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Abstract: Cognitive diagnostic modelling is often used to analyse educational 
and psychological data, which are typically collected through cluster sampling 
with unequal selection probabilities. Jackknife is a resampling technique used 
to account for the sampling design. It typically gives unbiased estimates of the 
standard errors of the model parameters, but implementation can be vastly 
time-consuming. This study proposes an accurate and computationally fast 
approach for the standard errors of the parameters in the DINA model, one that 
incorporates the Huber–White sandwich estimator approach. Our simulation 
study suggests that the proposed sandwich estimator performs well when 
analysing clustered data structures specifically with moderate to large numbers 
of clusters. We also demonstrate its applicability to TIMSS 2011 mathematics. 
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1 Introduction 

Cognitive diagnostic models (CDMs) are a type of latent class models (LCMs; Dayton 
and Macready, 1988; Haertel, 1989) used when the successful performance of a task is 
parameterised by an examinee’s possession or lack of fine-grained discrete skills. A wide 
range of models fall within the framework of CDMs. Examples include deterministic-
input, noisy-and-gate (DINA; Junker and Sijtsma, 2001) as a conjunctive model, 
deterministic-input, noisy-or-gate (Templin and Henson, 2006) as a compensatory model, 
plus more generalised types of the diagnostic models (e.g. de la Torre, 2011; Henson  
et al., 2009; von Davier, 2005). Among the choices, the DINA model has elicited the 
most interest from researchers and practitioners owing to its analytical tractability and 
conceptual interpretability (de la Torre, 2011). 

Cognitive diagnostic models have been utilised in real-world data analyses including 
large-scale educational assessment data (Chen and Chen, 2015; Chen and de la Torre, 
2014; Johnson et al., 2013; Lee et al., 2011; Xu and von Davier, 2008). Typically, such 
empirical data are collected from large-scale student populations, with clusters naturally 
occurring due to the sampling procedures - e.g. students are nested within geographic 
areas or schools. In this case students within the same geographic area tend to share a 
similar learning propensity, and the students’ outcomes may be correlated. Ignoring the 
correlations among outcomes that arise due to the nature of the clustered structure can 
produce invalid variance estimates and thereby misleading statistical inference and 
testing of various psychometric properties; e.g. Differential Item Functioning (DIF) 
detection procedure (Hou et al., 2014) and model comparisons (de la Torre, 2011; de la 
Torre and Lee, 2013). To handle the issue, pseudo-replication technique (i.e. jackknife 
(JK) or bootstrap) is commonly used (Wolter, 2007). More specifically, the jackknife 
procedure (Quenouille, 1949) is widely applied so as to address the cluster sampling 
designs for a wide range of the LCMs. Patterson et al. (2002), e.g. assessed the accuracy 
of the jackknife technique to account for stratified cluster sampling in estimating the 
standard errors (SEs) of the latent class (LC) probabilities of the traditional LCM. The 
authors concluded that the technique showed sufficiently accurate performance across 
many empirical analyses, although it tended to “slightly overestimate the actual standard 
errors.” They also found that ignoring the sampling weight had a significant impact on 
estimating the standard errors of the LC probabilities. 

The jackknife is often adapted to the CDMs for analysing large-scale data from the 
cluster sampling. Hsieh et al. (2010), e.g. when addressing the sampling design of the 
NAEP, used the method to calculate standard error of the latent ability parameter within 
the general diagnostic model (GDM; von Davier, 2005). Johnson et al. (2013) used  
the technique to estimate a covariance matrix for the latent skill pattern probabilities of 
the multiple-group DINA model in analysing Trends in International Mathematics and 
Science Study (TIMSS) for the purpose of comparing the skill distributions of multiple 
countries. Despite the jackknife’s applicability to the CDMs, however, its accuracy has 
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not been fully evaluated across the realistic simulation conditions of the sampling 
designs. More importantly, the technique cannot obviate its fundamental limitation: 
computational inefficiency due to the repeated resampling (de Leeuw et al., 2008; 
Johnson et al., 1990). Implementation occasionally suffers from a long computational 
time, as the numbers of clusters and cluster sizes increase. 

An alternative approach to estimating standard error in the presence of the cluster 
sampling is that of using the Taylor series expansion of the appropriate estimating 
equations (Wolter, 2007). The asymptotic variance of the linear terms in the Taylor series 
yields a consistent estimator of the variance of the statistic, namely the Huber–White 
sandwich variance estimator (Huber, 1967, 1981; White, 1982). The generalised 
estimating equation (GEE; Liang and Zeger, 1986) is a set of estimating equations 
commonly used for clustered data. The GEE-based sandwich estimator uses the 
covariance structure of the repeated outcomes, and this approach leads to an efficient 
estimator even when the working covariance structure is misspecified. Often it is used in 
longitudinal studies by modelling the correlations between outcomes across multiple time 
points, but it can also model various other types of repeated outcomes (Fitzmaurice et al., 
2004). For example, Ip and Chen (2012) constructed a modified GEE-based sandwich 
estimator by modelling correlations between item responses. They noted that assuming 
local independence for the unidimensional Item Response Theory (IRT) is often 
unrealistic or too stringent (Yen, 1993; Ip, 2000, 2010). In this case using the naïve 
approach can yield a biased standard error for the latent ability parameter, particularly 
when there is a large number of test items. The authors have demonstrated that the 
proposed sandwich estimator can efficiently adjust for the impact of conditional 
correlations among the item responses. 

The goal of the present study is to develop efficient standard error (or variance) 
estimators of the DINA model in the presence of a clustered data structure. Using GEE 
we derive the sandwich estimators for the variances of the guess, slip and skill 
probability parameters of the DINA model. The proposed approach aims to: 

a match or even improve upon the accuracy of the jackknife estimator 

b be speedier than the resampling technique. 

The rest of the paper is organised as follows. The next two sections (Sections 2 and 3) 
provide a brief overview of the DINA model framework and the basic idea of using the 
sandwich formulation for a broad class of estimators. We then propose two modified 
versions of the sandwich estimators originally proposed by Liang and Zeger (1986) and 
Pan (2001) to accommodate cluster effects in estimating DINA model parameters.  
A simulation study (Section 4) compares the performance of the jackknife method to that 
of the proposed estimators when there are various numbers of clusters and cluster sizes. 
In Section 5, these methods are used to estimate the standard errors of the parameters in 
the TIMSS 2011 mathematics data. In Section 6, we briefly demonstrate applicability to 
GDM. In Section 7, we discuss our findings. 

2 The DINA model 

Let us suppose that the data contain the responses of N examinees to J items in a test.  
A total of J item responses ( 1, ,j J= … ) is measured for each examinee i ( 1, ,i N= … ); 
that is, 1ijY =  if the examinee i answers item j correctly, 0ijY =  otherwise. We further let 
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( )1 , , T
i i iJy y= …Y  denote the observed response pattern of the examinee i. Next, suppose 

there is a latent skill parameter, kα , signifying mastery or non-mastery of each 
knowledge skill for each examinee. More specifically, 1ikα =  indicates that the 
examinee i has mastered the skill k ( 1, ,k K= … ). Similarly, 0ikα =  indicates that the 
examinee i has not mastered the skill k. Because the individual skill parameters, 

1 Kα α… , are all binary indicators, there exist 2K  mutually exclusive skill patterns, 

0 l Lα α α… … , where ( )0, , ; 2 1Kl L L= … = − . Here, 0α  denotes the pattern when all 

skills are absent, i.e. ( )0 0, ,0 Tα = … ; Lα  denotes the pattern when all skills are present, 

i.e. ( )1, ,1 T
Lα = … . Thus, the latent skill space can be described by the probabilities of 

each of the skill patterns, ( )0 , , , , T
l Lπ π π= … …Aπ . 

