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Abstract: The advantages of using force control in industrial robots are well 
known. Study of such systems in virtual environments in the form of simulation 
is of great help as most of the force controlled task works in close contact with 
the environment. In this paper, we show how to simulate different force control 
algorithms of a typical serial robot used in industries before deciding to choose 
a suitable one for real implementation. Hence, a proper dynamic model of the 
robot is essential which should be able to emulate the real robot, particularly if 
the robot moves at relatively higher speeds. This is done here using the concept 
of the decoupled natural orthogonal complement (DeNOC) matrices which is 
known to provide a recursive forward dynamic algorithm that is not only 
efficient but also numerically stable. Such simulation of robots under force 
control will allow users to tune the control gains without stopping the real robot 
on the production floor. Besides, such simulation can be used as an education 
tool as well to help beginners to explore various types of control algorithms and 
their performances. In addition, the framework for simulation proposed in this 
paper can work as a good test bench to test the performances of either a new 
control law or a different dynamic algorithm. As an illustration, the DeNOC 
based dynamics was substituted with MATLAB’s SimMechanics which can 
also perform dynamic simulation. The comparison of the results validated the 
concept and correctness of the numerical simulations. 

Keywords: simulation; force control; decoupled natural orthogonal 
complement; DeNOC. 
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1 Introduction 

Force controlled robots seem to have outreached traditional robots with passive springs at 
its end-effector, when it comes to rapidly adapting to the changing environment for 
compliant manipulation, surface finishing tasks and assembly operations. These robots 
are controlled using closed-loop with active force/torque sensory feedback. As they 
interact closely with the environment, it becomes a necessity to precisely design and test 
an algorithm before it is actually made operational on real robots. Simulating such 
force/torque control algorithms with a virtual robot could be one of the possible answers 
to such problems. As force control algorithms have evolved over the last three decades 
(Zeng and Hemani, 1997) and different techniques are used for simulating and testing 
these algorithms, there is a need to have a single platform where one can evaluate these 
control algorithms, or a precise robot dynamics algorithm, before deciding to use them 
for a specific application. For that, dynamics is important, particularly when the robot has 
to move fast, e.g., for cooperative manipulation. 

The methodology proposed here is based on the decoupled natural orthogonal 
complement (DeNOC) matrices. It has been earlier applied to simulate a variety of 
robotic systems ranging from serial robots (Saha, 1999, 2003), closed-loop structures 
(Koul et al., 2013), tree-type legged walking machines (Shah et al., 2012) to a large 
degrees-of-freedom (DOF) a rope (Agarwal et al., 2013). Owing to its compact, modular 
and recursive formulation, the DeNOC-based dynamics offers an easy integration of 
robot dynamics to any control algorithm. This enabled us to develop a unified simulation 
structure to be built that can do complex robot dynamics, demonstrate environment  
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interactions and force/position control. The current work explores the capability of the 
DeNOC-based dynamic formulation to simulate several force/torque control algorithms 
using various robot architectures, which is an important contribution of this paper. 

Note that, SimMechanics (Wood and Kennedy, 2003) and Simulink modules of 
MATLAB also allow one to perform robotic simulations (Udai and Saha, 2012; 
Cetinkunt and Book, 1989; Zhang and Ivlev, 2010; Kumar and Pathak, 2013). A 
symbolic modelling and dynamic simulation of robotic manipulators with compliant links 
and joints was proposed by Cetinkunt and Book (1989), where commercial symbolic 
computation was done in tools like SMP, MACSYMA and REDUCE to simulate a  
two-link manipulator. A dynamic simulator for compliant humanoid robot (CoMan) was 
reported by Dallali et al. (2013), which generated symbolic dynamic equations that can 
be used in MATLAB or C to carry out analysis. Symbolic computations are inherently 
slow and restrict users to analyse only smaller models. A SimMechanics based simulation 
of pneumatically-actuated soft robot was discussed in Zhang and Ivlev (2010). Dynamic 
modelling and simulation of a four legged jumping robot with compliant legs was 
discussed in Kumar and Pathak (2013), where MATLAB’s Simulink environment was 
used for simulations. Modelling a robot in SimMechanics environment involves 
connecting multiple blocks for different links, joints, actuators, sensors, etc., which is 
quite cumbersome, particularly, when a robot comprises of long serial chain structure. 

