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Abstract: The detection and the tracking of the tennis court is a primordial step to analyse  
a tennis video at higher semantic level. In this context, a new approach for tennis court tracking 
in real time is proposed in this paper. Our proposed system is based on model based approach 
allows to compute the homography between the court detected in the scene and the court model 
presenting the real world coordinate. For this aim, the first step is to detect the tennis court by 
detecting the court line and determining some interest points. We check then the motion of the 
camera. In case of camera motion, the court is tracked by tracking the interest points using the 
Lucas-Kanade algorithm. After that, these points are used by a RANSAC algorithm to estimate 
the homography. However, in case of a fixed camera, we need only the model based correction 
system. 
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1 Introduction 

A huge amount of sports video databases are generated 
every day. This rapid growth requires efficient and effective 
tools to provide an automatic annotation which receive, 
recently, much attention. Owing to advances in scientific 
researches in different fields such as signal processing, 
machine learning (Hadj Mabrouk, 2016; Loussaief and 
Abdelkrim, 2016, and computer vision, building different 
tools and automatic annotation techniques has become 
possible (Kijak et al., 2003; Kolonias et al., 2004; Huang  
et al., 2009 and Yan et al., 2014). 

The sports video analysis generates many potential 
applications such as enhanced broadcast (Owens et al., 2003 
and Han et al., 2007), event detection and classification 
(Kapela et al., 2015), summarisation (Mendi et al., 2013) 
and virtual advertisement...(Chang et al., 2010). 

Sports videos which have the largest share of scientific 
researches are court games such as soccer and tennis,  
not only because they are the most popular, but also  
because they have well-structured rules that facilitate their 
analysis. 

An Automatic content analysis of tennis videos at a 
higher semantic level requires a robust and efficient 
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detection and tracking algorithm. However, the existing 
state of the art approaches and methods of object tracking 
(Jinan and Raveendran, 2016; Elafi et al., 2016; Collins et 
al., 2005) cannot be useful in sports video due to their 
highly dynamic nature. Thus, a successful sport automatic 
content analysis system must exploit specific information of 
the game (white court-lines, uniform court colour..) rather 
than use a generic solution. 

In court games, to analyse the video, it is required to 
determine the ball or players positions in the real-world 
coordinates of the court. For this purpose, it is very 
important to detect and track the court to estimate the 
relation between the image coordinates and the real-world 
coordinates. As the playfield is planar, this relation can be 
presented by a projective transformation. Hence, the 
transformation parameters are estimated by finding a set of 
correspondences between the tracked court in the scene 
video and a court model presented in the real-world 
coordinates. 

In early work, Sudhir et al. (1998) have described a 
court-line detection algorithm based on straight-line 
detection method in order to build up a tennis court model. 
The method proposed needs four predefined points on a 
tennis court to calibrate the camera and estimate the 
projective transformation. Thus, the main disadvantage of 
this algorithm is that it must be manually initialised and it is 
also not robust against the occlusions of these four 
predefined points. It does not guarantee good results if we 
have a partial occlusion of the court. One more robust 
detection of soccer court is presented in Kim and Hong 
(2001) and Watanabe et al. (2004), however, it used an 
exhaustive search for the parameter space which is 
computationally complex. In Ekin et al. (2003) authors 
proposed a Hough transform method which allows detecting 
shots showing the goal in soccer videos without any 
estimation of the projective transformation between the real-
world coordinates and the image coordinates. 

Dang et al. (2010) used a RANSAC-based line detection 
algorithm to detect the court line. They made the 
assumption that the speed of the camera change is small and 
they extended the detected court in the previous frame to 
define a search region. Then, to track the model, the same 
detection method applied in the new local search area is 
used. Chang et al. (2010) applied a standard Hough 
transform to extract court line and define the intersection 
point. However, it chooses only four line intersections to 
estimate the perspective transformation. In Lai et al. (2011), 
authors were based on Harris Corner Detector (Mikolajczyk 
and Schmid, 2004) to extract the court feature and the scale-
invariant feature transform (SIFT) (Lowe, 2004) to present 
the descriptor of each detected point. 

