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Abstract: The principles of the well-known, hydraulic analogy are explained 
(see Courant and Friedricks, 1948; Loh, 1969). The governing equations of  
two-dimensional compressible fluid two-dimensional flows in non-dimensional 
form, based on conservation laws are first discussed. Then, the isentropic flow 
condition is introduced to produce the isentropic Euler equations. On the other 
hand, the equations governing surface waves on thin water layers over a flat 
surface are derived in non-dimensional form, using the assumption of 
hydrostatic pressure across the water layer, hence the analogy between the two 
problems is established. The normalised density of the compressible flow 
corresponds to the normalised height of the thin water layer and the speed of 
sound corresponds to the speed of surface waves in water, hence, the Mach 
number corresponds to Froude number. Finally, it is shown that the analogy can 
be used to visualise supersonic and transonic two-dimensional flow patterns, 
including shock waves and expansion fans around airfoils and in 
convergent/divergent nozzles. Also, nonlinear water waves of finite amplitude, 
in dispersive media, are discussed. In part 2 of this study, water table 
experiments are presented together with qualitative and quantitative 
measurement techniques. 
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1 Introduction 

Supersonic flows are interesting because of their theoretical and practical aspects. The 
governing equations are nonlinear and their solutions include shock waves and expansion 
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fans. These phenomena are also important for practical applications in supersonic 
aerodynamics. Nowadays, supersonic flight is limited to military airplanes and small 
business jets. Recently, NASA and Boeing are considering supersonic commercial 
airplanes and problems of sonic boom and wave drag become critical issues again. 

The purpose of this paper is to introduce students to an affordable method of 
visualisation of two-dimensional supersonic flows over airfoils and in nozzles based on 
the theory of hydraulic analogy. Experiments will help the students to understand the 
nature of these flows and consequently will affect their analysis, design and optimisation 
processes. The cost of a supersonic wind tunnel is prohibitive and their maintenance is 
expensive, therefore most of the students do not see supersonic flow patterns in their 
schools. 

Fortunately, the well-known analogy between two-dimensional supersonic flow and 
the surface waves on a shallow water layer over a flat surface leads to the simple water 
table experiments. The details will be discussed below. 

This paper consists of four sections: the governing equations of two-dimensional 
compressible fluid flows, the governing equations of shallow water waves and the 
principle of hydraulic analogy and practical applications of this analogy. 

Finally, some concluding remarks are mentioned. 

2 Governing equations of two-dimensional compressible fluid flows 

At high Reynolds number, viscous effects are confined to the boundary layers and wakes. 
In the following, boundary layer is assumed to be thin and attached to the body, hence the 
flow outside the boundary layer is assumed to be inviscid. To account for the boundary 
layer effects, viscous/inviscid interaction procedures in terms of displacement thickness 
can be used (see for example, Chattot and Hafez, 2015). 

The standard governing equations for the inviscid flows are based on conservation 
laws of mass, momentum and energy as well as the perfect gas law, (see for example, 
Thompson, 1972). 

For unsteady two-dimensional flows, the equations in Cartesian coordinates and 
standard notations are given by: 

( ) ( ) 0t x yρ ρu ρv+ + =  

( )2( ) ( )t y xxρu ρu ρuv P+ + = −  

( )2( ) ( )t x yyρv ρuv ρv P+ + −  

( ) ( ) ( )t x y tρH ρuH ρvH P+ + = −  

( )2 21
2

H h u v= + +  

where H is the total enthalpy and h is the specific enthalpy. Here, h = cpT and cp is the 
specific heat under constant pressure. 

In the above equations, the density ρ and the velocity components u, v are normalised 
by the corresponding free stream values ρ∞ and V∞, while x, y are normalised by the 
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length l and t by l / V∞, the pressure P is normalised by 2ρ V
∞∞  and the temperature T by 

2 .pV c
∞

 The total and specific enthalpies are normalised by 2.V
∞

 The perfect gas law 

becomes 1γP ρT
γ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 where R = Cp – Cv and γ = Cp / Cv, where Cp and Cv are the 

specific heat under constant pressure and constant volume respectively. The governing 
equations are written in conservation form and their weak solution admits the  
Rankine-Hugoniot jump conditions (see Oswatitsch, 1956; Liepmann and Toshko, 1957; 
Shapiro, 1953; Zucrow and Hoffman, 1976; Landau and Lifshitz, 1987). 

In non-conservative form, the equations read: 

( ) 0t x y x yρ ρ u v uρ vρ+ + + + =  

t x y xρu ρuu ρvu P+ + = −  

x y yρvt ρuv ρvv P+ + = −  

t x y tρH ρuH ρvH P+ + =  

The characteristic relations for time dependent one space dimensional case and for steady 
two-space dimensional cases are given in Thompson (1972). 

Another model, which will be used in the present study, is the isentropic flow 
equations, where the energy equation is replaced by the isentropic relations: 

r

γ

r

P ρ
P ρ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

where Pr and ρr are reference pressure and density respectively. Using our normalisation, 
the isentropic relation reads: 

2γP ρ γM∞=  

where 
2

2
2

VM
a

∞
∞

∞
=  and 2a∞  is the speed of sound at infinity, 2 .a γP ρ∞ ∞ ∞=  

A simpler model can be derived based on the assumption that the flow is irrotational. 
For certain applications, one can use the condition of zero vorticity, namely ux = vy. 