This paper is organised as follows: Section 2 describes the dynamic modelling of a 
general serial manipulator, which is used for the simulation of different force control 
algorithms, i.e., stiffness, impedance, admittance, and hybrid, discussed in the subsequent 
Section 3. Section 4 presents the modelling of a revolute-prismatic (RP) manipulator with 
different controller architectures, whose results are reported in Section 5. Section 6 
presents the same for an industrial robot KUKA KR5 Arc. Section 7 concludes the paper. 

2 Dynamic modelling of a serial robot 

A typical industrial robot is a serial-chain mechanical system with a fixed-base, as shown 
in Figure 1. Dynamics of such systems are traditionally being modelled using  
Euler-Lagrange principle (EL), Newton-Euler (NE) equations or other formulations 
(Angeles, 2003). Each of them has their own merits and demerits. A comprehensive 
comparison was shown in Saha et al. (2013). In this context note that the formulation 
based on the concept of the DeNOC matrices allows one to derive analytical recursive 
algorithms both for inverse and forward dynamics which have been proven advantageous 
over traditional EL or NE approaches. Even though the DeNOC formulation starts with 
the unconstrained NE equations of motion, it finally leads to a set of coupled EL 
equations. Besides, modelling of even hyper-degree-of-freedom (upto 100,000) serial 
systems could provide realistic simulation, both in terms of computer CPU time and 
numerical accuracy (Agarwal et al., 2013), which otherwise are known to yield  
ill-conditioned system (Featherstone and Fijany, 1999). In a way, the DeNOC concept 
blends the positive aspects of NE and EL formulations, i.e., simplicity and compactness, 
respectively. The following subsections outline the steps for dynamic modelling of a 
general serial-chain robot shown in Figure 1. The same can be found in Saha et al. (2013, 
2014), but it is briefly being included here for completeness of the paper. 
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2.1 Uncoupled NE equations 

The uncoupled NE equations of motion for n links may be written in compact form as 
(Saha, 2014): 

Mt WMt w�  (1) 

where M and W are respectively the 6n × 6n generalised mass and angular-velocity 
matrix. They are defined as: 

1 1diag. , , and diag. , ,n nM M M W W W" "  (2) 

Figure 1 A serial chain system 

 

In (2), Mi and Wi are the 6 × 6 matrices of mass and angular velocity of the ith link, which 
are defined as: 

andi i
i i

im
I O 1 O

M W
O 1 O O

ω
 (3) 

where ωi × 1 is the 3 × 3 cross-product tensor associated with the vector ωi, i.e.,  
(ωi × 1) x = ωi × x, for any arbitrary three-dimensional Cartesian vector x. Also, 1 and O 
are the 3 × 3 identity and null matrices, respectively, whereas, Ii and mi are the 3 × 3 
inertia tensor about the mass centre Ci, and mass of the ith link, respectively. 

Also, t and w are the 6n-dimensional vectors of generalised twists and wrenches 
which are given by: 
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In (4), ωi and vi are the three-dimensional vectors of angular velocity and linear velocity 
of the mass centre Ci of the ith link, whereas ni and fi are the three-dimensional vectors of 
moment and force applied about and at Ci, respectively. 

2.2 Constrained kinematic equations 

The constrained kinematic equations of motion in terms of the generalised twist t may be 
given as: 

, where l dt N N N N�θ  (5) 

in which 1[ , , ]T
n� � �"θ θ θ is the n-dimensional vector of joint-rates. The 6n × 6n matrix 

Nl and 6n × n matrix Nd are the decoupled form of the 6n × n natural orthogonal 
complement (NOC) (Angeles and Lee, 1988) matrix N, which together are referred to as 
the DeNOC matrices (Saha, 1999). These are given by: 

21

1 2

,l ij
ij

n n

1 O O
1 OB 1 O

N B
c 1 1

B B 1

"
"

# # % #
"

 (6) 

and 

1

2 , i
d ij

i i

n

p 0 0
0 p 0 e

N p
e d

0 0 p

"
"

# # % #
"

 (7) 

In (7), the six-dimensional vector pi is for a revolute joint. In the presence of a prismatic 
joint, [ , ] .T T T

i ip 0 e  The vector ei is the unit vector parallel to the axis of the ith revolute 
joint or to the axis of linear motion of the ith prismatic joint. Moreover, the vector cij is the 
vector which joins the mass centres of the two successive links, i.e.,  
Ci and Cj, as in Figure 1. Vector cij is given by cij = –di – rj. The expression cij × 1 
denotes the 3 × 3 cross-product tensor associated with the vector cij which is defined 
similar to ωi × 1 of (3). In (6) and (7), 0, O and 1 are respectively the vector of zeros, 
zero and identity matrices of compatible sizes. For example, in Nl of (6) O is the 6 × 6 
matrix, whereas in Bij it is the 3 × 3 matrix of zeros. 