The DINA model (Junker and Sijtsma, 2001) is characterised by a conjunctive rule 
for the latent response (= ijη ), to determine the examinee i’s task performance given one’s 

skill patterns. In other words, 
1

 jkK q
ij ikk

η α
=

=∏ , which means that one must master all of 

the required skills to correctly answer item j. Here, the jkq  is a binary indicator used to 

specify whether skill k  is needed to correctly answer the item j, i.e. { }0,1jkq ∈ , while 
the matrix of all jkq ’s is called the ‘Q-matrix’ (Tatsuoka, 1985). The latent response ijη  
is linked to the observed responses within a probabilistic relationship having two ‘noisy’ 
parameters - i.e. slip (= js ) and guess (= jg ) parameters. The guess rate is the probability 
that the examinee i has answered item j correctly, even though one does not possess all of 
the required skills - i.e. ( 1 | 0)j ij ijg P Y η= = = . The slip rate is the probability that the 
examinee i fails to respond to item j correctly even though one possesses all of the 
required skills - i.e. ( 0 | 1)j ij ijs P Y η= = = . Putting together, the item response function 
for the DINA model is written as 

( ) 1( 1 | ) 1 .ij ij
ij l j jP Y s g

η η−= = −α  (1) 

In estimating the DINA model parameters, the marginal maximum likelihood estimation 
method can be used. Assuming that ( ), j js g  and lα  are independent, the marginal 

probability for answering item j correctly - i.e. ( )1ij ijPμ = =Y  - is as follows: 

( )
0

1  ( 1| ),
L

ij l ij l
l

P Pπ
=

= = =∑Y Y α  (2) 

where lπ  denotes a probability of the skill pattern l. Assuming that all ijY ’s are 
conditionally independent for all j’s given lα  and moderately correlated within each 
cluster, the following sample-weighted pseudo log-likelihood can be used, with the 
sampling weights then being incorporated via the specific sample selection process: 

0

log ( ) log ( | ),
L

i l i l
i l

P w Pπ
=

=∑ ∑Y Y α  (3) 
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where ( )
11 1

1
| (1 ) (1 )

ij ijij ij ij ijJ y y y y
i l j j j jj

P s s g g
η η−− −

=
⎡ ⎤
⎣ ⎦

⎡ ⎤= − −⎣ ⎦∏Y α  and wi indicates the 

sampling weight of the examinee i. As for incorporating the sampling weight for latent 
variable models, using examinee-level weight is conventional across many literatures 
(Patterson et al., 2002; Rabe-Hesketh and Skrondal, 2006; Wedel et al., 1998). 

3 The sandwich standard error 

Let us recall that ( )1 , , T
i i iJy y= …Y  denotes a vector of J repeated responses ( 1, ,j J= … ) 

by the examinee i ( 1, ,i N= … ). Suppose a vector of mean responses, ( )1 , , T
i i iJμ μ= …μ , 

where ijμ  is a function of a set of parameters, say β . From the quasi-likelihood 
estimation theory (Wedderburn, 1974), the following generalised estimation equation 
yields the consistent estimator β̂  for the β : 

1 0,T
i i i

i

− =∑D V S  (4) 

where iD  denotes the derivative matrix of iμ  with respect to the β ; ( )i i i= −S Y μ ; iV  

denotes a working covariance matrix such that 1/2 1/2
i i i=V A RA , where 

1diag( ( ), , ( ))i i iJv vμ μ= …A  and v is a known variance function of iμ . In the case of 

binary responses, ( )( ) 1ij ij ijv μ μ μ= − . Finally, the R  in the iV  denotes a working 

correlation that we separately model so as to represent a specific type of within-subject 
correlation structure. 

In the above setup, and under mild regularity conditions, 1/ 2 ˆ( )n −β β  is 

asymptotically multivariate normal with zero mean and the variance estimator ( )ˆ∑ β  for 

β̂  as follows (see the Proof of Theorem 2 from Liang and Zeger, 1986): 

1 1( ˆ ,) − −∑ =β B MB  (5) 

where 
1 , andT

i i i
i

−=∑B D V D  (6) 

( )1 1Cov .T
i i i i i

i

− −=∑M D V Y V D  (7) 

The Cov( )iY  in Eq. (7) indicates the true variance-covariance matrix of iY . The 

sandwich variance estimator leads to a consistent variance of the ( )ˆ∑ β  even when the 
correlation structure of the repeated measurements is misspecified. When data are 
collected via pure simple random sampling and when the working covariance, iV , is 

correctly specified - i.e. Cov( )i i=Y V  - then ( )ˆ∑ β  is reduced to 1−B . 
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3.1 Variance covariance structure of iY  

In the present study, we adopt the two variance estimators constructed respectively by 
Liang and Zeger (1986) and Pan (2001) so as to derive the closed-form solutions and 
thereby obtain two variance formulas for the DINA model parameters. First, according to 
Liang and Zeger (1986), the variance-covariance matrix of iY  can be approximated as 
follows: 

( ) ( )( )ˆC ˆ ,ov TT
i i i i i i i= = − −LZ Y YY S S μ μ  (8) 

where it is estimated for each individual examinee i. ˆ iμ  for the vector of the mean 

responses is obtained by using the estimator β̂ . 
In order to improve the performance of the variance estimator, Pan (2001) proposed 

an alternative method of estimating the true variance–covariance matrix of iY . Given that 
there is a common correlation structure across n examinees, Cov( )iY  is calculated by 
pooling all examinees *i ’s ( * 1, ,i n= … ) in a sample as follows: 

( ) * * * *
*

1/2 1/ 2 1/ 2 1/2

1

.1Cov
n

T
i i ii i i i

in
− −

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑Y A A S S A A  (9) 

In this study, we modify the variance–covariance matrix of iY  in Eq. (9), for the purpose 
of incorporating the sampling design effect. 

Let ( ) 1, ,T t T= …  be the number of clusters in the sample representing for a 
population, tn  be the number of individuals within each cluster t and iw  be the 
examinee-specific sampling weight for the examinee i. The GEE-based sandwich 
variance estimator, based on the top-level clusters, is usually able to account for the 
multilevel correlation structures if the multiple clusters are perfectly nested (Betensky  
et al., 2000). Note that we modified the pooled variance–covariance matrix formula in 
Eq. (9), by generating ‘cluster-specific’ covariance matrices from the pooled examinees 
in the cluster. For any examinee i sampled from the cluster t, let *

ti  denote examinees 
within the cluster t, * 1, ,t ti n= … . Then, 

( )

( )( )

* * * *
*

* * * * * *
*

1/ 2 1/ 2 1/ 2 1/ 2

1

1/ 2 1/ 2 1/ 2 1/ 2

1

,

ˆ ˆ

1Cov

1

t

t t t t
t

t

t t t t t t
t

n
T

i i ii i i i
t i

n T

i ii i i i i i
t i

n

n

− −

=

− −

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

PanY A A S S A A

A A Y μ Y μ A A

 (10) 

where ( )* * *ˆ
t t ti i i

= −S Y μ  and ( )* * *1ˆ ˆ
t t ti i i

= −A μ μ . 

3.2 Working correlation matrix 

In modelling the working correlation matrix, iV  in Eqs. (6) and (7), various types of 
correlation matrices can be used depending upon the researcher’s need (Fitzmaurice  
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et al., 2004). In the present case, we are interested in a variance estimator capable of 
accounting for possibly different correlation structures between clusters, hence our 
decision to use separate working correlation matrices for each cluster. The proposed 
working correlation matrix assumes that there is a unique correlation structure shared by 
all of the examinees within a cluster. We also assume that the correlation matrices are 
unstructured. Therefore, Pearson correlation for the examinees in a cluster is used to 
estimate the corresponding working correlation matrices for the cluster; tV , where 

1, ,t T= … . The next two sections demonstrate how the partial derivative matrices for the 
item parameters and skill probability are obtained. 

3.3 Derivative matrices for guess and slip parameters 

Let us suppose a matrix of partial derivatives iD  of ( )1, , T
i i iJμ μ= …μ  in Eqs. (4)–(7), 

with respect to the two components of the item parameters - i.e. ( )1, , T
Jg g= …g  for 

guess, and ( )1, , T
Js s= …s  for slip as follows: 

 
   

,
 

T
i i

i
∂ ∂⎡ ⎤

= ⎢ ⎥∂ ∂⎣ ⎦
#μ μD

g s
 (11) 

where the subset of the matrix with respect to the guess and slip parameters comprises 
( J J× ) elements as follows: 

1 1

1 1 1 1

1 1

    
and .

i iJ i iJ

i i

i iJ i iJ

J J J J

g g s s

g g s s

μ μ μ μ

μ μ μ μ

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥∂ ∂
⎢ ⎥ ⎢ ⎥= =

∂ ∂⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

" "

# % # # % #

" "

μ μ
g s

 (12) 

We recall from Section 2 that ) 1(jη =α  denotes the skill pattern α  possesses all the 
skills required to answer item j correctly, while ) 0(jη =α  denotes the skill pattern α  

lacks at least one of the skills required to answer item j correctly. Then ( )1ij ijP Yμ = =  

denotes the probability of giving the correct response for the examinee i to the item j, 
which can be decomposed by combining the item parameters (i.e. jg  and js ) and the 

skill pattern probability (i.e. lπ , 10, , 2Kl −= … ) as follows: 

( ) ( )

0

  

,
( 1) ( 1 | )

 (1 )

L

ij ij l ij l
l

j l j l
A A

P Y P Y

g s

μ π

π π
− +

=

∈ ∈

= = = =

= + −

∑
∑ ∑

l lα α

α
 (13) 

where ( ) {  | ( 0) }l j lA η− = =α α  and ( ) {  | ( 1}.)l j lA η+ = =α α  As discussed in Section 2, 
conditional probability ( 1 | )ij lP Y = α  in Eq. (13) can be divided into two cases: 

1 guessing item j correctly, even when some of the required skills are absent 
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2 not slipping to answer item j correctly, because all the skills for the item are present. 