In this case, there exist a potential function such that u = Φx and u = Φy. Hence, the 
governing equations become: 

( ) ( ) 0t x yx yρ ρ ρ+ Φ + Φ =  

The momentum equation can be integrated to yield Bernoulli’s law for isentropic 
compressible flows and hence the density can be related to the velocity components by 
the following relation: 

( )
1

12 211 2 1
2

γ
x y t

γρ ω
−−⎡ ⎤= − Φ + Φ + Φ −⎢ ⎥⎣ ⎦
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The non-conservative form of the above equation reads, assuming that the far field is 
steady. 

( ) ( )2 22 2 2 2 2tt x xt y yt x xx x y xy y yya aΦ + Φ Φ + Φ Φ = − Φ Φ − Φ Φ Φ + − Φ Φ  

where 

( )
1

2 2 2
2

1 1 1 12
1 2 1 2x y t

a
γ γ M∞

+ Φ + Φ + Φ = +
− −

 

For small disturbance approximation φ, the reduced equation becomes 

( )2 2 22 1tt xt xx yyM φ M φ M φ φ∞ ∞+ = − +  

where 

( )2 2 21 1 ( 1) .xM M γ M φ∞ ∞− = − − +  

The first term φtt can be neglected for low reduced frequency cases (see Chattot and 
Hafez, 2015; Ashley and Landahl, 1965). 

2.1 Transonic similitude 

For the transonic small disturbance equation, φ and y can be rescaled, so the equation will 
read, 

( )

( )

2

2

2/3 1/3

0
1where

( 1)
is of order

and is of order 1 , ( 1)

and ( 1) , where is the thickness parameter

x YYK φ φ φ
MK

M γ
φ

γ δ δ M γ

τ M γ τ

∞

∞

∞

−
∞

− + =

−
=

∈ +
∈

= ∈ +

∈ = +

 

In this formulation, the effect of γ on the solution is absorbed in the similarity parameter 
K (Ashley and Landahl, 1965). 

2.1.1 Special cases 

For convenience, one dimensional steady flow will be considered next, to demonstrate 
the basic ideas. First, the speed of sound formula is derived followed by the normal and 
oblique shock jump conditions and the expansion fan relations. 

2.2 Speed of sound 

Consider a source of noise with disturbance propagating through stand still air with speed 
u. If the front of the wave has a large radius, a one dimensional model is adequate. To 
render the problem to a steady one, let the front be fixed and the air goes through it (in 
the opposite direction). 

The conservation of mass in a control volume around the wave front implies 
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ρuh constant=  

or ρ u
ρ u

Δ Δ
= −  since h, the height of the control volume, does not change. 

Assuming smooth solution and applying equation of motion to fluid particles yields 

ρu u pΔ = −Δ  

where Δρ, Δu and Δp represent the variation in density, velocity and pressure, 
respectively. 

Eliminating Δu from the two equations gives: 

2p u
ρ

Δ
=

Δ
 

Newton assumed the process to be isothermal hence he claimed that the speed of 
propagation is 

2 .u RT=  

On the other hand, Laplace argued that the smooth, adiabatic process is in fact isentropic, 
hence 

dp γp γRT
dρ ρ

= =  

2.2.1 Normal shock wave relations 

If the source of noise is replaced by an intense explosion, the conservation laws across 
the front (shock) read: 

2

21
1 2

ρu m
P ρu M
γ p u H
γ ρ

=

+ =

+ =
−

&

&  

eliminating ρ from the third equation gives, 

21
1 2
γ Pu u H
γ m

⋅ + =
− &

 

and eliminating P yields 

( )
21

1 2
γ M mu u H
γ m

−
+ =

−

& &

&
 

This is a quadratic equation in u, with two roots. After some manipulations, one can show 
that 

*2
1 2u u a=  
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where 
*2

*2 *21 1or
1 2 2( 1)

a γa H H a
y γ

+⎛ ⎞+ = =⎜ ⎟− −⎝ ⎠
 

a* is the critical speed of sound, namely (the speed of sound at sonic condition, i.e.,  
u = a). Hence, one arrives at Prandtl relation for normalised shocks: 

* *
1 2 1M M⋅ =  

where M* = u/a*
. 

Excluding the trivial solution * *
1 2 1,M M= =  where the flow is smooth and at sonic 

condition, there are two possibilities 
* *
1 21 and 1M M> <  

or 
* *
1 21 and 1.M M< >  

Both possibilities satisfy the three conservation laws! 
It turns out the second case, is not acceptable based on the second law of 

thermodynamics since in this case ΔS < 0. Therefore, shocks jump only from supersonic 
to subsonic flows and not vice versa. 

The jump conditions for ρ and P, can be easily obtained in terms of *
1M  as follows: 

2
2

2 1 1 *
1

1 2 1 2

uρ u M
ρ u u u

= = =  

while 2*
2 1 1(1 )− = −P P M  where pressures are normalised by 2

1 1ρ u  and 2 2 2

1 1 1
.T P ρ

T P ρ
=  

2.2.2 Mach number and mach angle 

The Mach number is defined as the ratio of the particle v to the speed of sound a, i.e.,  
Ma = v / a. The significance of Mach number can be explained in several ways: 

1 Let, 
2

2 2
2

2

2 1
2 .

v v

vγRv vM
a γRT c c T

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠= = = ⎜ ⎟
⎝ ⎠

 

Hence, M2 is proportional to the ratio of kinetic energy per unit mass to internal 
energy per unit mass. 

2 Let 
2

2
2

1
2 2 .