2.3 Coupled equations of motion 

By pre-multiplying the 6n-uncoupled NE equations of motion (1) by NT, and substituting 
the constrained kinematic equations in velocity (5), one obtains the minimal order 
dynamic equations of motion analogous to that of EL formulation, i.e., 
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, whereI h h C�� �θ τ θ  (8) 

and I ≡ NTMN. Note that the n × n generalised inertia matrix (GIM) I is symmetric 
positive definite, whereas the n × n matrix of convective inertia (MCI) terms is given by 

.TC N MN WMN�  Correspondingly, the vector h comprises of Coriolis, centrifugal 

and centripetal forces. The vector τ ≡ NTwe is the n-dimensional vector of driving torques 
and forces due to the joint actuators, gravity, environmental interaction, joint friction, etc. 

2.4 Dynamic model simplification and simulation 

For dynamic simulation, one is required to compute the elements of the GIM and MCI as 
obtained in (8) for multiple numbers of times for each successive robot position during 
the dynamic simulation of a robot. As computation of the GIM and MCI involves 
products with null matrices, it can be made computationally efficient by eliminating such 
computations and obtaining an analytical closed form expression. The expression for the 
n × n GIM is I ≡ NTMN, which can be expressed using the block elements of the DeNOC 
matrices as: 

11

1n nn

i sym

i i
I

"
# % #
"

 (9) 

where ,T
ij i ij jii p M B p�  for i = n, …, 1 and j = i – 1, …, 1. The 6 × 6 matrix iM�  is 

evaluated from i = n to 1 recursively as: 

1 1,1,
T

i i i i ii iM M B M B� �  (10) 

In which 1 ,nM O�  as there is no (n + 1)st link and hence, .n nM M�  This recursive 
formulation and symmetric form of the GIM reduces the computational complexity 
significantly. A recursive formulation for the MCI terms is discussed at length in Saha 
(1999), which may not be required to compute explicitly as one requires to compute 
vector h as a multiplication of matrix C and .�θ  Vector h can be efficiently computed 
using any recursive inverse dynamics algorithm, as suggested by Saha (1999, 2003) and 
Luh et al. (1980), and others when .0��θ  

Note that for a robot simulation, one needs to perform forward dynamics, where the 
joint accelerations are calculated from (8) for a given set of forces/torques applied at its 
joints. It is assumed that the dynamic model of the robot and the initial joint angles and 
rates defining the initial state of the robot are fully known. One can then easily obtain the 
successive joint rates and angles by numerically integrating the joint accelerations ��θ  
obtained from the dynamic equation (8) as: 

1 whereI h��θ τ  (11) 

In (11), no explicit inversion of the GIM is required to be performed. Instead, the UDUT – 
based approach proposed in Saha (2003, 1997) is adopted here. In this approach, the 
matrix I is decomposed into upper and lower triangular matrices U and L using the 
reverse Gaussian elimination (RGE) (Saha, 1997), i.e., I = UL. Note that for the 
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symmetric matrix I, it can be shown L = DUT, where D is a diagonal matrix. Hence,  
I = UDUT. The decomposition leads to recursive order n, i.e. O(n), forward dynamics 
computational algorithm to compute ��θ  from (11), which is very efficient (Shah et al., 
2012). 

3 Force control algorithms 

The basic aim of any force/torque control algorithm is to efficiently synthesise the 
information of force/torque senses at the joints or at the proximal end, i.e., the  
end-effector or even at the base in some cases, to actively control the forces exerted by 
the robot to the environment with which it interacts. Other primary variables involved for 
such control are position, velocity, and acceleration. The approaches, however, vary by 
the way it relates the information to achieve certain specific requirements. Stiffness, 
impedance, admittance, and hybrid control are four basic force-control algorithms 
adopted in various industrial applications and reported in the literature (Zeng and 
Hemani, 1997). They are summarised next along with their implementation with the 
dynamic model developed in Section 2. It is pointed out here that stiffness and impedance 
controls do not have explicit force inputs, but they are still referred to as ‘force control’ 
algorithms in the literature (Zeng and Hemani, 1997) because they are used for force 
compliant tasks performed in the industries. 