In Eq. (13), ( ) lA
π−∈∑

lα
 denotes a summation of all probabilities when the examinee i 

lacks at least one of the skills required to solve item j correctly. Similarly, ( )  lA
π+∈∑

lα
 

denotes a summation of all probabilities, with the skill patterns possessing all skills 
required to solve item j correctly. Given Eq. (13) for ijμ , each element of the partial 
derivative matrix, with respect to the guess parameter for item j, can be divided into two 
scenarios: 

( )    
0

.
 

l

lij
A

j

j j

g j j
α

πμ
−∈

′

′⎧ =∂ ⎪= ⎨∂ ⎪ ≠ ′⎩

∑
 (14) 

Similarly, each element of the matrix with respect to the slip parameter for item j is as 
follows: 

( )    
0

.
lij

A

j

j j

s j j

πμ
+∈

′

′⎧− =∂ ⎪=
⎪ ′
⎨∂ ≠⎩

∑
lα  (15) 

The above partial derivative matrix iD  of the guess and slip parameters is, thereby, 
incorporated to the bread and meat portions in Eqs. (6) and (7). With all the results from 
Sections 3.1–3.3 incorporated to Eqs. (6) and (7), the sandwich covariance matrix ( )ˆ∑ g  
and ( )ˆ∑ s  in Eq. (5) for the item parameters can be obtained. Finally, the square root of 
the diagonal elements of ( )ˆ∑ g  and ( )ˆ∑ s  in Eq. (5) results in the sandwich SEs of the 
guess and slip parameters corresponding to each item. 

3.4 Derivative matrix for skill probability 

Let us denote the vector of skill pattern probabilities as ( )0 , , , , T
l Lπ π π= … …Aπ , where 

lπ  is the probability of the lth skill pattern (= lα ), 0, ,l L= … ; ( )2 1KL = − . Because of 

the natural constraint 
0

1L
ll

π
=

=∑ , we treat 0π  as a reference category; this means that 

the probability for 0π  is determined by the remaining probabilities: 0 1
1 L

ll
π π

=
= −∑ . 

The partial derivatives of the ijμ  with respect to L  skill patterns could then result in the 
following ( 1)L J− ×  derivative matrix as follows: 

1

1 1

 

1

.

i iJ

ij
i

l
i iJ

L L

μ μ
π π

μ
π

μ μ
π π

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂
⎢ ⎥= =

∂ ⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

"

# % #

"

D  (16) 

Each element of the above matrix can be formulated as 
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0
 ( 1 | ) 

,
L

l ij lij l

l l

P Yπμ
π π′ ′

=
∂ =∂

=
∂ ∂

∑ α
 (17) 

where  1, ,l L′ = …  ( 2 1KL = − ). Each element of the partial derivatives with respect to 
the l′ th pattern can be expressed as follows: 

( )

0

0 01

01 1

0

( 1 | )
 

( 1 | ) ( 1| )

( 1 | ) 1 ( 1| )

( 1 | ) ( 1 | )

.

L
l ij lij l

l l
L

l ij i l ij il

l

L L
l ij l l ijl l

l

ij l ij

P Y

P Y P Y

P Y P Y

P Y P Y

πμ
π π

π π
π

π π

π

′ ′

′

=

=

=

′

=

′

∂ =∂
=

∂ ∂

∂ = = + ∂ = =
=

∂

∂ = + ∂ − =
=

∂
= = − =

∑

∑

∑ ∑

α

α α α α

α α

α α

 (18) 

The first term in Eq. (18) is equivalent to ‘anti’ slip rate, (1  js− ), if skill pattern  l ′α  is 
sufficient to answer item j correctly - i.e. ) 1(j lη ′ =α ; otherwise, if '( ) 0j lη =α , it equals 

jg . The second term in Eq. (18) is equal to jg , because all the skills are absent from the 
pattern 0α . Thus Eq. (18) can be simplified as follows: 

((1 –  ) –  if  1 
0 i 0

)
.

)f  (
j j j lij

j l

s g ημ
ηπ

′

′′

=∂ ⎧⎪= ⎨ =∂ ⎪⎩l

α
α

 (19) 

In practice, some non-zero skill pattern(s) may not be sufficient to result in correct 
response(s) to any of the item(s) on a test. The term ‘non-zero’ indicates any pattern 
except the one in which all of the skills are absent: ( )0 0, ,0 T= …α . Given the 
conjunctive rule of the DINA model formula, those skill patterns are essentially 
indistinguishable from the 0α  and also from each other. Thus, the probabilities of these 
skill patterns are not estimable. So, we constrain the probabilities of such classes to zero, 
and do not include them in the variance calculation. Note that this will lead to a 
corresponding reduction in rows of the derivative matrix. The above partial derivative 
matrix iD  in Eq. (16) is, thereby, incorporated to the bread and meat portions in Eqs. (6) 
and (7). With all the results from Sections 3.1, 3.2 and 3.4 incorporated to Eqs. (6) and 
(7), the sandwich covariance matrix Eq. (5) for ( 1)L −  skill pattern probabilities, ( )ˆΣ Aπ  
can be obtained. 

Finally, in order to get the sandwich covariance matrix, ( )Σ π  between the 
probabilities of K individual skills, the covariance matrix among the skill pattern 
probabilities should be transformed into the corresponding formula. Let ( )Σ π  denote a 
sandwich covariance matrix among probabilities of the K skills, 1( , , )T

Kπ π= …π . The 
( )Σ π  can be obtained by using 

( ) ( ,)=Σ CΣ CT
Aπ π  (20) 
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where C  is a matrix that comprises all possible skill patterns, ( 1)K L× − , except the 0α . 
For example, if K = 2, the skill pattern matrix and the covariance matrix among the skill 
pattern probabilities are as follows: 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

01,01 01,10 01,11

10,01 10,10 10,11

11,01 11,10 11,11

0 1 1
and ( ) .

1 0 1

σ σ σ

σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

C Σ A π  

Therefore, the ( )K K×  covariance matrix among the probabilities of the K skills is 

0 1 1 0 1 1
( ) ( ) .

1 0 1 1 0 1

T
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Σ Σ Aπ π  

Note that if there are non-zero skill pattern(s) that do not adequately provide correct 
response(s) to any of the item(s), there will be a corresponding reduction in the columns 
of C , and the rows of ( )Σ Aπ . The square root of the diagonal elements of the estimated 
covariance matrix, ( )ˆΣ π  results in the sandwich SEs of the skill probabilities. 

4 Simulation study 

The goal of the study is to evaluate the two proposed sandwich variance estimators of the 
DINA model parameters, through various simulation conditions in the presence of the 
cluster sampling design. We compare their performance with the jackknife estimator in 
regard of their accuracy and computational efficiency. 

4.1 Study design 

Because our interest lies in the clustered data, the number of clusters was set to T = 15, 
30, 60 and 90; and the cluster sizes were nT = 25, 50 and 75, those being the number of 
examinees included in each cluster. In the data-generation step, we employed a Q-matrix 
that contains 35 items for measuring five skills in total (Table 1). The matrix was 
originally used in Ravand et al. (2013) for a reading comprehension test. In order to 
manipulate various realistic situations of item quality, 35 guessing parameters were 
randomly generated from the uniform distribution, Unif(0, 0.3); then the corresponding 
(1 − slip) parameters were generated from the uniform distribution, Unif(guess + 0.3, 1); 
the guess and slip values are also listed in Table 1. 