ρvvM
γP γ P
ρ

⎛ ⎞
⎜ ⎟

= = ⎜ ⎟
⎝ ⎠

 

Hence, M2 is proportional to the ratio of the dynamic pressure to static pressure. 
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3 Let, 
2

2
2

.v ρ ρM
p ρ P ρv

Δ
= =

Δ Δ Δ
 

Hence, M2 is the ratio of relative change of density to the change of pressure 
normalised by the dynamic pressure. 

4 Let, 
2

2 : (since ).v ρ ρM ρv v P
P ρ v v

−Δ
= = Δ = −Δ

Δ Δ Δ
 

Hence, M2 is proportional to the relative change of density to the relative change of 
velocity. Therefore, M2 is an indication of compressibility effects. 

For supersonic flow, Ma > 1, the particle is faster than the noise. The Mach angle μ (see 
Figure 1) is given by 

2

1 1sin and tan
1

a tμ μ
v t Ma Ma

⋅
= = =

⋅ −
 

Figure 1 Sketch of Mach line and Mach angle 
 

 

Notice, the relation between M and M* can be obtained from Bernoulli’s law: 

2 *21 1
1 2 2( 1)

za γu a
γ γ

+
+ =

− −
 

hence, 
*2

*2
2

1 1 1 .
1 2 2( 1)

M γM
γ M γ

+
+ =

− −
 

Notice, the shock relations in isentropic Euler and in potential equations are different 
from Rankine-Hugoniot relations associated with full Euler equations. 

If the conservation of energy is replaced by the isentropic condition, the jump 
conditions across an isentropic shock are: 

[ ] [ ] [ ]
2 2

1 10 and 0, or 0
γ

rγ
r r

r r

mρu ρ m u m u
γM γM u

⎡ ⎤⎡ ⎤ ⎛ ⎞= + = + =⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦⎣ ⎦

&
& &  

Hence, the above relation across the isentropic shock replaces Prandtl relation of the 
standard Euler equation. 

The normal shock relations for the full potential and nonlinear small disturbance 
equations are given in Chattot and Hafez (2015), as 
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( )
1

1
2 211 1 0

2
γ

r
γ M u u

−
⎡ ⎤
⎛ − ⎞⎛ ⎞⎢ ⎥− − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 

and 

( )2 2 211
2x x
γM φ M φ∞ ∞

⎡ ⎤⎛ + ⎞⎛ ⎞− − ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
 

2.3 Oblique shock relation 

Consider supersonic flow over a wedge as in Figure 2 (see Courant and Friedricks, 1948; 
Chattot and Hafez, 2015; Oswatitsch, 1956; Thompson, 1972). 

Figure 2 Sketch of oblique attached shockwave 

 

Let us decompose w1 into a normal component to the shock u1 and a tangential 
component v1. Similarly, we decompose w2 into u2 and v2. The two normal components u1 
and u2 are governed by the relations of normal shock waves. The Mach number upstream 

of the oblique shock is 1
1

1

wM
a

=  and u1 = w1 sinβ, hence, 

1
1

1
sin , .

2
u πM μ
a

= ≤ ≤β β  

The oblique shock relations are obtained by replacing M1 in normal shock relations by M1 
sinβ. 

We also notice, 

2
2

2

wM
a

=  

hence, 

2
2

2
sin( ).u M θ

a
= −β  

The resulting relations for oblique shocks contains sinβ and sin(β – θ). To determine the 
shock angle β, we need to impose the conservation of tangential momentum. Taking a 
control volume along the oblique shock and shrinking its width, the conservation of 
tangential momentum requires 
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1 1 1 2 2 2ρ u v ρ u v=  

or 

1 2v v v= =  

since, 

1 1 2 2ρ u ρ u=  

The condition on the angle β is obtained from the relation 

2

2

1 1

tan( )
tan( )

u
θ uv

u u
v

−
= =

β
β

 

It turns out that for a given θ and M1, there are two solutions β1 and β2. Both are attached 
shocks. There is also a maximum value for θ for attached shocks. For higher values of θ, 
a bow shock is detached from the wedge. The shock relations can be plotted in the 

hodograph plane where the coordinates are 
*

u
a

 and 
*

v
a

 (see Liepmann and Toshko, 

1957). 

2.4 Prandtl/Meyer expansion 

For weak oblique shocks, with small deflection angle θ, the above relations can be 
reduced to simple expressions (see White, 1986; Liepmann and Toshko, 1957), in 
particular the linear terms are 

2 1

21 1 1
w w θ

w M
−

−
−

�  

or in a differential form 

2
1 1

dw dθ
w M

= −
−

 

In fact, supersonic flow over a convex corner can be modelled by a centred wave, where 
the flow parameters must be constant along rays from the corner. 

Integrating the above equation (see White, 1986), gives 

2 1a
dwθ constant M
w

− + = −∫  

since W = Maa, therefore 

.a

a

dw dM da
w M a

= +  

From Bernoulli’s law 
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2
21

1 2
a w H
γ

+ =
−

 

2 0
1

ada wdw
γ

+ =
−

 

or 

22 0
1

da dwM
γ a w

+ =
−

 

Eliminating ,da
a

 one can obtain dw
w

 in terms of ,a

a

dM
M

 hence, 

( )1/22

2

1 .
11

2

a a

a
a

M dMdθ
γ MM

−
= −

−
+

 

Introducing dw = –dθ, where w = θ at Ma = 1. 
The above relation can be integrated to give an explicit relation for w as a function of 

Ma. 
Prandtl/Meyer expansion fan can be also plotted in the hodograph plane (see 

Liepmann and Toshko, 1957). 