In this context, This paper presents a new automatically 
court tracking system for tennis video allowing to estimate 
the projective transformation between the court in the image 
coordinate and a court model in the real world coordinate. 
The major contribution in this paper is that it presents an 
automatically algorithm for tracking tennis court by 
combining Lukas-Knades tracker system (LK) (Tomasi and 

Kanade, 1991; Lucas and Kanade, 1981), the Random 
Sample Consensus algorithm (RANSAC) (Fischler and 
Bolles, 1981), the Direct Linear Transformation algorithm 
(DLT) (Hartley and Zisserman, 2004) and finally the 
Levenberg-Marquardt (LM) minimisation algorithm (Press 
and Flannery, 1988) that fits the model projected to the 
court detected in the image. In addition, the proposed 
approach takes into consideration the movement of the 
camera which improves the stability of the court detection. 

2 Proposed method 

The proposed system for court detection and tracking is 
illustrated in Figure 1. Our objective is to track a court from 
a tennis video and to estimate the homography which is 
necessary to convert the image coordinates of the video 
frame to the real-world coordinates. For this aim, we firstly 
detect the frames containing the court by applying a court 
view detection process. Once the current frame is a court 
view frame, we proceed to the initialisation step. It starts 
with segmenting the scene and extracting all pixels of the 
court lines in order to detect straight lines in the image. 
Then, we found a set of interest points and some putative 
correspondences. Thus, we used RANSAC algorithm to 
estimate the geometric transformation between the image 
coordinate and the model. This transformation is applied to 
project the court model into the image. For each geometric 
transformation, we estimated the error projection between 
the white court line in the image and the projected model.  
A transformation with a low error projection is selected as 
an optimal solution. 

Once the court is detected for the first frame, we tested 
the motion of the camera. In case of camera motion, we will 
be based on Lukas-Knades tracker in order to track the 
interest points and we will use Ransac to estimate the 
homography for each frame. Finally, to ensure a high 
performance, a model based correction process is applied to 
reduce the projection error using the Levenberg-Marquardt 
(LM) minimisation algorithm. 

However, in case of a fixed camera, we need only to 
apply the model based correction process. 

2.1 Court view detection 

While observing a tennis video, we can notice that the 
camera typically switches to wide shots presenting the court 
view just before the serve, and it keeps this position 
throughout the shot, and between the shots camera focus on 
other different plans such as spectator or players...etc. So, 
detecting the court view is a primordial step before 
detecting and tracking the court. 

In the tennis video, a court view has usually a unique 
hue histogram distribution. So, based on this observation 
and to recognise the court view, we used one court view 
hue-histogram as a pattern to query the tennis video looking 
for the court view frame with applying a histogram 
similarity measures. Then, we can classify the current frame 
to court view or non-court view frame by being based on the 
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histogram similarity measures. If it is less than an 
empirically fixed threshold, the frame will be considered as 
a court view shot and we can proceed with the court 
detection step. Hence the remaining step of our proposed 
algorithm will be applied only if the current frame is a court 
view frame (Farhat et al., 2017). 

Figure 1 Illustration of our proposed approach 

 

2.2 Camera motion detection 

For the camera motion detection, we used a method inspired 
by Bradski and Davis (2000). The first step is to generate 
the silhouette of the moving objects in the scene. Many 
classical methods of silhouette generation can be used such 
as stereo depth subtraction (Beymer and Konolige, 1999), 
colour histogram back-projection (Bradski, 1998), infra-red 
back-lighting (Davis and Bobick, 1998) and background 
subtraction (Martins et al., 1999; Elgammal et al., 2000) that 
needs a background model. In our case, we chose the simple 
method frame differencing (Davis and Bobick, 1997). 

Based on the sequentially fading silhouettes, we can 
record the history of all previous movements which are 
referred to as motion history image (MHI). MHI 
representation is a scalar-valued image, where the intensity 
is directly related to the recent of the motion: the pixels  
 

having the most recent movement are the brighter. 
Examples of MHIs presentation are shown in Figure 2(a) 
and 2(c). 