Table 1 Q-matrix and generating item parameters in the simulation design 

Item No. α1 α2 α3 α4 α5 gj sj 

1 0 0 0 1 0 0.169 0.430 
2 0 0 1 0 0 0.218 0.268 
3 0 0 1 0 0 0.275 0.144 
4 0 0 1 0 0 0.009 0.333 
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Table 1 Q-matrix and generating item parameters in the simulation design (continued) 

Item No. α1 α2 α3 α4 α5 gj sj 

5 0 1 1 0 0 0.230 0.075 
6 0 0 0 0 1 0.144 0.437 
7 1 0 0 0 0 0.027 0.453 
8 0 0 1 0 0 0.259 0.121 
9 0 0 0 1 1 0.149 0.096 
10 0 0 0 1 1 0.256 0.373 
11 1 0 0 1 0 0.188 0.062 
12 0 0 0 1 0 0.072 0.144 
13 0 0 0 1 1 0.011 0.629 
14 1 0 0 0 0 0.155 0.393 
15 1 0 0 0 0 0.246 0.362 
16 0 0 0 1 1 0.149 0.305 
17 0 0 1 1 0 0.054 0.023 
18 0 1 1 0 0 0.264 0.149 
19 0 0 1 0 0 0.131 0.361 
20 0 0 0 1 1 0.218 0.197 
21 0 0 1 0 0 0.259 0.379 
22 0 0 1 0 0 0.090 0.549 
23 0 0 0 1 0 0.282 0.203 
24 1 0 0 0 0 0.128 0.172 
25 0 0 1 0 0 0.106 0.402 
26 1 0 1 1 0 0.126 0.244 
27 1 0 0 0 0 0.093 0.090 
28 0 0 0 1 1 0.021 0.442 
29 0 0 0 1 0 0.088 0.275 
30 0 1 0 0 0 0.241 0.333 
31 0 1 0 0 0 0.212 0.100 
32 1 0 1 0 0 0.292 0.134 
33 0 1 0 0 0 0.022 0.045 
34 0 1 1 0 0 0.300 0.295 
35 0 0 0 1 0 0.164 0.286 

In simulating clustering effects, we first induced positive correlations (= ( )Σ π ) between 
the five skill probabilities (=5 × 5), which are varied across clusters. We generated true 
values for the moderate skill probabilities (i.e. 1 5, ,π π… ) based on the beta distribution, 
Beta (4, 8), with a mean of 0.33 and a standard deviation of 0.13 for each kπ . We chose 
the beta distribution because the skill probability has values in the (0, 1) interval, and is 
the conjugate prior distribution of the binomial distribution (Patterson et al., 2002).  
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If T = 3 clusters, e.g. the true skill probabilities ( )1 2 3 4 5, , , ,π π π π π  for each cluster appear 
to be (0.48, 0.34, 0.41, 0.49, 0.43) for cluster 1, (0.30, 0.42, 0.30, 0.14, 0.49) for cluster 2 
and (0.29, 0.25, 0.34, 0.46, 0.26) for cluster 3. To generate examinee-level sampling 
weights, we used a gamma distribution with 15 as the shape parameter and 30 as the 
scale parameter in each simulation condition. The distribution mimics the sampling 
distribution of the TIMSS assessment for grade 8 students in the USA. For each of the 12 
simulation conditions as combinations of the T = 15, 30, 60 and 90 (clusters) and nT = 25, 
50 and 75 (examinees), we generated a total of 100 independent data sets. 

In each condition, the expectation-maximisation (EM) algorithm was implemented by 
using the R package ‘CDM’ (Robitzsch et al., 2014). With the convergence criterion of 
10−5 as the maximal change in parameter estimates and maximum number of 5,000 
iterations, the model parameters were estimated separately for the 100 replications of the 
data sets in each condition. The R code for the standard error estimation procedures 
within R 3.0.1 is provided in Appendix A. 

In computing the jackknife SE, the following steps were taken. Let β̂  denote the 

estimator based on the entire cluster and ( )
ˆ

tβ −  denote the estimator for the data excluding 
the cluster t. Then the jackknife variance estimator can be formulated based upon: 

( )2

( )
1

( 1)( ˆ ˆ ,)
T

JK t JK
t

T
T

β β β−
=

−
∑ = −∑  

where ( )1
ˆ1 T

JK ttT
β β −=

= ∑ . Specifically, the T ( 1, ,t T= … ) estimators for each of the jg  

( 1, ,j J= … ), js  ( 1, ,j J= … ) and lπ  ( 1, ,l L= … ) can be computed, with a different 
cluster being deleted, in each case. Finally, the jackknife SE can then be obtained by 
taking square roots of the diagonal elements of the ( )ˆ

JKβ∑ . 
The results of the simulation study were summarised in several aspects. Let SE( ˆ )bjg , 

SE(ˆ )bjs  and SE( ˆ )bkπ  indicate the resulting SE estimates for each item j or skill k, 
corresponding to the replication b. First, in order to compare the computational efficiency 
of the jackknife and sandwich estimators, the elapsed central processing unit (CPU) times 
were measured in each condition. The elapsed time includes the time taken to implement 
EM algorithm, and then to calculate the SEs. Next, to evaluate the accuracy of the three 
estimators, we obtained the criterion (or true) SEs by empirically calculating the standard 
deviations of the point estimates for all 100 of the replicated data sets as follows: 

• 100 2
1

ˆ1ESD( ) ( )
(100 1)j bj bjb

g g g
=

= −
− ∑  for guess 

• 100 2
1

ˆ1ESD( ) ( )
(100 1)j bj bjb

s s s
=

= −
− ∑  for slip 

• 100 2
1

ˆ1ESD( ) ( )
(100 1)k bk bkb

π π π
=

= −
− ∑  for skill probability 

where 1, ,35j = …  (items) and 1, ,5k = …  (skills), and 1, ,100b = …  (replications). 
Using the empirical standard deviation (ESD) as the criterion, the performance of each of 
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the SE estimators was evaluated with regard to relative error and absolute bias. The 
relative error was used to display the direction and relative distance of the estimated SEs 
to the corresponding ESDs as follows: 

• Relative error 1(SE( ))  {SE(ˆ ) ESD( )}
SD( )

ˆ
Ebj bj j

j

g g g
g

= −  for guess 

• Relative error 1(SE( )) {SE( ) ESD( )}
ESD( )

ˆ ˆbj bj j
j

s s s
s

= −  for slip 

• Relative error 1(SE( )) {SE( ) ESD( )}
ESD( )

ˆ ˆbk bk k
k

π π π
π

= −  for skill probability 

The absolute bias was used to calculate the bias of the absolute distance of the estimated 
SEs from the corresponding ESDs, across the 100 replications and the 35 items (or five 
skills), as follows: 

• 35 100

1 1

1 1|Bias(SE( )) | | SE( ) ESD( ) |
35 1

ˆ ˆ
00j bj jj b

g g g
= =

⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑ ∑  for guess 

• 35 100

1 1

1 1|Bias(SE( )) | |SE( ) ESD( )|
35 1

ˆ ˆ
00j bj jj b

s s s
= =

⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑ ∑  for slip 

• 5 100

1 1

1 1|Bias(SE( )) | | SE( ) ESD( ) |
5 1

ˆ ˆ
00k bk kk b

π π π
= =

⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑ ∑  for skill probability 

4.2 Results 

Figures 1–3 contain boxplots demonstrating the performances of the JK, Liang and Zeger 
(LZ) and Pan-modified SEs for the DINA model parameters. More specifically, each 
figure displays the relative errors corresponding to guess parameters (Figure 1), slip 
parameters (Figure 2) and skill probabilities (Figure 3), respectively. Each panel in the 
figures represents a different simulation condition with a varying number of clusters  
(T = 15, 30, 60 and 90) and cluster sizes (nT = 25, 50 and 75), with the jackknife and the 
two sandwich estimators being on the x-axis and the relative error on the y-axis.  
The boxplots in each panel comprise the relative errors across 100 simulated data sets 
and across all 35 guess/slip parameters and five skills. In other words, each boxplot in 
Figures 1 and 2 was constructed by 3,500 (=100 replications × 35 guess/slip parameters) 
outcomes; each boxplot in Figure 3 was constructed by 500 (=100 replications × 5 skills) 
outcomes. Overall, the results seen in Figures 1–3 describe the effects of the number of 
clusters and the cluster size. 
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Figure 1 Relative errors for guess parameters 

 
Note: Cl, number of clusters (T); JK, jackknife; LZ, Liang and Zeger;  

P, Pan-modified; Subj., cluster size (nT) 
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Figure 2 Relative errors for slip parameters 

 
Note: Cl, number of clusters (T); JK, jackknife; LZ, Liang and Zeger;  

P, Pan-modified; Subj., cluster size (nT) 
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Figure 3 Relative errors for skill probabilities 

 
Note: Cl, number of clusters (T); JK, jackknife; LZ, Liang and Zeger;  

P, Pan-modified; Subj., cluster size (nT) 

4.2.1 Comparison of relative error 
Figures 1 and 2 for the guess and slip parameters showed that the LZ and Pan-modified 
estimators tend to be sensitive to small cluster size (nT = 25). Specifically, they revealed 
upward relative errors and wide dispersion in estimating the corresponding SEs. When it 
comes, however, to the moderate (nT = 50) to large cluster sizes (nT = 75), the dispersions 
for the both estimators rapidly diminished. The relative errors from the JK were centred 
around zero for the guessing and slip parameters in any condition; but the dispersion 
tended not to be diminished across different conditions. 