2.5 Steady two-dimensional flows over thin pointed bodies 

2.5.1 Shock-expansion theory 

Consider steady supersonic flow over a diamond airfoil. The shock-expansion theory is 
used to calculate the surface pressure as follows. 

Assuming oblique shocks are attached at the leading edge, one can calculate the flow 
downstream of the shocks on the top and bottom surface (they differ if the airfoil is at 
angle of attack). At the shoulders, there are expansion fans and the flow can be easily 
calculated all the way to the trailing edge, where shocks or fans can be found depending 
on the angle of attack. 

Obviously the flat plate at angle of attack is a special case. 
For a biconvex airfoil, a continuous isentropic flow from the leading edge to the 

trailing edge replaces the centred fan in the case of a diamond airfoil. One can divide the 
airfoil in n segments and the continuous flow is approximated by n centred waves. 

On the other hand, the thin airfoil theory gives the surface pressure coefficients and 
hence lift and drag, in terms of linearised relations between the deflection angles and the 
flow speeds, through linearised Bernoulli’s relation, hence the surface pressure can be 
readily calculated. 

The above theories are not applicable in case of blunt bodies where bow shock is 
detached from the bodies. They are also not valid for transonic flows where the flow is 
locally supersonic somewhere and locally subsonic somewhere else. In these cases, 
numerical simulations based on the governing equations, are necessary to obtain the flow 
patterns. The details of the computational methods will be discussed in a separate 
publication. 
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2.5.2 Supersonic thin airfoil theory 

Instead of taking the limits of the nonlinear weak oblique shock relations, a simple 
straightforward approximation from the linearised expression relating the deflection 
angle to the speed change across a wave is derived in the following. 

Consider again supersonic flow over a wedge. The flow will be deflected across the 
wave and it will be parallel to the surface of the wedge. Notice, from the conservation of 
the tangential momentum, the tangential velocity does not jump across the shock. Hence, 
v1 = v2 = v. 

The shock angle β can be approximated by the Mach angle, μ hence (see Figure 3). 

Figure 3 Supersonic flow over a wedge 

 

2.5.3 Convergent/divergent nozzles at design and off design conditions 

Compressible inviscid smooth flows of a perfect gas inside nozzles can be described by 
the quasi-one-dimensional equations, where A = A(x) is the cross-section as, 

ρuA Constant=  

or 

ρ u A
ρ u A

Δ Δ Δ
+ +  

and 

ρu u PΔ = −  

Assuming isentropic condition 
γ

r r

P ρ
P ρ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

or 
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2P a ρΔ = ⋅ Δ  

After some manipulations, one obtains 
2

2

u a ρ
u u ρ

Δ Δ
= −  

and 

( )21 .u AM
u A

Δ Δ
− = −  

The above equations can be integrated step by step starting from the inlet (or the throat) 
to obtain the behaviour of the solution along the nozzle. Instead, the integral relation of 
Bernoulli’s law may be used, namely 

21
2p p oc T u H c T+ = =  

where To is the stagnation temperature. 
Hence, 

1
* * *1 12 2 2, , .

1 1 1

γ
γ γ

o o o

T P ρ
T γ P γ ρ γ

+ −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
 

In terms of the above relations, the conservation of mass reads: 
* * *,ρuA ρ u A=  

hence, 
*

* *

*

*
o o

o o o

ρ a
A ρ u ρ a

ρ u aA ρ u
ρ a a

⋅
= ⋅ =

⋅ ⋅
 

Substituting for the ratios in the left hand side their corresponding relations in terms of 

Mach number, it is clear that 
*

(M).A fnc
A

=  

The dependence of A / A* on M is given in White (1986) and Liepmann and Toshko 
(1957). 

For a given value of A / A*, there are two values of M corresponding to subsonic and 
supersonic flows in the convergent and divergent part of the nozzle. 

Notice that the mass flow rate per unit area reaches a maximum for a given duct, 
when it is throat is at sonic condition. Condition for this choking phenomenon can be 
proved directly from Bernoulli’s law as follows: 

0,dp udu
ρ

+ =  

or 
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, 0.dP dρ udu
dρ ρ

+ =  

Now, 

( )d ρu ρdu udρ= +  

2 2( ) (1 ).a
d ρu ρ ρM ρ M

du
= − = −  

Since the second derivative can be shown to be negative at Ma = 1, then the mass flow 
rate reaches a maximum at sonic condition. 

Thus, at design condition, the nozzle is choked and the flow is supersonic in the 
divergent part. 

The off-design conditions corresponding to different values of the back pressure are 
normal shock inside the nozzle, oblique shock, or expansion fan at the exit. 

See White (1986) and Liepmann and Toshko (1957) for more details. 

3 Theory of shallow water surface waves 

Consider a shallow layer of water over a flat surface, ignoring the viscous effects and the 
surface tension, the equations of motion are: 

w x
Duρ P
Dt

= −  

w y
Dvρ P
Dt

= −  

.w z
Dwρ P ρg
Dt

= − −  

Assuming w and Dw
Dt

 are negligible, the last equation becomes: 

or ( )z w w aP ρ g P ρ g h z P= − = − +  

where h is the height of the layer, Pa is the atmospheric pressure and ρw is the density of 
water. From this hydrostatic balance, Py = – ρwghy and Px = – ρwghx. Moreover, the 
conservation of mass can be approximated by: 

( ) ( ) ( ) 0w w wt x yρ h ρ hu ρ hv+ + =  

Combining the equations of motion and the conservation of mass, one can obtain the 
momentum equations in conservation form: 