Note here that no comprehensive reporting of the above typical force control 
algorithms was traced by the authors in the open literature. Hence, the present paper is 
relevant and contributes in providing a framework to study four force control algorithms. 
Besides one can tune the controllers for practical use, test any new force control 
algorithm or test even a new dynamic simulation algorithm, etc. by just appropriately 
substituting the corresponding module provided in the MATLAB programs available 
from website (http://www.web.iitd.ac.in/saha/todownload/ieee-tro-force-control.zip). 
Such a development is extremely useful for robots operating at relatively high speed 
whose dynamical effects cannot be ignored while designing for an appropriate controller 
or its simulation. 

3.1 Stiffness control 

Quite a good number of research activities had been done in the past dealing with passive 
stiffness control which has a physical spring-like structure attached to the end-effector of 
a robot. In this paper, however, an active stiffness control like the one used by Roberts  
et al. (1985) and Salisbury (1980) is used, where the forces are sensed at the end-effector 
and a closed-loop is made to create a programmable spring like effect. Considering the 
robot’s behaviour be governed by (8), the closed-loop dynamics may then be given by: 

T EI h J w��θ τ  (12) 

where I, h and τ are defined earlier in Section 2.3, whereas the 6 × n matrix [ ]T T T
ω vJ J J  

and the six-dimensional vector wE are the robot’s Jacobian and the external wrench due to 
interaction forces between the environment and the end-effector, respectively. The  
matrix J relates the six-dimensional twist vector of the end-effector te with the  
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n-dimensional joint rates ,�θ  as derived in Appendix. Note that the active positional 
stiffness control-loop comprises of a proportional feedback of reaction force and the  
end-effector position error that relates to the joint torque τp (Salisbury, 1980) as: 

T
p v ppJ K pτ  (13) 

where ∆p is the three-dimensional vector of positional errors of the end-effector with 
respect to its desired input trajectory pD, whereas Kpp is the 3 × 3 diagonal matrix 
containing constant scalar stiffness values along x, y and z axes of the end-effector. 
Similarly, the active orientation control loop, if desired, may be formed that relates the 
end-effector orientation error to the joint torque τѱ as: 

T
ψ ω pψJ Kτ ψ  (14) 

where ∆ѱ is the three-dimensional vector of orientation errors of the end-effector with 
respect to its desired orientation ѱD, where as Kpѱ is the 3 × 3 matrix that takes into 
account for the orientation stiffness values corresponding to say, the roll-pitch-yaw 
(RPY) Euler angles of the robot’s end-effector frame with respect to the inertial frame 
attached to the robot’s base. The orientation representation could be using any other  
3-parameters representation (Angeles, 2003) as well which will accordingly change the 
expression of Jω and Kpѱ. Combining (13) and (14), one can write the following: 

T
q pJ K qτ  (15) 

where for a 6-DOF robot J and Kp are the 6 × 6 matrices, whereas ∆q is defined as the  
six-dimensional vector. They are defined as: 

, andpψω
p

ppv

K OJ
J K q

O KJ p
ψ

 (16) 

Control laws to accommodate the damping properties inherent to the robot joints can also 
be accounted for as: 

1
v vq eK J tτ  (17) 

in which Kvq is the n × n diagonal matrix of joint damping, [ ]T T T
e e et vω  is the  

end-effector twist, where ωe and ve respectively are the three-dimensional vectors 
containing angular and Cartesian velocities of the end-effector. Equation (17) plays an 
important role to stabilise the motion, and maintain a constant contact when the end-
effector encounters an impact with its environment. 