As shown in Figure 3 for the skill probability, overall, it is remarkable that the 
sandwich estimators (i.e. LZ and Pan-modified) revealed smaller errors than the JK, 
regardless of the numbers of clusters and cluster sizes. The LZ and Pan-modified 
estimators were affected by cluster sizes; they led to tiny upward errors for the small 
cluster size (nT = 25), but the errors got smaller with moderate to large cluster sizes  
(nT = 50 or 75). On the other hand, the JK estimator typically produced considerable 
errors as the number of clusters and cluster sizes increased. Also, the magnitude of error 
for the JK had severe increases for the larger cluster sizes. 
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4.2.2 Computational time 
Table 2 (see the fourth column) shows the results pertaining to the summaries of the 
elapsed CPU time in each simulation condition. Note that for the JK the computational 
time ranged from 709 to 47,595 s, for the LZ from 333 to 4,813 s and for the Pan-
modified from 399 to 6,498 s. 

Table 2 Simulation results of guess, slip and skill probability 

T nT Method 
Elapsed 

(s) 
Guess Slip Skill 

ASE |Bias| × 10 ASE |Bias| × 10 ASE |Bias| × 10 
15 25 JK 709 0.033 0.071 0.029 0.051 0.040 0.134 

LZ 333 0.046 0.146 0.033 0.062 0.030 0.064 
P 399 0.044 0.126 0.034 0.063 0.030 0.064 

50 JK 1,107 0.017 0.024 0.014 0.019 0.026 0.114 
LZ 644 0.017 0.017 0.013 0.014 0.011 0.052 
P 670 0.015 0.018 0.013 0.013 0.011 0.053 

75 JK 1,659 0.010 0.010 0.008 0.009 0.018 0.091 
LZ 892 0.009 0.012 0.007 0.012 0.006 0.029 
P 1,010 0.008 0.015 0.007 0.011 0.006 0.028 

30 25 JK 2,187 0.024 0.047 0.020 0.034 0.033 0.128 
LZ 593 0.024 0.028 0.018 0.024 0.015 0.093 
P 672 0.021 0.026 0.018 0.021 0.015 0.094 

50 JK 3,652 0.014 0.020 0.012 0.015 0.025 0.134 
LZ 1,228 0.012 0.020 0.010 0.017 0.008 0.041 
P 1,336 0.012 0.023 0.010 0.016 0.008 0.040 

75 JK 5,510 0.014 0.013 0.011 0.011 0.016 0.047 
LZ 1,633 0.019 0.054 0.013 0.025 0.013 0.016 
P 2,004 0.018 0.044 0.014 0.028 0.013 0.016 

60 25 JK 7,749 0.019 0.035 0.016 0.027 0.031 0.149 
LZ 1,017 0.017 0.025 0.014 0.023 0.011 0.063 
P 1,315 0.016 0.027 0.014 0.022 0.011 0.061 

50 JK 16,528 0.017 0.019 0.014 0.014 0.021 0.068 
LZ 2,068 0.023 0.067 0.017 0.031 0.016 0.030 
P 2,640 0.022 0.056 0.017 0.034 0.016 0.031 

75 JK 33,574 0.010 0.009 0.008 0.006 0.015 0.069 
LZ 3,061 0.010 0.009 0.007 0.008 0.007 0.027 
P 3,992 0.009 0.008 0.008 0.007 0.007 0.028 

90 25 JK 16,522 0.023 0.035 0.020 0.026 0.027 0.088 
LZ 1,496 0.032 0.087 0.024 0.045 0.022 0.040 
P 2,123 0.030 0.072 0.024 0.048 0.022 0.039 
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Table 2 Simulation results of guess, slip and skill probability (continued) 

T nT Method 
Elapsed 

(s) 
Guess Slip Skill 

ASE |Bias| × 10 ASE |Bias| × 10 ASE |Bias| × 10 

 
50 JK 35,141 0.012 0.013 0.010 0.010 0.018 0.081 

LZ 3,061 0.012 0.013 0.009 0.011 0.008 0.036 

 

P 4,741 0.011 0.011 0.009 0.009 0.008 0.037 

75 
JK 47,595 0.008 0.008 0.007 0.006 0.014 0.073 
LZ 4,813 0.007 0.010 0.006 0.011 0.005 0.024 
P 6,498 0.007 0.012 0.006 0.010 0.005 0.024 

Note: ASE, averaged standard error; JK, jackknife; LZ, Liang and Zeger;  
nT, sample size per cluster; P, Pan-modified; T, number of clusters. 

4.2.3 Comparison of absolute bias 
Table 2 also shows the average estimated SE (=ASE), and the average absolute bias 
(=|Bias|) of the estimators in each simulation condition. The numerical results for the 
|Bias| were rescaled by multiplying by 10, such that |Bias| × 10. The absolute biases serve 
to confirm the relative error shown in Figures 1–3. The magnitudes of the biases from all 
estimators decreased as number of clusters and cluster sizes increased. Overall, the 
sandwich SEs approximated the ESD as accurately as the JK SE for guess and slip 
parameters. In contrast, the sandwich estimators outperformed with the greater accuracy 
as for skill probability, specifically when the number of clusters increased by moderate to 
large cluster sizes (nT =50 or 75); occasionally, the absolute bias from the LZ and Pan-
modified estimators were two to three times smaller than that from the JK estimator. 

5 Real data example: TIMSS 2011 mathematics 

We applied the proposed variance estimators to a real data example: mathematics test in 
the TIMSS 2011. Current analysis is based on grade 8 test data drawn from the 
benchmark population in the USA. It comprises a total of nine states: Alabama, 
California, Colorado, Connecticut, Indiana, Florida, Massachusetts, Minnesota and North 
Carolina. Information about 89 of the mathematics test items in the TIMSS was released, 
and it can be found on the database’s website (http://timssandpirls.bc.edu/timss2011/ 
international-released-items.html). Noting the exception of those examinees who were 
not given any of the 89 items, the sample size from the benchmark states was n = 11,158 
(examinees). 

For this study all items were scored dichotomously, with the highest possible score 
being 1 and all the others being 0. A Q matrix for the 89 released items was developed by 
two mathematics educators using the National Council of Teachers of Mathematics 
(2000) and the TIMSS 2011 frameworks (Mullis et al., 2009). Four content domains - 
number and operation, algebra, geometry and data and probability - were used to identify 
topic areas evaluating students’ understanding of mathematics, and this approach resulted 
in a total of nine attributes. In other words, nine content-based attributes were defined as 
fine-grained skills needed to solve the 89 released items. The complete list of skills and 
the Q-matrix are given in Appendix B. 
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The TIMSS uses a stratified two-stage cluster-sampling design (Joncas and Foy, 
2012). For example, schools were primarily sampled within each state, and classrooms 
were sampled within each school. The numbers of schools within the nine states are 55, 
53, 62, 82, 60, 56, 56, 54 and 59. TIMSS manual notes that the schools within each state 
were paired to construct sampling zones for the purpose of using the jackknife method to 
calculate the sampling structure; thus the numbers of sampling zones are 28, 27, 32, 42, 
30, 28, 28, 27 and 30. Within each sampling zone, one of two schools was randomly 
selected to have its contribution doubled and the other one to have zero contribution. The 
database also provides the examinee-level sampling weight within each state. That is 
given as sc cl stiw w w w= × × , where scw  is the school-level weight with a school 

nonparticipation adjustment, clw  is the basic class-level weight for all sampled classes in 
each school with a class nonparticipation adjustment and stw  is the examinee-level 
weight for each examinee in the classroom of the school with a student nonparticipation 
adjustment (Joncas and Foy, 2012). In Eq. (10) of the Pan-modified estimator, we 
estimated the true variance-correlation matrix by pooling all of the examinees within 
each state. The working correlation matrices for both LZ and Pan-modified estimators 
considered different correlation structures across states. 

Table 3 showed the results for guess and slip parameters corresponding to 23 
randomly selected items out of the 89 in total. The table comprises skill patterns required 
to correctly answer those items, guess and slip parameter estimates, with the 
corresponding SE estimates obtained from the jackknife and sandwich estimators. Across 
all 89 items the averaged SEs for the guess parameters were 0.022, 0.016 and 0.025 for 
the JK, LZ and Pan, respectively. The averaged SEs for the slip parameters were 0.021, 
0.014 and 0.019, respectively. On average, the jackknife resulted in biggest and the LZ 
resulted in the smallest SEs. 

Table 3 TIMSS 2011 assessments for nine benchmark states in US: parameter estimates and 
standard errors for the guess and slip parameters for 23 out of 89 selected items 

Item Q-matrix 

Guess Slip 

Est. 

SE 

Est. 