( ) ( ) ( ) ( )2 21
2w w w x w xxt yρ hu ρwhu ρ huv hρ gh ρ g h+ + = − = −  
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( ) ( ) ( ) ( )2 21
2w w w y w yyt yρ hv ρwhuv ρ hv hρ gh ρ g h+ + = − = −  

In non-dimensional form the equations become, 

, ,h h h u u v v v v∞ ∞ ∞= = =  

( ), , andx x l y y l t t l v∞= = =  

Where l is a characteristic length, 

( ) ( ) 0t x yh uh vh= + =  

( )2 2
2

1( ) ( )
2t y x

ghhu hu huv h
v

∞

∞
+ + = −  

( )2 2
2

1( ) ( ) .
2t x y y

ghhv huv hv h
v

∞

∞
+ + = −  

Notice the non-dimensional quantity 
2

gh
v

∞

∞
 is 

2

1 ,
F

 where vF
gh

∞

∞

=  is the Froude 

number. 
Notice the non-dimensional equations in non-conservative form can be written in the 

form: 

0.Dv gh h h
Dt

+ ⋅ Δ =  

For small disturbances, with h – ho << ho and ho is the height of the undisturbed layer, 
linearisation of the above equation gives the standard wave equation: 

2
2

2
.o

h gh h
t

∂
= ∇

∂
 

3.1 Special cases 

3.1.1 Speed of surface wave in shallow water theory 

The conservation of mass in a control volume around the wave front implies: 

,wρ uh constant=  

where h is the height of the water layer, hence 

h u
h u

Δ Δ
− =  

and the equation of motion gives 

.w wρ u u P ρ g hΔ = −Δ = − Δ  

Eliminating Δu gives: u2 = gh. 
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Hence, the speed of propagation of the surface wave under the above assumptions is 
.gh  

3.1.1.1 Hydraulic jumps 

Consider a surface wave on a thin layer over a flat plate. A sudden change of the 
thickness of the layer may occur at certain conditions. Moving with the discontinuity and 
considering the relative normal velocity, the following steady relations can be derived: 

1 1 2 2u h u h=  

where subscripts one and two refer to the conditions before and downstream of the jump. 
The momentum balance using a control volume in Figure 4 and ignoring the friction 
gives 

2 2
2 12 1wρ u h ρwu h Force due to pressure− =  

Assuming hydrostatic pressure distribution across the water layer: 

( ) ( ) ( )1 2
2 2

1 2 1 2
0 0

1
2

h h
w w wρ g h z dz ρ g h z dz ρ g h h− − − = −∫ ∫  

hence the jump condition is: 

2 2 2 2
1 21 1 2 1

1 1 .
2 2

u h gh u h gh+ = +  

Following Chattot and Hafez (2015) and Thompson (1972), the conservation of mass and 
momentum together yield 

( ) ( )3 3
1 1 11

1 0.
2

g h h h u h h− − − =  

The trivial solution h = h1, i.e., there is no jump is excluded and the other two solutions 
satisfy the relation 

2
2 1 1 11

1 1 1 0
2 2 2

gh gh h gh u h+ + − =  

Figure 4 Sketch of shallow water layer over a flat plate with Hydraulic Jump 
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The above quadratic equation has two solutions 

2
1

1

1 1 2
2 4

h F
h

−
= + +  

for F1 ≥ 1 and h / h1 ≤ 1. 

Notice from conservation of mass 
3/2

1 2

2 1
.F h

F h
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The solution is not physical with negative values of h. 
For F1 ≤ 1 and h / h1 ≤ 1, the solution is excluded based on the second law of 

thermodynamics, since energy must decrease due to dissipation loss. To calculate the 
specific energy E for a given discharge Q, let 

2
2

2

1 1
2 2 2

QE gh u gh
h

= + = +  

There are two possible states for the same E and Q (see Figure 5). 

Figure 5 Subcritical and supercritical wave speeds 

 

There is a minimum value of E at certain value of h. Setting 0,dE
dH

=  Emin occurs at 

2

3
0Qg

h
− =  or, 

1/32

c
Qh
g

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 and 

2

min 2

1 .
2 2c

c

QE gh
h

= +  

At the critical depth h = hc, 2 3 2 2
c o cQ gh c h= =  where o cc gh=  and F = 1. 

For E < Emin, no real solution exists and for E > Emin two solutions are possible with  
h > hc and u < co, as well as h < hc and u > co. Now, across the jump: 
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( )3
2 1

1 2
1 2

.
4

h hE E g
h h
−

− =  

Hence, there is dissipation loss only if h2 > h1. 
Notice, more consistent analysis would be based on the total enthalpy (and not just 

potential and kinetic energy), see Chattot and Hafez (2015). 
In Chattot and Hafez (2015), the jump relation is written in the form, where 

1 1
2 1[ ] and .

2
u uu u u u +

= − < > =  

Notice, 

[ ]2 2[ ]u u u= < >  

and 

1 1[ ] 0u gQ
u u

⎡ ⎤+ =⎢ ⎥⎣ ⎦
 

since 

1 2
[ ]and
1

Q uh u u
u

u

=< > = −
⎡ ⎤
⎢ ⎥⎣ ⎦

 

therefore, 

1 2 .u u g h= < >  

3.1.2 Open channel with variable width 

Let the width A be a function of x, A = A(x), the conservation of mass becomes 

constantw w r r rρ huA ρ h u A= =  

and the equation of motion for smooth flow reads, 

.w x x w xρ uu P ρ gh= − = −  

In non-dimensional form, the equations are 

1hAu =  

2 2 2

1 1 .r
x x

r

ghuu h hx hx
u F F

= − ⋅ = − = −  

Multiply the last equation by ,h  it becomes, 

( )2
2

1 1 .
2x x xh uu hx

F
= −  
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Across a discontinuity, the jump condition is 

2 2
2

1 1 0.
2 r

hu h
F

⎡ ⎤+ =⎢ ⎥⎣ ⎦
 

The governing equation for this simple special case is easy to derive from first principles 
and can be used to describe the flow phenomenon of hydraulic jumps. 