The final element of the camera motion detection is the 
temporal segmentation. We segment the MHI presentation 
in order to group motion regions produced by the movement 
of the scene objects. Thus, to do this, the MHI presentation 
is firstly scanned for the silhouette regions with the most 
recent timestamp. Once the region having the most current 
timestamp is detected, its perimeter is searched. Then, a 
flood fill algorithm is applied to isolate the region of the 
motion found. 

In case of fixed camera (Figure 2(a)) only the motion of 
the player is detected. However, in case, where the camera 
is moving, we can notice the global motion of the whole 
image (Figure 2(c)). 

2.3 Court detection 

2.3.1 Image segmentation 

Since the colour of the court lines is always white, we chose 
to segment the entire scene to keep only the white pixels. 
For this, we applied the method of simple thresholding to 
the image in greyscale (Lafi et al., 2016). After the 
segmentation step, we obtained a binary image (Amri et al., 
2017) as shown in Figure 3(a). It can be observed that the 
result contains other white pixels than these of the court 
lines such as white logo, player or spectators wearing in 
white and so on. These non-court line pixels affect the 
accuracy of the line detection step. Thus, a post-processing 
step is essential. To remove rebel pixels, firstly, we filtered 
our binary image making some criterion for blobs feature, 
we removed structures having a large area and structures 
having a short contour. Then, in order to improve  
results and extract vertical and horizontal line pixels,  
we used morphological operations with a corresponding 
structure element. We applied opening (erosion followed  
by dilation) to the binary image with structure element  
1 × 7 all-ones matrix to extract horizontal line pixels  
(Figure 3(c)) and 5 × 1 all-ones matrix for vertical line 
pixels (Figure 3(b)). 

2.3.2 Line detection 

2.3.2.1 Line parameter estimation 

After the segmentation step, the Hough transform (Sere  
et al., 2012) is performed on the previously obtained binary 
images in order to detect court lines. With Hough transform, 
a line is characterised by two parameters (ϴ, ρ) where ϴ is 
the angle between normal line leading to the origin and the 
x-axis and ρ presents the length of the normal line. The 
Hough transform constructs an accumulator matrix 
representing parameter space θmax columns and ρmax rows. 
For each point of the binary image, ρ is calculated for all θ 
value, varying between 1 and 180, and for each found ρ the 
accumulator must be incremented by 1. Then, lines are 
detected by extracted local maxima in the accumulator that  
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are above a certain threshold. The main advantage of Hough 
transform is the robustness to outliers, it can be valuable to 
detect lines having some short breaks due to the noise or 
occlusion. Thus, lines detected need not necessarily to be 
continuous. However, the disadvantage of Hough transform 

is the detection of a bundle of lines for one targeted line. 
This is due to the thickness of the lines in the binary image 
or to the bad quality of the video. To address this issue, we 
introduced a supplementary step that computes the optimum 
line. 

Figure 2 Example of camera motion detection: (a) MHI in case of fixed camera; (b) original image; (c) MHI in case  
of camera motion and (d) camera motion detected  
(see online version for colours) 

 

Figure 3 Thresholding of court lines and noise removal and thinning: (a) the segmentation result of the court view; (b) removed rebel 
pixels result; (c) horizontal lines extraction and (d) vertical lines extraction  

 
 
2.3.2.2 Line refinement and classification 

As we have already mentioned, Hough transform produces 
some neighbouring lines that belong to one court line. To 
solve this problem, we removed lines having nearly equal 
parameters and we kept only one. First of all, we kept only 
horizontal and vertical lines and we classified them. A line 
having two endpoints coordinates (x1, y1) and (x2, y2) is 
regarded as a horizontal line if |y1 – y2| < 10 and have a 
pent very near to ‘0’ and it is considered as a vertical line if  
|x1 – x2| < 10. Then, we removed all duplicated lines and  

kept the median. Two lines L1 and L2 are duplicated if the 
angle ( 1, 2)L L  < 0.75° and the distance d(L1, L2) < 5 (Dang 
et al., 2010). 