SE 

Naïve JK LZ P Naïve JK LZ P 

1 001000010 0.332 0.012 0.019 0.016 0.015 0.447 0.018 0.025 0.022 0.021 

2 101000010 0.031 0.004 0.008 0.005 0.006 0.300 0.018 0.029 0.023 0.021 

3 100000000 0.443 0.015 0.031 0.023 0.030 0.143 0.011 0.016 0.012 0.018 

4 010000010 0.301 0.012 0.026 0.018 0.034 0.049 0.006 0.017 0.006 0.019 

5 000101000 0.061 0.006 0.008 0.009 0.007 0.811 0.014 0.015 0.015 0.013 

6 100100000 0.002 0.001 0.002 0.001 0.001 0.798 0.014 0.021 0.014 0.009 

7 100001000 0.273 0.011 0.022 0.018 0.020 0.150 0.012 0.019 0.013 0.016 

8 000001100 0.099 0.008 0.016 0.009 0.009 0.262 0.012 0.031 0.016 0.017 

9 101000000 0.433 0.013 0.023 0.020 0.026 0.089 0.010 0.026 0.010 0.020 

10 100100000 0.586 0.013 0.029 0.020 0.036 0.060 0.009 0.011 0.009 0.019 

11 101000000 0.212 0.011 0.021 0.016 0.013 0.308 0.017 0.034 0.020 0.017 

12 100100000 0.181 0.009 0.020 0.016 0.013 0.296 0.018 0.025 0.019 0.016 
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Table 3 TIMSS 2011 assessments for nine benchmark states in US: parameter estimates and 
standard errors for the guess and slip parameters for 23 out of 89 selected items 
(continued) 

Item Q-matrix 

Guess Slip 

Est. 

SE 

Est. 

SE 

Naïve JK LZ P Naïve JK LZ P 

13 100001000 0.359 0.013 0.026 0.021 0.030 0.063 0.008 0.013 0.009 0.016 

14 010000010 0.546 0.014 0.029 0.022 0.025 0.186 0.013 0.024 0.018 0.020 

15 100100000 0.378 0.012 0.023 0.020 0.029 0.070 0.010 0.019 0.007 0.017 

16 010010000 0.184 0.011 0.016 0.015 0.012 0.452 0.017 0.028 0.023 0.018 

17 100001000 0.229 0.010 0.022 0.015 0.017 0.205 0.014 0.028 0.015 0.018 

18 010000010 0.305 0.012 0.023 0.018 0.021 0.167 0.013 0.019 0.013 0.019 

19 100000010 0.502 0.013 0.022 0.020 0.025 0.183 0.014 0.015 0.014 0.020 

20 100100000 0.406 0.012 0.028 0.018 0.029 0.085 0.010 0.014 0.009 0.018 

21 000101000 0.301 0.011 0.019 0.018 0.020 0.280 0.017 0.026 0.018 0.025 

22 000000110 0.335 0.013 0.023 0.018 0.028 0.008 0.001 0.009 0.002 0.009 

23 000010110 0.097 0.007 0.019 0.009 0.013 0.056 0.004 0.018 0.005 0.014 

Average 0.329 0.010 0.022 0.016 0.025 0.255 0.012 0.021 0.014 0.019 

Note: Est., estimated guess and slip parameters ( ˆ jg  and ˆ js ); JK, jackknife; 
LZ, Liang and Zeger’s estimator; P, modified Pan’s estimator. 

Table 4 shows the results for the nine skill mastery probabilities along with the estimated 
SEs by using the three methods. The estimated skill probabilities range from 0.385 
(pattern) to 0.584 (data organisation, representation and interpretations). In other words, 
the eighth graders in the US benchmark states tend to be least proficient in pattern, 
within the domain of algebra, and most proficient in data organisation, representation 
and interpretations, within the domain of data and probability. Overall, the results show 
that more than 50% of the eighth graders were proficient in the skills related to the data 
and probability domain (data organisation, representation and interpretation; probability), 
and in the skills related to whole number and integer within the number domain. Notice 
that the JK and Pan estimators performed more similarly than the LZ estimator. The LZ 
tends to be consistently smaller than those produced by other estimators. Across all nine 
skills the averaged SEs for the skill probabilities were 0.018, 0.007 and 0.017 for the JK, 
LZ and Pan, respectively. 

Table 4 TIMSS 2011 assessments for nine benchmark states in US: parameter estimates and 
standard errors of nine skill probabilities 

Skill Est. JK 
Sandwich 

LZ P 
1 Whole numbers and integers 0.533 0.014 0.011 0.017 
2 Fractions, decimals and proportions 0.461 0.015 0.005 0.014 
3 Patterns 0.385 0.021 0.002 0.005 
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Table 4 TIMSS 2011 assessments for nine benchmark states in US: parameter estimates and 
standard errors of nine skill probabilities (continued) 

Skill Est. JK 
Sandwich 

LZ P 
4 Expressions, equations and functions 0.492 0.015 0.005 0.034 
5 Lines, angles and shapes 0.432 0.019 0.005 0.007 
6 Measurement 0.496 0.020 0.012 0.016 
7 Location and movement 0.392 0.014 0.011 0.028 
8 Data organisation, representation and 

interpretations 
0.584 0.022 0.008 0.014 

9 Probability 0.512 0.021 0.007 0.018 
Average 0.476 0.018 0.007 0.017 

Note: Est., estimated skill probability ( ˆkπ ); JK, jackknife; LZ, Liang and 
Zeger’s estimator; P, modified Pan’s estimator. 

Computational time revealed some dramatic differences between the JK and the 
sandwich estimators. The procedure took approximately 4 h 7 min using the JK method, 
whereas 2 min when using each of the sandwich methods. 

6 General diagnostic model 

There are occasions when use of the more generalised family of the CDMs such as GDM 
(von Davier, 2005), Loglinear Cognitive Diagnosis Model (LCDM) (Henson et al., 
2009), or generalised DINA (de la Torre, 2011) are preferred. The proposed sandwich 
formulation in Section 3 can readily be applied to the above-mentioned models although 
partial derivatives have to be recalculated (see Sections 3.3 and 3.4) because of different 
parameterisations of the models. 

Let us use the GDM as an example of the generalised models. Suppose both the 
response outcome and attribute proficiency are dichotomous. Using a logistic link 
function, the model can be formulated as: 

exp ( , )
( 1| ) ,

1 exp ( , )

T
j j j

ij l T
j j j

h
P

h

β γ

β γ

⎡ ⎤+⎣ ⎦= =
⎡ ⎤+ +⎣ ⎦

q α
Y α

q α
 (21) 

where ( )1, , Kα α= …α  is the attribute proficiency; jq  is the set of skills influencing item 
j as given by the jth row of the Q-matrix, jβ  is intercept parameter and jγ  is slope 
parameter. For this example, we use ( , )jh q α  is formulated as - 

1 1( , ) ( , , )j j jK Kh q qα α= …q α , i.e. a fully saturated model - so Eq. (21) becomes 

exp
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As shown in Eq. (2), the marginal probability for answering item j correctly is 

0
( 1)  ( 1| ) L

ij ij l ij ll
P Pμ π

=
= = = =∑Y Y α . Similar to Sections 3.3 and 3.4 for the DINA 

model, the mathematical calculation of derivative matrices for the GDM parameters in 
Eq. (21) is necessary. For ijμ , each element of the partial derivative matrix, with respect 
to jβ  and jkγ , is simplified as follows: 

2
1

exp
 if 0, otherwise.
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Finally, each element of the partial derivative with respect to the skill probability, ij

l

μ
π

∂
∂

, 

can be shown to be, using the same logic as the DINA model in Section 3.4: 

' 0
'

 ( 1| ) ( 1| ).ij
ij l ij

l

P Y P Y
μ
π

∂
= = − =

∂
α α  

7 Discussion 

This study has shown how we developed accurate and faster methods to calculate the 
standard errors associated with the DINA model. We mainly focused on the scenarios in 
which cluster sampling design is embedded. The sandwich variance formula for two item 
parameters, guess and slip, and latent skill probability in the model were derived. Two 
approaches to formulating the sandwich variance were examined. We used the approach 
originally proposed by Liang and Zeger (1986) and adopted and modified the approach 
proposed by Pan (2001). The key difference between the two sandwich estimators 
pertains to estimating the true variance–covariance matrix between item responses. The 
variance-covariance matrix is estimated by each examinee individually in the former 
approach, by pulling all examinees within each cluster in the latter approach. Finally, we 
evaluated the performance by applying the jackknife replication technique, to 
combinations of various numbers of clusters and cluster sizes. 

The proposed sandwich estimator 

a accurately took into account the clustered structure of the data 

b was much faster than the resampling techniques when dealing with large scale data 

c was straightforward to code in the existing statistical program. 