3.1.3 One-dimensional unsteady flow 

The governing equations are 

0t x xu uu gh+ + =  

and 

0t x xh hu uh+ + =  

Notice, c2 = gh and ght = 2cct and ghx = 2ccx. 
Therefore, the two equations become: 

2 0t x xu uu cc+ + =  

2 2 0.t x xc cu uc+ + =  

Adding the above two equations gives: 

( 2 ) ( )( 2 ) 0t xu c u c u c+ + + + =  

while subtracting them gives 

( 2 ) ( )( 2 ) 0t xu c u c u c+ + − − =  

Therefore (u + 2c) is constant along the curve defined by ,dx u c
dt

= +  while (u – 2c) is 

constant along the curve defined by .dx u c
dt

= −  

The quantities (u + 2c) and (u – 2c) are the Riemann invariants and the two curves 

defined by dx u c
dt

= ±  are the two characteristics associated with the two equations. 

The jump conditions associated with the equations in conservation form  
(see Figure 6) 

( ) ( )2 21( ) 0
2t x xhu hu g h+ + =  

( ) 0t xh hu+ =  

2 21[ ] 0
2s

dxhu hu gh
dt

⎛ ⎞ ⎡ ⎤− + =⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
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[ ] [ ] 0.
s

dxh hu
dt

⎛ ⎞ − =⎜ ⎟
⎝ ⎠

 

The above equations can be rewritten as 

21 0
2s

dxh u gh
dt

⎡ ⎤⎛ ⎛ ⎞− + =⎜ ⎟⎢ ⎥⎜ ⎝ ⎠⎝⎣ ⎦
 

0
s

dxh u
dt

⎡ ⎤⎛ ⎛ ⎞− =⎜ ⎟⎢ ⎥⎜ ⎝ ⎠⎝⎣ ⎦
 

where 
s

dxu
dt

⎛ ⎞− ⎜ ⎟
⎝ ⎠

 is the relative velocity to the jump. 

3.1.4 Steady two-dimensional supercritical flow 

The governing equations in this case are: 

( )21
2x y xhuu hvu g h+ = −  

( )21
2x y yhuv hvv g h+ = −  

and ( ) ( ) 0.x yhu vh+ =  

It can be shown, that with uniform upstream conditions, the flow is everywhere 
irrotational (as discussed later). Hence, there exists a potential φ, such that u = φx, v = φy 
and φxy = φyx. The governing equation for φ is 

( ) ( )2 2 2 22 0.x xx x y xy y yyc φ φ φ φ φ c φ d− − + − =  

The characteristics associated with the above equation are well-known; see for example, 
Chattot and Hafez (2015). Also, the jump conditions of the conservative form  
(hφx)x + (hφy)y and φxy = φyx are given by 

[ ] [ ] [ ] [ ]0 and 0.x y y y
x s

dy dyhφ hφ hφ φ
dx dx

⎛ ⎞ ⎛ ⎞⋅ − = ⋅ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The derivation is clear from Figure 6 and Figure 7. For example, conservation of mass 
across the discontinuity gives (2Δy)(h1u1) – h2u2(2Δy) + h2v2(2Δx) – h1v1(2Δx) = 0 or 

[ ] [ ] 0yhu hv
x

Δ⎛ ⎞ − =⎜ ⎟
Δ⎝ ⎠

 where y
x

Δ⎛ ⎞
⎜ ⎟

Δ⎝ ⎠
 is the slope of the discontinuity. Similarly, from the 

irrotationality condition: 

2 2 1 1(2 ) ( ) (2 ) (2 ) 0u y v y u x v xΔ + Δ − Δ − Δ =  

or [ ] [ ] 0.
s

dyu v
dx

⎛ ⎞ + =⎜ ⎟
⎝ ⎠
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Figure 6 Application of Gauss theorem over control volume around the discontinuity 

 

Figure 7 Applications of Stokes theorem over a control volume around the discontinuity 

 

3.1.5 The theory of hydraulic analogy 

Comparing the governing equations of shallow water surface waves over a flat surface to 
the governing equations of two-dimensional compressible fluid flows, assuming 
isentropic conditions, one can see the following striking analogy. 

In non-dimensional forms, the general surface wave equations are: 

( ) ( ) 0t x yh hu hv+ + =  

( ) ( ) ( ) ( )2 2
2

1 1
2t x y thu hu huv h

F∞
+ + =  

( ) ( ) ( ) ( )2 2
2

1 1 .
2t x y yhu huv hv h

F∞
+ + = −  

while the ‘isentropic’ Euler equations are: 
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( ) ( )2 0t x yρ ρu ρuv+ + =  