After we classified the detected lines and removed 
duplicated ones, we can easily determine the intersection of 
each pair of horizontal and vertical lines using a basic vector 
math. 

In Figure 4, vertical lines are drawn in red and 
horizontal lines are drawn in yellow and the intersection 
points are represented as blue circles. 
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Figure 4 Thresholding result of the line detection process: (a) lines extraction by Hough transform; (b) result after lines refinement  
and (c) detection of intersection points (see online version for colours) 

 

Figure 5 Points correspondences between model and image: (a) interest point in the image; (b) interest points in the model and  
(c) projected model (see online version for colours) 

 
 
2.4 Model projection 

A court model is a set of lines drawn onto the ground and 
defining the playfield geometry. These lines are presented in 
the model coordinate system. The world coordinate system 
is defined as a Cartesian coordinate system presenting the 
orientation and the position of the model. So, the two 
coordinate systems can handily be equal. Thus, model 
fitting consists of estimating the homography between the 
real world coordinate and the image coordinate system. For 
that, we must go through two steps. We need in the first step 
to find interest points and find putative correspondences, 
then we estimate the homography by RANSAC algorithm. 

2.4.1 Interest point and finding correspondence 

As we have already mentioned in Section 2.3.2.2, we 
detected the court lines and sorted them into two sets 
vertical and horizontal lines and we also determined the 
intersection points which will present the interest points of 
our system. To determine the correspondence of our interest 
points in the model, we ordered the set of the vertical line 
from the right to the left and the horizontal lines from the 
top to the bottom and we numerated the intersection points 
(Figure 5(a)). Then, to determine the correspondences 

between the model (Figure 5(b)) and the intersection points 
we put the constraint where the order is preserved. 

2.4.2 Homography estimation 

Our detected interest points can include some outliers which 
prevent a correct estimation of the homography. Thus, we 
used RANSAC algorithm to identify perfect subsets of 
correspondences to obtain a better homography. 

2.4.2.1 Random sample consensus (RANSAC) 

Unlike many of popular robust estimation methods such as 
least-median squares and M-estimators that are proposed by 
the statistics literature and then adopted by the community 
of computer vision, RANSAC was developed by the 
computer vision community specifically to meet the needs 
of computer vision applications. RANSAC is a resampling 
technique to estimate the parameters of a model and fits this 
data by random sampling of observed data. It uses a small 
subset of the input data and then it enlarges this set with 
some consistent data (Fischler and Bolles, 1981). 

This data is supposed to be all inliers, and a model is 
fitted to these provided values and then all other data are 
fitted to this estimated model. If a sufficient number of data 
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points is found as inliers, the estimated model is redone 
using all newly found inliers instead of just using the 
original subset based on a smoothing method like the least-
squares smoothing. The distance between the inliers and the 
model is calculated, it represents the estimated model’s 
error, and if this error is below a defined threshold, then the 
estimated model is optimal. However, if it is above the 
threshold, another subset of the input data points will be 
selected and the process is restarted. 

The idea to estimate homography using RANSAC 
algorithm is very simple, however, it is powerful. Since we 
need at least 4 points to estimate the homography, we 
selected randomly 4 points from the set of all interest points 
detected and we computed the homography using these 
points and the Direct Linear Transformation algorithm. 
Then, we see if this homography agrees with other interest 
points up to a fixed threshold and we determine the inliers 
correspondences. This process will be repeated until that we 
find the best homography with the largest support, and it 
will be considered as the robust fit. 

2.4.2.2 Direct linear transformation (DLT) 

The direct linear transform (DLT) (Hartley and Zisserman, 
2004) is a method which solves the homography matrix H 
using a sufficient set of variables. For a point 
correspondence X1 ↔ X2 and a homography H, we have the 
camera projected image X2 = H.X1, H is a 3 × 3 matrix with 

T
ih  is the ith row of H. Then we have: 
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We have only two independent equations, So, the third one 
will be omitted: 
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Equation (4) can be written with the form Aih = 0 where h 
represents a 9 × 1 vector consisting of the entries of the 
homography H and Ai is a 2 × 9 matrix. 