The simulation results have several implications with regard to the estimators. First, the 
LZ estimator consistently revealed weaknesses in handling small sample size per cluster. 
That poor performance suggests that it is not an efficient tool for use in estimating the 
variance–covariance matrix with the only responses from a single examinee. In the 
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presence of the small sample size per cluster, the inefficiency increases along with  
the increasing number of clusters. Second, the jackknife technique exposed a general 
limitation with respect to the latent skill probabilities. The jackknife estimator tended to 
overestimate the true standard errors regardless of any condition. In fact, our finding 
supports Patterson et al. (2002), within that the technique tends to overestimate the 
standard errors of the latent class probabilities in the traditional LCM. The discrepancy 
got considerably bigger with a large sample size per cluster. Thus, researchers should be 
cautious when they use the jackknife technique to conduct their empirical data analysis. 
Finally, with respect to the computational time, we found that the sandwich estimators 
were considerably more efficient than the jackknife. 

Despite the fact that the Pan-modified estimator did a good job for adjusting for small 
sample sizes, we cannot ignore a number of studies that developed bias-corrected 
sandwich estimators in an attempt to alleviating bias due to the small sample size. 
Examples include Mancl and DeRouen (2001), Wang and Long (2011) and Li and 
Redden (2015), all of whose findings were formulated on the basis of the GEE. 
Therefore, some sort of comparison or even amalgamation of those studies with the 
current study might teach us much about the overall efficiency. Finally, this study has 
focused mainly on the DINA model. Depending upon the structure of the data, however, 
there are occasions when use of the more generalised family of the CDMs (de la Torre, 
2011; Henson et al., 2009; von Davier, 2005, 2014) would be preferred over the DINA. 
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Appendix A: R code for Pan’s method 
dina.sand.strata.var.PAN<-function(inp,strata)  
{  
  require("MASS") 
  if(class(inp)!="din") stop("Must provide an object of class 
din") 
  if(inp$rule!="DINA") stop("Input must be of result of fitted 
DINA model") 
  rule=inp$rule 
  data<-inp$data 
  if(nrow(data)!=length(strata)) stop("dimensions of strata and 
data  must match") 
  q<-inp$q.matrix 
  I<-nrow(data) 
  J<-ncol(data) 
  K<-ncol(q) 



   

 

   

   
 

   

   

 

   

   184 J.Y. Park et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

  L<-2^K 
  g<-inp$guess[,1] 
  s<-inp$slip[,1] 
  prob<-inp$posterior 
  prob.all<-t(inp$attribute.patt)[1,,drop=F]  
  w<-inp$weights 
  attr.patt<-matrix(0,L,K) 
  h1 <- 2 
  if (K >= 2) { 
    for (ll in 1:(K - 1)) { 
      lk <- combn(1:K, ll) 
      for (jj in 1:(ncol(lk))) { 
        attr.patt[h1, lk[, jj]] <- 1 
        h1 <- h1 + 1 
      } 
    } 
  } 
   
  attr.patt[L, ] <- rep(1, K) 
  #create latresp or eta matrix 
  comp <- (rowSums(q)) * (rule == "DINA")  
  compL <- outer(comp, rep(1, L)) 
  attrpatt.qmatr <- t((attr.patt %*% t(q))) 
  latresp <- apply(attr.patt, 1, FUN = function(attr.patt.ll) { 
    attr.patt.ll <- outer(rep(1, J), attr.patt.ll) 
    ind <- 1 * (rowSums(q * attr.patt.ll) >= comp) 
    ind 
    }) 
   
  #remove all zeroclasses form B, M and D 
  allzeroclass<-c(1,getzeroclass(q)) 
  n.allzero<-length(allzeroclass) 
  n.par<-L-n.allzero 
  B<-M<-matrix(0,2*J,2*J) 
  Bp<-Mp<-matrix(0,n.par,n.par) 
   
  #strata Cov matrices 
  unique.strata<-unique(strata) 
  n.strata<-length(unique.strata) 
  R.all<-cor(data,use="pairwise.complete.obs") 
R.all[is.na(R.all)]<-0  
#if no pairwise complete data, we assume them to be independent 
  R.strata<-NULL 
  CovY.all<-matrix(0,J,J) 
  CovY.strata<-NULL 
  for(i in 1: n.strata) 
  { 
    data.tmp<-data[which(strata==unique.strata[i]),] 



   

 

   

   
 

   

   

 

   

   An efficient standard error estimator of the DINA model parameters 185    
 

    
 
 

   

   
 

   

   

 

   

       
 

    prob.tmp<-prob[which(strata==unique.strata[i]),] 
    R.tmp<-cor(data.tmp,use="pairwise.complete.obs") 
    R.tmp[is.na(R.tmp)]<-0  
    R.strata[[i]]<-R.tmp 
    strata.n<-nrow(data.tmp) 
    CovY.strata[[i]]<-matrix(0,J,J) 
    for(j in 1:strata.n) 
    { 
      pi<-prob.tmp[j,,drop=F] 
      pihasskillforj<-as.vector(latresp%*%t(pi))  
      Yi<-as.vector(as.numeric(data.tmp[j,])) 
      mui<-as.vector((1-s)*pihasskillforj +g*(1-
pihasskillforj)) 
      invsqrtAi<-diag(1/sqrt(mui*(1-mui))) 
      Yi[is.na(Yi)]<-0 
      mui[is.na(mui)]<-0 
      invsqrtAi[is.na(invsqrtAi)]<-0 
      Yi<-matrix(Yi,J,1) 
      mui<-matrix(mui,J,1) 
      CovY.all<-CovY.all+invsqrtAi%*%(Yi-mui)%*%t(Yi-
mui)%*%invsqrtAi 
      CovY.strata[[i]]<-CovY.strata[[i]]+invsqrtAi%*%(Yi-
mui)%*%t(Yi-mui)%*%invsqrtAi 
    } 
    CovY.strata[[i]]<-CovY.strata[[i]]/strata.n 
  } 
  CovY.all<-CovY.all/I 
   
  for(i in 1:I) 
  { 
    Ri<-R.strata[[which(unique.strata==strata[i])]] 
    CovYi<-CovY.strata[[which(unique.strata==strata[i])]] 
    pi<-prob[i,,drop=F] 
    pihasskillforj<-as.vector(latresp%*%t(pi))     
    Dgi<-diag(1-pihasskillforj) 
    Dsi<--diag(pihasskillforj) 
    Dpi<-latresp*(1-s-g) 
    Dpi<-Dpi[,-allzeroclass] 
    Di<-cbind(Dgi,Dsi) 
    Yi<-as.vector(as.numeric(data[i,])) 
    mui<-as.vector((1-s)*pihasskillforj +g*(1-pihasskillforj)) 
    sqrtAi<-diag(sqrt(mui*(1-mui))) 
    isNA<-which(is.na(Yi)) 
    if(length(isNA)>0) 
    { 
      Yi<-Yi[-isNA] 
      mui<-mui[-isNA] 
      Di<-Di[-isNA,,drop=F] 
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      Dpi<-Dpi[-isNA,,drop=F] 
      Ri<-Ri[-isNA,-isNA,drop=F] 
      sqrtAi<-sqrtAi[-isNA,-isNA,drop=F] 
      CovYi<-CovYi[-isNA,-isNA,drop=F] 
    } 
    Vi<-sqrtAi%*%Ri%*%sqrtAi/w[i] 
    Vi.inv<-ginv(Vi) 
    CovYi<-sqrtAi%*%CovYi%*%sqrtAi 
    Bi<-t(Di)%*%Vi.inv%*%Di 
    Mi<-t(Di)%*%Vi.inv%*%CovYi%*%Vi.inv%*%Di 
    B<-B+Bi 
    M<-M+Mi 
    Bpi<-t(Dpi)%*%Vi.inv%*%Dpi 
    Mpi<-t(Dpi)%*%Vi.inv%*%CovYi%*%Vi.inv%*%Dpi 
    Bp<-Bp+Bpi 
    Mp<-Mp+Mpi 
  } 
  B.inv<-ginv(B) 
  Bp.inv<-ginv(Bp) 
  sand.cov<-B.inv%*%M%*%B.inv 
  guess.sand.cov<-sand.cov[1:J,1:J] 
  slip.sand.cov<-sand.cov[(J+1):(2*J),(J+1):(2*J)] 
  attrpat.sand.cov<-Bp.inv%*%Mp%*%Bp.inv 
  attr.patt.free<-attr.patt[-allzeroclass,] 
  skillprob.sand.cov<-
t(attr.patt.free)%*%attrpat.sand.cov%*%attr.patt.free 
  output<-inp 
  output$guess.sand.cov=guess.sand.cov 
  output$slip.sand.cov=slip.sand.cov 
  output$attrpat.sand.cov=attrpat.sand.cov 
  output$skillprob.sand.cov=skillprob.sand.cov 
  output$strata=strata 
  output$R.all=R.all 
  output$R.strata=R.strata 
  class(output)<-"din+strata+sandwich(DINA)" 
  return(output) 
} 
 
