q1 = 9.95, q2 = 27.86 and  
q3 = 2.653 corresponding to 0.5% of parameter mismatches. The other parameters are 
chosen as: λ1 = 1, λ2 = 5 and L = 100. The controller parameters were Q = 1 × 106,  
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Qf = 1,000, 1,000.P =  The controller is turned on at t0 = 0 and the control time  
(finite horizon) is established at T = 0.04 sec. 

Figure 5 depicts the simulation results of the synchronisation errors. One can observe 
that the synchronisation error converge to the origin by using the robust adaptive 
feedback (41) and (42) in spite of the fact that both master and slave systems have 
different parameters values. A fairly good convergence of e1 is obtained in about 0.04 sec 
which corresponds to the finite horizon [see Figure 5(b)]. Also, although the control input 
is acting only on the state e1, the other synchronisation errors e2 and e3 also converge to 
zero. The performance of the proposed robust adaptive feedback u(t) and synchronisation 
graphs between slave and master (xs versus xm) are depicted in Figure 6. Figure 7 
investigates the robustness of the proposed scheme in front of noise and parameter 
mismatch (0.5%). It appears that, when snr increases the synchronisation is better. 

In comparison, some additional simulation studies are conducted to show the effect of 
the controller parameters on the time evolution of synchronisation error norm |e1| and on 
the energy wasted by the control action. Figure 8 show the effect of the controller 
parameters on the time evolution of error norm |e1| when Q is varied and when 

.fQ P Q= = As the previous example one can see that, when the parameter Q increases 
the synchronisation is better. Figure 9 shows the time evolution of the control signal u(t) 
for three different values of parameter Q. After a very short transient period one can see 
that, when the parameter Q increases the amplitude of the controller’s signal decreases. 
Therefore one can conclude that, when the parameter Q increases the energy wasted by 
the control action decreases. 

Figure 5 Numerical simulation results of synchronisation between two Lorenz oscillators, (a) 
chaotic attractor corresponding to the master system during synchronisation; dynamics 
of the synchronisation errors with 0.5% of parameter mismatches (b) e1 = x1s − x1m, (c) 
e2 = x2s − x2m and (d) e3 = x3s − x2m 

  
(a)     (b) 

  
(c)     (d) 
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Figure 6 Performance of the proposed feedback control u(t), (a) phase portraits of  
(b) x1s versus x1m, (c) x2s versus x2m and (d) x3s versus x3m 

  
(a)     (b) 

  
(c)     (d) 

Figure 7 Time evolution of error norm |e1| when snr is varied (see online version for colours) 

 

Figure 8 Time evolution of error norm |e1| when parameter Q is varied (see online version  
for colours) 
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Figure 9 Time evolution of the control signal u(t) for three different values of parameter Q  
(see online version for colours) 

 

3.3 Synchronisation of two strictly different systems 

Herein, we study the synchronisation of two strictly different chaotic oscillators, that is, 
two chaotic systems of the same order which have different models. The goal is to show 
that the synchronisation can be achieved in spite of model differences between the master 
and slave systems and external perturbations by oscillatory signals which can be 
interpreted as noise. In particular, we consider the case where the master system is 
represented by the extended Van der Pol equation: 

1 2
2 2 3 5

2 1 1 2 2 1 3 1 4 1 5 1

  ,

  (1 )       ,
m m

m m m m m m

x x

x p x x p x p x p x p cosw t

=⎧⎪
⎨

= − − − − +⎪⎩

�

�
 (43) 

and the slave oscillator is given by the extended Rayleigh equation 

1 2
2 3 5

2 1 2 2 2 1 3 1 4 1 5 2

  ,

  (1 )       ,
s s

s s s s s s

x x

x q x x q x q x q x q cosw t u

=⎧⎪
⎨

= − − − − + +⎪⎩

�

�
 (44) 

where pi, qi and wi, i = 1, 2 are constants and u is the control force to be chosen. If  
ym = h(xm) = x1m and ys = h(xs) = x1s are the outputs of both master and slave oscillators, 
then one has y = h(e) = e1. Now, let us define e ∈ R2 by ei = xis − xim, i = 1, 2 (e is a vector 
whose components represent the synchronisation error). Then, the resulting error 
dynamical system can be expressed as 
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e F e x t u
y e
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where y is the output of the uncertain system and 
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contains the two system’s model difference, which is unknown to us. Thus, the 
coordinates transformation is given by z1 = e1 and z2 = e2. In such a way, system (45) is 
transformed into 