If we have n(n ≥4) correspondences, we obtain a matrix 
A with 2n × 9 dimension and we have in this case an over-
determined system. We must then solve the system Ah = 0 
using a least-squares method. We can write the solution of h 
as minimise||Ah|| with the constraint ||h|| = 1 The solution of 
h is, therefore, the unit singular vector associated with the 
smallest singular value of A (A = UDVT). It can be easily 
computed using a singular value decomposition method 
(SVD) (Strang, 2006; Lafi et al., 2016). 

The DLT algorithm is a less well-conditioned problem. 
So, to assure numerical stability, a normalisation process is 
required. 

The Normalised algorithm steps are as follows: 
Normalise the points X1 with the similarity 

transformation T1 (translation and scaling) to denote a new 
point 1 1 1 1( . )X X T X=  which has a centroid at the origin  
with (0, 0)T coordinate, and an average distance from the 
origin equal to 2.  

Apply similarly an analogous normalisation process to 
the correspondence point X2 using a similarity 
transformation T2, we have then the transformed points 

2 2 2 2( . )X X T X= . 
Apply the standard DLT algorithm to the normalised 

point correspondences 1X  and 2X  to compute the 

homography H . 
Denormalise H  to get the desired homography H. 

1 1 1
2 12 1 2 2 2 1 1.X HX T X T H X T HT X− − −= = = =  (5) 

Finally, we have: 
1

2 1.H T HT−=  (6) 

2.5 Error estimation 

After the homography estimation, we transformed all points 
(Pm) of the court model to the image coordinates using the 
estimated homography H, PI(xi,yi) = HPm; where PI 
represents the pixel of the model projected into the source 
image. 

We are required to verify that the model, projected onto 
the current frame, covers accurately the court in the image. 
For this aim, we tested the values pixel in the segmented 
image for each projected model point PI. If the projected 
point is not a court pixel and presents a black pixel, the error 
value E ( (1 )ii

E E= −∑ ) increases by 1 if not, E does not 

change (Equation 7). 

1, if ( , ) 0
 and  1 ,

0, if ( , ) 1
ii i i

i
i i

EI x y
E

I x y i
ε

=
= = − =

∑  (7) 

where i is the total number of model pixels and ε  is the 
estimated error. 

Each Homography computed is rated by the rejection 
test; if the estimated error is lower than an experimentally 
fixed threshold, the homography is selected as an optimal 
solution and we can move to the next step to track the 
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model, if it is not the case, the initialisation process must be 
repeated (Figure 6). 

Figure 6 Evaluation of model match (see online version  
for colours) 

 

2.6 Model tracking 

The previous court model initialisation algorithm should be 
applied only in the bootstrapping process for every new 
playing shot. Once the interest points are detected, we use 
the feature-tracking algorithm Lucas-Kanade (LK) 
(Salehpoor and Behrad, 2012) to track them. The Lucas 
Kanade algorithm is an often used differential method for 
optical flow estimation. 

Optical flow is generally used to compute the motion of 
all pixels in a sequence of images (Doyle et al., 2014 and 
Smith et al., 2010). It presents the apparent motion of the 
brightness pattern in the images. It works on the 
assumptions that the pixel intensities are constant between 
two consecutive frames and the neighbourhood pixels have 
a similar motion. 

Let the intensity of an interest point I(x, y, t), move in 
the scene and after time dt the point displacement is (dx, 
dy). 

So, if we use Taylor series for I(x, y, t), we can write the 
following equation: 

( , , ) ( , , ) I I II x dx y dy t dt I x y t dx dy dt
x y t

∂ ∂ ∂+ + + = + + + +
∂ ∂ ∂

 (8) 

And, assuming the brightness constancy and according to 
the assumption that the Brightness of all point is invariable 
in time, we can write: 

( ) ( )I x, y ,t I x dx, y dy,t dt= + + +  (9) 

So, equations (8) and (9) give: 

0I I Idx dy dt .
x y t

∂ ∂ ∂+ + + =
∂ ∂ ∂

 (10) 

Dividing by dt we obtain: 

I I x I y
t x t y t

∂ ∂ ∂ ∂ ∂− = +
∂ ∂ ∂ ∂ ∂

  (11) 

where x
xt V∂

∂ =  an y
t Vy∂

∂ =  the field components of optical 
flow V , respectively, in x and y coordinates. This equation 
is usually called an optical flow constraint equation.  