getzeroclass<-function(q) 
{ 
  J<-nrow(q) 
  K<-ncol(q) 
  L<-2^K 
  attr.patt<-matrix(0,L,K) 
  h1 <- 2 
  if (K >= 2) { 
    for (ll in 1:(K - 1)) { 
      lk <- combn(1:K, ll) 
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      for (jj in 1:(ncol(lk))) { 
        attr.patt[h1, lk[, jj]] <- 1 
        h1 <- h1 + 1 
      } 
    } 
  } 
  attr.patt[L, ] <- rep(1, K) 
  #create latresp or eta matrix 
  comp <- (rowSums(q)) 
  compL <- outer(comp, rep(1, L)) 
  attrpatt.qmatr <- t((attr.patt %*% t(q))) 
  latresp <- apply(attr.patt, 1, FUN = function(attr.patt.ll) { 
    attr.patt.ll <- outer(rep(1, J), attr.patt.ll) 
    ind <- 1 * (rowSums(q * attr.patt.ll) >= comp) 
    ind 
  }) 
  itempossible<-colSums(latresp) 
  zeroclass.t<-which(itempossible==0) 
  zeroclass<-NULL 
  if(length(zeroclass.t)>1) zeroclass<-zeroclass.t[-1] 
  return((zeroclass)) 
} 
 
result<-dina.sand.strata.var.PAN(din(data=data,q.matrix 
=q,zeroprob.skillclasses=getzeroclass(q),weights=data1[,2],rule 
="DINA",conv.crit=.00001,progress=F),strata=strata) 

Appendix B: Q-matrix for TIMSS 2011 grade 8 math data 

Domain Number concepts Algebra concepts Geometry concepts Data and probability 

Block Item 

Whole 
numbers 

and 
integers 

Fractions, 
decimals 

and 
proportions Patterns 

Expressions, 
equations 

and 
functions 

Lines, 
angles 

and 
shapes Measurement 

Location 
and 

movement 

Data 
organisation, 
representation 

and 
interpretations Probability 

M01 1 1 0 0 0 0 0 0 0 0 

M01 2 0 0 1 0 0 0 0 1 0 

M01 3 1 0 1 0 0 0 0 1 0 

M01 4a 1 0 1 0 0 0 0 1 0 

M01 4b 1 0 1 0 0 0 0 1 0 

M01 4c 1 0 1 0 0 0 0 1 0 

M01 5 0 0 1 1 0 0 0 0 0 

M01 6 0 0 0 0 1 0 0 0 0 

M01 7 1 0 0 0 0 0 0 0 0 
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Appendix B: Q-matrix for TIMSS 2011 grade 8 math data (continued) 

Domain Number concepts Algebra concepts Geometry concepts Data and probability 

Block Item 

Whole 
numbers 

and 
integers 

Fractions, 
decimals 

and 
proportions Patterns 

Expressions, 
equations 

and 
functions 

Lines, 
angles 

and 
shapes Measurement 

Location 
and 

movement 

Data 
organisation, 
representation 

and 
interpretations Probability 

M01 8 0 1 0 0 0 0 0 1 0 

M01 9 0 0 0 1 0 0 0 0 0 

M02 1 0 1 0 0 0 0 0 0 0 

M02 2 0 1 0 0 0 0 0 0 0 

M02 3 1 0 0 0 0 0 0 0 0 

M02 4 0 1 0 0 0 0 0 0 0 

M02 5 0 1 0 0 0 0 0 0 0 

M02 6 0 0 0 1 0 1 0 0 0 

M02 7 1 0 0 1 0 0 0 0 0 

M02 8 1 0 0 1 0 0 0 0 0 

M02 9 0 0 0 0 0 1 0 0 0 

M02 10 0 0 0 0 1 0 0 0 0 

M02 11 1 0 0 0 0 1 0 0 0 

M02 12 0 0 0 0 0 1 1 0 0 

M02 13 0 0 0 0 0 0 0 0 1 

M02 14a 0 0 0 0 0 0 0 1 0 

M02 14b 0 0 0 0 0 0 0 1 0 

M03 1 0 1 0 0 0 0 0 0 0 

M03 2 0 1 0 0 0 0 0 0 0 

M03 3 1 0 1 0 0 0 0 0 0 

M03 4 0 1 0 0 0 0 0 0 0 

M03 5 0 0 0 1 0 0 0 0 0 

M03 6 1 0 0 1 0 0 0 0 0 

M03 7 1 0 0 1 0 0 0 0 0 

M03 8 1 0 0 1 0 0 0 0 0 

M03 9 1 0 1 0 0 0 0 0 0 

M03 10 1 0 0 1 0 0 0 0 0 

M03 11 0 0 0 0 1 0 0 0 0 

M03 12 1 0 0 0 0 1 0 0 0 

M03 13 0 0 0 0 0 0 1 0 0 

M03 14 0 0 0 0 0 0 0 1 0 

M03 15 0 0 0 0 0 0 0 0 1 

M03 16 0 1 0 0 0 0 0 0 0 

M03 17 0 1 0 0 0 0 0 1 0 
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Appendix B: Q-matrix for TIMSS 2011 grade 8 math data (continued) 

Domain Number concepts Algebra concepts Geometry concepts Data and probability 

Block Item 

Whole 
numbers 

and 
integers 

Fractions, 
decimals 

and 
proportions Patterns 

Expressions, 
equations 

and 
functions 

Lines, 
angles 

and 
shapes Measurement 

Location 
and 

movement 

Data 
organisation, 
representation 

and 
interpretations Probability 

M05 1 0 1 0 0 0 0 0 0 0 

M05 2 0 1 0 0 0 0 0 0 0 

M05 3 0 1 0 0 0 0 0 0 0 

M05 4 0 0 0 1 0 0 0 0 0 

M05 5 0 0 0 1 0 0 0 0 0 

M05 6 1 0 0 1 0 0 0 0 0 

M05 7 0 1 0 0 1 0 0 0 0 

M05 8 1 0 0 0 0 1 0 0 0 

M05 9 0 0 0 0 0 0 1 0 0 

M05 10 0 0 0 0 1 0 0 0 0 

M05 11 0 0 0 0 0 0 1 0 0 

M05 12 0 0 0 0 0 0 1 0 0 

M05 13 0 1 0 0 0 0 0 1 0 

M05 14 0 0 0 0 0 0 0 0 1 

M06 1 0 1 0 0 0 0 0 0 0 

M06 2 0 1 0 0 0 0 0 0 0 

M06 3 1 0 0 0 0 0 0 1 0 

M06 4 1 0 0 0 0 0 0 0 0 

M06 5a 0 0 1 0 0 0 0 0 0 

M06 5b 0 0 1 0 0 0 0 0 0 

M06 5c 0 0 1 0 0 0 0 0 0 

M06 6 1 0 0 1 0 0 0 0 0 

M06 7 0 0 0 1 0 0 0 0 0 

M06 8 0 0 0 1 0 1 0 0 0 

M06 9 0 0 0 0 1 0 0 0 0 

M06 10A 0 0 0 0 0 0 1 1 0 

M06 10B 0 0 0 0 1 0 1 1 0 

M06 11 0 0 0 0 0 0 0 0 1 

M06 12a 0 0 0 0 0 0 0 1 0 

M06 12b 0 0 0 0 0 0 0 1 0 

M06 12c 0 0 0 0 0 0 0 1 0 

M07 1 1 0 1 0 0 0 0 1 0 

M07 2 0 1 0 0 0 0 0 0 0 

M07 3 0 1 0 1 0 0 0 0 0 
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Appendix B: Q-matrix for TIMSS 2011 grade 8 math data (continued) 

sDomain Number concepts Algebra concepts Geometry concepts Data and probability 

Block Item 

Whole 
numbers 

and 
integers 

Fractions, 
decimals 

and 
proportions Patterns 

Expressions, 
equations 

and 
functions 

Lines, 
angles 

and 
shapes Measurement 

Location 
and 

movement 

Data 
organisation, 
representation 

and 
interpretations Probability 

M07 4 0 0 0 1 0 0 0 0 0 

M07 5 0 0 0 1 0 0 0 0 0 

M07 6 0 0 0 0 1 0 1 0 0 

M07 7 1 0 0 0 0 1 0 0 0 

M07 8 0 0 0 0 1 0 1 0 0 

M07 9 1 0 0 1 0 0 0 0 0 

M07 10 0 0 0 0 1 0 0 0 0 

M07 11 0 0 0 0 0 0 0 0 1 

M07 12 0 0 0 1 0 0 0 0 0 

M07 13a 0 0 0 0 0 0 0 1 0 

M07 13b 0 0 0 0 0 0 0 1 0 

M07 13c 0 0 0 0 0 0 0 1 0 

 