1 2

2

 ,
 ( ,  ,  ) ,m

z z
z z x t u
=⎧

⎨ = Θ +⎩

�
�

 (46) 

where Θ(z, xm, t) = ΔF(z, xm, t). Note that system (46) is fully linearisable, i.e., there is no 
unobservable state ζ in the uncertain system (46) because the relative degree is ρ = n = 2. 
Now, defining η = Θ(z, xm, t), system (46) can be transformed into its equivalent form 
(6). Then, we get the extended state observer (24) as the following form: 

2/3
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3
3 1 1
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η λ
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 (47) 

So, the robust adaptive feedback (28) and (29) can be described as 

0
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 (48) 

Figure 10 Phase portraits of the extended Van der Pol and Rayleigh oscillators without the 
feedback coupling, (a) attractor of the extended Van der Pol oscillator and (b) attractor 
of the extended Rayleigh equation 

  
(a)     (b) 

In numerical simulations, the parameter values for the extended Van der Pol oscillator 
were chosen as p1 = 0.4, p2 = 0.46, p3 = 1, p4 = 0.1, p5 = 4.5 and w1 = 0.86 such that 
system (43) exhibits a chaotic behaviour. Figure 10(a) shows the phase portrait of the 
extended Van der Pol oscillator. For the parameter values q1 = 0.001, q2 = 1, q3 = 0.8,  
q4 = 0.3, q5 = 26 and w2 = 1, the extended Rayleigh equation displays chaotic behaviour 
when u = 0. Figure 10(b) presents the phase portrait of the extended Rayleigh equation 
for u = 0 for all t ≥ 0 (uncontrolled evolution). The initial conditions were chosen as 
follows: (x1m(0), x2m(0)) = (1, 0) and (x1s(0), x2s(0)) = (2, 2). The attractors of the two 
systems are not the same, as one might expect as the systems are different. The initial 



   

 

   

   
 

   

   

 

   

   74 M. Kountchou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

conditions of the observer (47) were chosen as follows: 1 2 ˆˆ ˆ( (0), (0),  (0)) (1,  2,  0).z z η =  
We choose λ1 = 10, λ2 = 5, λ3 = 5 and L = 3. The controller is turned on at t0 = 0 with a 
finite horizon at T = 5 sec. The weighting matrices are given by 

2,500   0 50  0
,    ,

   0   2,500  0 50fQ Q⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

and the corresponding tuning parameter for t > T is 

50 50
.

50 50
P ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Figure 11 Dynamics of the synchronisation errors, (a) e1 = x1s − x1m and (b) e2 = x2s − x2m 

  
(a)     (b) 

Figure 12 Complete exact synchronisation of the extended Rayleigh equation and the extended 
Van der Pol oscillator via the robust adaptive feedback (47) and (48), (a, b) states of 
the drive system are tracked by states of the response system (c, d) phase diagram of 
x1s versus x1m and x2s versus x2m 

  
(a)     (b) 

  
(c)     (d) 



   

 

   

   
 

   

   

 

   

    Optimisation of the synchronisation of a class of chaotic systems 75    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 present the time evolution of the synchronisation errors. One can see that the 
synchronisation error are stabilised at the origin in spite of strictly different models. In 
this way, the robust adaptive feedback (47) and (48) yields a complete synchronisation of 
the chaotic oscillators in the sense that the trajectories of the discrepancy error system 
converge exactly to the origin, it appears that the synchronisation of the drive and 
response systems is attained in about 5 sec which corresponds to the finite horizon. 
Figures 12(a) and 12(b) shows the dynamical evolution of the extended Rayleigh and 
extended Van der Pol oscillators. It is found that the states of the slave system are tracked 
by the states of the master states. In order to add evidence, we have plotted x1m versus x2m 
and x1s versus x2s in Figures 12(c) and 12(d). It illustrates that the manifolds x1s = x1m and 
x2s = x2m are stable and the synchronisation objective is attained. 

4 Conclusions 

In this paper a novel robust control scheme using the Ricatti equations for synchronising 
a class of chaotic systems with uncertainties is proposed. The main idea is to construct an 
augmented dynamical system from the synchronisation error system, which is itself 
uncertain. We propose a robust feedback control that takes into account the behaviour of 
transient response and the feedback effort (i.e., the energy wasted by the control action). 
Thus, the proposed strategy allows to set specifically the time horizon for the 
synchronisation of chaotic systems. To illustrate the effectiveness of the design, the 
synchronisation of two Chua’s oscillators, two Lorenz oscillators, and extended  
Van der Pol and Rayleigh equations were used as illustrative examples. Both theoretical 
and simulation results reveal the validity of the proposed control technique for 
synchronising uncertain chaotic oscillators. As future work, we will try to implement 
physically this proposed strategy. 
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