So, calculating the optical flow for each pixel in the image 
sequence returns to calculate the following equation: 

   x x
I I IV . V .
t x y

∂ ∂ ∂− = +
∂ ∂ ∂  (12) 

t x x y yI ( p ) I ( p ) V I ( p ) V− = ⋅ + ⋅
 (13) 

Equation (13) has a known variables ( )xI p  and 
( )yI p  which are the image gradients, ( )tI p  the gradient 

along time and two unknown variables ( )x yV ,V . There are 
several methods proposed to solve this problem, one of 
them is the Lucas-Kanade algorithm. The Lucas-Kanade 
method assumes that all the neighbouring pixels have 
similar motions. Tacking a 3x3 windows centred at p, we 
have so 9 points having the same motion. Now we obtain a 
system of nine equations with two unknown variables that 
can be solved using the least squares criterion. 

12

2

                        

x i y ix ix ii

y x i y i y ii i

x i t ii

y i t ii

I ( p )I ( p )I ( p )V
V I ( p )I ( p ) I ( p )

I ( p )I ( p )

I ( p )I ( p )

−
    =      

 −
 
−  

∑∑
∑ ∑

∑
∑  (14) 

The main advantage of Lucas Kanade method is the very 
fast calculation and the accurate time derivatives. However, 
as all point tracker algorithm that progresses over time, 
Lucas Kanade can lose some points due to occlusion, 
lighting variation, articulated motion or out of the plan.  
To solve this problem, RANSAC is used for each frame to 
compute the appropriate homography from the tracked 
interest points. Then, to ensure a high performance for our 
system, a model based correction process is applied. 

2.7 Model based correction system 

The Model based Correction process is applied to the 
resulting homography estimated by RANSAC algorithm in 
order to reduce the projection errors. It consists to fit the 
projected model to our court in the real scene and reduce the 
projected error. For this aim, a local search is applied to 
each model point projected to find the closest white 
neighbourhood pixel in the segmented image which is 
considered as a court pixel. So, the court model points are 
grouped with the closest white pixels found in the 
segmented image. Figure 7 shows how to fit the model to 
our court detected in the image. We note white pixels  
in the segmented image with ( 1)T

i i iP x , y ,=  and their  
corresponding in the model with 1 T

i i iM ( x' , y' , )= . The 
intention is to determine the refined homography H’  
by minimising the Euclidean distance between the model 
and all the white court pixels in the segmented image. The 
total symmetric transfer error D is defined as: 

2 1 2
i( ( ) ( ) ).i i i

i
D d P ,HM d M ,H P−= +∑  (15) 
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Thus, to minimise D and to find the refined homography  
we used the Levenberg-Marquardt (LM) minimisation 
algorithm (Press and Flannery, 1988). 

Figure 7 Fitting a projected model to our court in the image 

 

3 Experimental results 

In this section, we are interested in evaluating the 
performances of our proposed system. We have tested our 
approach to 10 tennis videos with different surface types: 
hard, clay and grass court (Figure 8). Each video has 512 by 
288 resolution, a frame rate equal to 25 fps and a duration 
about 10 min. 

In our evaluation, we were based on a frame-based 
metrics provided by Bashir and Porikli (Bashir and  
Porikli, 2006). We used three sets of the tracking  
evaluation metrics which are, the Tracker Detection  
Rate (TRDR), the False Alarm Rate (FAR) and the 
Accuracy. 

TPTRDR
GT

=  (16) 

FAR FP
TP FP

=
+

 (17) 

Accuracy = TN TP
TF
+

 (18) 

where 

• True positives (TP): represents the number of frames 
where the court is firmly detected. 

• True negatives (TN): represents the number of frames 
where the system approves correctly the absence of the 
court like the ground truth. 