( ) ( ) ( ) ( )2
2

1 1
xt yρu ρu ρuv P x

γ M∞
+ + = %  

( ) ( ) ( ) ( )2
2

1 1 .yyt xρv ρuv ρv P
γ M∞

+ + = − %  

Notice here, ,PP
P∞

=%  while 
2 2 2

1 .P P PP P
ρ V P ρ V γM

∞

∞ ∞ ∞ ∞ ∞ ∞
= = ⋅ = %  

The two sets of equations are identical if γ = 2. 
In this case: 

corresponds to ,M F∞ ∞  

corresponds to ,P h%  

2corresponds toP ρ%  

corresponds to .T h%  

(since for perfect gases, ,P ρT=% %  where ).T T T∞=%  
The analogy is based on the correspondence between speed of the surface wave  

(c2 = gh) and the speed of sound (a2 = γRT). 
The analogy is clear from the non-conservative forms of the equations as well, where 

2andDv h Dv ρgh a
Dt h Dt ρ

∇ ∇
= − = −  

Notice  ∇p = a2∇ρ (assuming isentropic conditions). 
For small disturbances of flows at rest, the two linearised equations become: 

2 2 2 2and .tt tth c h ρ a ρ= ∇ = ∇  

The compressible flow relations and their shallow-water versions are: 

2

1
12

12

11
2

11
2

11
2

o

γo

γ
γo

T γ M
T

ρ γ M
ρ

P γ M
P

−

−

−
= +

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

and 
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2

2

2 2

11
2

11
2

11
2

o

o

o

h γ F
h
h γ F
h

h γ F
h

−⎛ ⎞ = +⎜ ⎟
⎝ ⎠

−⎛ ⎞ = +⎜ ⎟
⎝ ⎠

−⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

Moreover, flows in nozzles of variable cross-section area correspond to shallow water in 
open channel with variable width. 

Similarly, the analogy is valid also for thin airfoil theory as well as full potential and 
transonic small disturbance equations including the jump conditions and the expansion 
fan relations. 

The jump conditions for steady and unsteady flows in one and two space dimensions 
are also similar (under the assumption of isentropic conditions for the compressible 
flows), since they are the weak solutions of the same non-dimensional equations in 
conservation forms. 

3.1.6 Limitations of hydraulic analogy 

When valid, the analogy has many useful applications. However, there are several serious 
limitations for its validity. 

The above equations were derived assuming thin layer of water, over a flat surface, 
with hydrostatic pressure across the layer. 

If the layer of the water is not thin or the bottom surface is not flat, the governing 
equations must be modified accordingly. For example, the vertical velocity and vertical 
acceleration, (compared to gravity) may not be negligible. 

We assumed the liquid is incompressible with constant viscosity and ignored surface 
tension. Moreover, the flow is treated as inviscid and the friction at the bottom surface is 
ignored. 

Moreover, the analogy is valid for γ. For air, γ = 1.4 and there is no gas with γ = 2! 
However, for transonic small disturbance theory, the γ- effect is absorbed in the transonic 
similarity parameter K and the governing equation, with the proper scales, is independent 
of γ. 

Finally, the analogy is only for two-dimensional, isentropic flows. It should be 
mentioned, that isentropic Euler equations are in general different from the full Euler 
equations. 

The solution of full Euler equations satisfy conservation laws of mass, momentum 
and energy while entropy jumps (increases) across shocks, while the solution of 
isentropic Euler equations satisfies conservation of mass, momentum and entropy, while 
the total enthalpy jumps across shocks. Shocks are not the only discontinuity in the 
solutions of Euler equations. Across contract discontinuations, pressure, is continuous but 
tangential velocity jumps. Contact surfaces are produced by intersecting shocks, see Loh 
(1969). This phenomenon is important in shock dynamics. Across the slip surfaces, there 
is also entropy discontinuity. 

For smooth flows (with uniform upstream conditions) however, mass momentum, 
energy as well as entropy are conserved for both full and isentropic Euler equations. 
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For shocks in the isentropic Euler equations, the total enthalpy jumps, not the entropy. 
Hence, hydraulic analogy is limited to flows with weak and not strong shocks. 

To show the differences between the full Euler and isentropic Euler equations, 
consider the Crocco’s relation (see Thompson, 1972; Liepmann and Toshko, 1957). 

The momentum equation can be written in the form: 

DVρ P
Dt

= −∇  

using the vector identity: 

( )
2

( )
2
vV V u v v ∇

⋅∇ = × × +  

therefore, 
2

.
2

V Vρ w V P
t

∂ ∇⎛ ⎞ + × + = −∇⎜ ⎟∂⎝ ⎠
 

Combining with the thermodynamic relation 

PT S h
ρ

∇
∇ = ∇ −  

one obtains 

V ω V T S H
t

∂
+ × = ∇ − ∇

∂
 

where 21 .
2

H h V= +  

Notice, for the isentropic Euler, ∇S  ≡ 0. 
Taking the curl of the above equation gives 

( ) ( )Dω ω V ω V T S
Dt

= ⋅∇ − ∇ ⋅ + ∇ ×∇  

The conservation of mass equation may be used to eliminate the divergence of velocity 
term to yield 

( ) 1 .
D ω ρ ω V T S

Dt ρ ρ
= ⋅∇ + ∇ ×∇  

For steady two-dimensional isentropic flow, both terms of the right hand side vanish and 

the result reduces to ω
ρ

 is constant on streamlines. 

On the other hand for steady two-dimensional isoenergetic flow, the result after 
manipulations reduces to ω / T is constant on streamlines. 

In both cases, vorticity is generated downstream of curved shocks, while in both 
cases, if the upstream conditions are uniform, for smooth flows (without discontinuity 
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and without closed streamlines), the vorticity vanishes everywhere, i.e., the flow is 
irrotational and hence can be described by a potential function. 