• False positives (FP): represents the number of frames 
where the system approves incorrectly the presence the 
court. 

• Ground truth (GT): represents the ground truth 
information. 

• Total frame (TF): represents the total number of frames 
in the tennis video. 

Table 1 shows that our system achieved an impressive 
average rate TRDR and Accuracy of court detection 
(respectively 0.9733 and 0.9831) with a very low rate FAR 
0.0448. This efficient performance of the system is due to 
track the court only in case of moving camera and also the 
update of the homography in each frame using the 
RANSAC algorithm and the combination of Levenberg-
Marquardt minimisation algorithm and the error estimation 
to correct any wrong detection (Figure 9). In addition, the 
system is very robust to partial occlusion of the court 
(Figure 10(a)) and some other particularly difficult scenes 
such as (Figure 10(b)) which contains a shadow in the scene 
court. 

Since claiming that the proposed system working in  
a real-time, it is important to discuss this time performance. 
In practice, the speed of a system is relative to the video  
quality and the computer performance. The timing results 
presented in this section are calculated for 320 x 240 video 
resolution and a standard PC (Intel Core i7-4720HQ 
3.6GHz). 

Table 2 detail the timing for all relevant steps of the 
proposed algorithm and Figure 11 present the total 
computational time for all the system. 

Figure 8 Visual experimental results in different court types (see online version for colours) 
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Table 1 Evaluation of court tracking results 

Sample Tournament Surface TRDR FAR Accuracy 

#1 Australian Open 2016 Hard 0.985 0.013 0.991 
#2 ATP World TOUR 2016 Hard bi-colour 0.987 0.0022 0.9886 
#3 Hopman Cup 2014 Hard 0.982 0.027 0.9815 
#4 ATP World Tour EASTBOURNE Grass 0.981 0.0148 0.983 
#5 Wimbledon Grass 0.981 0.018 0.989 
#6 ATP World Tour Quito 2015 Clay 0.9742 0.021 0.977 
#7 Rome 2014 Clay 0.9814 0.0223 0.98 
#8 ATP Qatar Open 2016 Hard bi-colour 0.9722 0.0278 0.99 
Average rate 0.980 0.018 0.985 

Table 2 The average time for all relevant steps 

 Court view 
detection 

Camera 
motion 

Court 
detection 

Model 
projection 

Model 
tracking 

Error 
estimation 

Model based correction 
system 

Time (ms) 4.83 4.57 34.69 32.72 23.23 1.04 3.22 

 
Figure 9 Example of error estimation and tracking precision  

(see online version for colours) 

 

Figure 10 Court detection in a scene with some complication:  
(a) occlusion and (b) strong shadow (see online version 
for colours) 

 

Figure 11 Example of the total computational time for all the 
system (see online version for colours) 

 
 
 

The result shows that our system runs smoothly in real-time. 
However, the initialisation process can be seen as a little 
time-consuming process. But this does not harm the time 
performance of our system because it will be only applied in 
the bootstrapping process. The total computational time 
achieved an average of 56.84 ms. 

4 Conclusion 
In this paper, we have described a new automatic system for 
tennis court view tracking take into consideration the 
movement of the camera. The first step in the proposed  
algorithm is to extract the court view frame based on 
histogram similarity method. Secondly, we applied, for the 
court view frame, a court detection based on court line 
detection to initialisate our system. Once the court is 
detected for the first frame, we checked the camera 
movement. If the camera moved, a tracking algorithm using 
an LK method and a RANSAC homography estimation 
would be applied to track the movement of the court. Then, 
we used a model based correction system using Levenberg-
Marquardt minimisation algorithm and the error estimation 
step. However, for the opposite case (fixed camera), the 
position of the court does not change. So, we need just the 
model based correction system. Finally, experimental results 
show that the proposed system is very effective and suitable 
for any type of tennis court surfaces. To track the court only 
in case of moving camera provides for the system more 
stability. Hence, our system achieves robustness and 
efficiency by combining a set of different methods that are 
not sufficient on their own. 
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