Obviously, hydraulic analogy is not valid when the assumptions of the theory are 
violated. To summarise, the following approximations are assumed: 

1 δh << ho: local variations are relatively small. 

2 ho << λ: water layer is relatively small, where λ is the wave length. 

The theory is based on small disturbances. Moreover, the effects of surface tension and 
finite depth are ignored. These effects are negligible only for relatively long wavelengths 
and only then the wave speed becomes independent of these effects and c2 = gh becomes 
an acceptable result. Still surface tension (capillary waves) can be observed as very short 
wavelength disturbances. The vertical velocity and acceleration were neglected as well as 
the viscous force on the horizontal bottom. The last assumption is however questionable 
(see Thompson, 1972). In water table experiments, the table is usually inclined (slightly), 
so the component of gravity in the flow direction balances the friction force at the bottom 
flat surface. 

As the wave amplitude increases, the variation of vertical velocity cannot be 
neglected and the pressure is no longer hydrostatic. 

4 Nonlinear dispersive waves with finite amplitude 

Boussinesq analysed nonlinear waves in dispersive media where the frequency, ω, 
depends on the wave number k. His equation reads: 

2 2 o

o

v ρ Cv v c ρ
t ρ ρ

∂ ∇
+ ⋅∇ = − + ⋅ Δ∇

∂
β  

and 

0,ρ ρv
t

∂
+ ∇ ⋅ =

∂
 

where 
1

2
2

γ

o o

c ρ
c ρ

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

and β is a dispersion parameters. 
See Bullough and Caudrey (1980) for details. 
The leading terms of the dispersion relation is given by: 

3
oω c k k= − +Kβ  

If the velocity potential φ is introduced, where v = ∇φ, Boussinesq equation can be 
reduced to 

2 22 0.tt o t t oφ c φ φ φ γ φφ c φ− Δ + ∇ ∇ + Δ − Δ =β  

To examine the stationary solution, let 
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( )φ φ x V t= − ⋅  

the resulting equation is 

( )2 2 ( 1) 2 0o xx xx x o xxxxV c φ γ Vφ φ c φ− − + − =β  

where the velocity of the stationary wave, V, is close to co, if the amplitude is small. 
Analytical solutions can be obtained by integrating the above equation twice and 

when β > 0, a solitary wave is obtained, namely a soliton, while for β < 0, there is a 
periodic wave solution. 

A different form of the same order of approximation is given in Karpman (1975), 
namely 

2 2 2
2

2

3
2 3tt o xx
φ hφ c φ φ

x h
∂ ⎛ ⎞

= + +⎜ ⎟∂ ⎝ ⎠
 

The above equation admits solitary wave solution ( )
1/2

2
2

3sec ,kφ k h x ct
h

⎡ ⎤⎛ ⎞= ±⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

travelling either along the positive or the negative x directions. 
This equation can be reduced to a simpler equation with a single direction of 

propagation by the transformation, ξ = x – cot and τ = εt. Neglecting ε2 terms, the 
following equation after Korweg-deVries’ is obtained, namely 

0t x xxxu uu u+ + =  

which has the ‘soliton’ solution u = 12η2sech2[η(x – 4η2t)] where its speed is 4η2. 
For more details about solitons, see Drazin and Johnson (1980). 
For steady two-dimensional flows around a thin body in a dispersive media, the 

governing equation, in terms of a small disturbance potential is given by: 

( )2 21 ( 1) 0.x xx yy xxxxM γ M φ φ φ φ∞ ∞⎡ ⎤− − + + + =⎣ ⎦ β  

Numerical solutions of the above equations for supersonic flows in dispersive media are 
discussed in (Thompson, 1972). 

5 Flow visualisation of compressible fluid flows 

In shallow water theory, waves propagate at speed given by ,c gh=  where  
g = 9.8 m/s2. Thus for h = 2 mm, c  ≅ 0.2 m/s which is feasible for real-time observation, 
see Loh (1969). In fact, hydraulic jump can be seen in a kitchen sink. 

Hydraulic jumps can be seen in flows from reservoir or through variable-width 
channel with transition from subcritical (F < 1) to supercritical (F > 1) flow. Other 
examples are tidal bores and front of powder avalanche in snow. 

The analogy with shock waves in compressible fluid flow is striking. 
Visualisation of supersonic flows with shock waves and expansion fans, in supersonic 

wind tunnels, is very expensive. On the other hand, using hydraulic analogy, such 
visualisation is affordable, at least for weak shocks, where the analogy is valid and where 
potential flow theory can be used. 
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In part 2, water table experiments will be presented to show how to obtain good 
results, qualitatively as well as quantitatively. There are two types of water tables, one 
with the model fixed and water flows around it for external flow simulation or inside the 
model as in nozzles for internal flows. The second type is to move the model in a thin 
layer of water. In both cases, the surface waves on the water layer can be easily seen. 
Measurement techniques for the height of the water layer will be discussed in part 2. 
Pictures can be analysed to obtain quantitative results. 

The limitations of the analogy should be examined before using the data of water 
table experiments in analysis and design of supersonic and transonic airfoils and nozzles. 

6 Concluding remarks 

Compressible fluid flow theories are first reviewed, followed by shallow water are 
surface wave formulation. The hydraulic analogy is explained and its limitations are 
discussed. Nonlinear dispersive waves of finite amplitude are also studied. Flow 
visualisation of compressible fluid flows based on the analogy with shallow water surface 
waves are indeed feasible and can be a useful tool (when it is valid) in industry and for 
educational purposes. In part 2 of this work, practical aspects of water table experiments 
are presented. 
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