Next, the interaction forces and moments, i.e., the wrench wE, is modelled as a plane 
moving against the end-effector (Whitney, 1987). As a result, the six-dimensional 
external wrench wE is expressed as: 

E E
EE

E

K q q q q
w

0 q q
 (18) 

In (18), q ≡ [ѱe pe]T is the end-effector configuration corresponding to the  
end-effector orientation ѱe and position pe, which can be calculated from the robot’s 
forward kinematics algorithm provided the joint angles are known. Moreover, the vector 
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qE represents the configuration of the moving plane comprising of its position of any 
point on it and the orientation. Accordingly, KE ≡ diag.[KEѱ, KEp] is the 6 × 6 diagonal 
matrix containing stiffness about and along three orthogonal directions corresponding to 
the rotation and translation. Note that the 6 × 6 diagonal compliance matrix  
KF ≡ diag.[KFѱ, KFp] is used here to transform the actual force felt by the end-effector 
due to the environment, (18), to the corresponding end-effector’s orientation and position, 
i.e., q = KFwE. The joint torques corresponding to interaction forces and moments are 
then given by: 

T E
E J wτ  (19) 

where wE is given in (18). As per (12), the net controlling torque acting at the robot’s 
joints is then given by: 

q v E gτ τ τ τ τ  (20) 

where τq, τv and τE are given in  (15), (17) and (19), respectively, whereas, τg is the torque 
due to gravity which is derived in Appendix. The overall control scheme is shown in 
Figure 2. 

Figure 2 Stiffness control model 

 

3.2 Impedance control 

In impedance control, a system is so designed that the end-effector applies a wrench we 
which is proportional to the end-effector’s twist te, i.e., we = Kvte. The constant of 
proportionality is known as mechanical impedance of the manipulator. A robot with an 
impedance controller is desirable for an application where the robot is demanded not to 
just track the trajectory alone but also to regulate the mechanical impedance of the 
manipulator (Zeng and Hemani, 1997). Such systems are able to resist any end-effector 
motion due to sudden load on the end-effector due to impact. In contrast to basic stiffness 
control law of (15), the commanded torque for error correction is given by Whitney 
(1987) as: 
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T
qv p v eJ K q K tτ  (21) 

where Kp and Kv ≡ diag.[Kvѱ, Kvp] are the control gain matrices for the pose and twist 
errors, respectively, of the end-effector. The system is fed with both pose and twist 
trajectories qD and tD, and the net torque τqv was calculated based on their corresponding 
errors ∆q and ∆te. The 6 × 6 compliance matrices KFq and KFt, similar to those KF 
defined after (18), are used to transform the environment (i.e., moving plane) pose and 
twist to the corresponding end-effector pose and twist, respectively. Its implementation 
was done by rearranging the control blocks of stiffness controller of Figure 2, which is 
shown in Figure 3. The orientation of the end-effector was maintained constant by 
utilising the end-effector’s orientation error to the existing model (Zeng and Hemani, 
1997) by adding control loops analogous to (14). The overall driving torque of the robot 
is thus given by: 

qv v E gτ τ τ τ τ  (22) 

where τqv is given by (21). 

Figure 3 Impedance control model 

 

3.3 Admittance control 

Admittance A is defined as the inverse of impedance such that: 
E

et Aw  (23) 

where te is the end-effector twist, matrix A ≡ diag.[Aѱ, Ap] is the 6 × 6 diagonal matrix of 
admittance and wE is the sensed wrench vector at the end-effector. Note here that 

1
vA K  for any non-redundant robot manipulator, say, a 6-DOF robot performing tasks 

in the 6-DOF Cartesian space. Admittance control allows a desired wrench input wD to be 
commanded explicitly to a pose controlled robot. This is quite analogous to a position 
controlled robot being controlled for force using an external force control loop. The pose 
qa is fed to the robot controller corresponding to the desired wrench input wD. This may 
be given as: 
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E
a D dtq A w w  (24) 

For a robot accepting torque commands at its joints, the contribution of torque due to the 
deviation of pose from the value as calculated in (24) and the desired pose input qD is 
given as (Zeng and Hemani, 1997): 

1
a paK Jτ χ  (25) 

where ∆χ = qD + qa – q and Kpa is the n × n diagonal matrix of proportional control gain. 
The remaining driving torques are τv, τE, and τg which are given by (17), (19), and (46), 
respectively. Thus, the net driving torque is given by: 

a v E gτ τ τ τ τ  (26) 

where τa is given by (25). 
Figure 4 shows the implementation of the basic admittance control depicted by (26). 

The admittance matrix A relates the wrench error vector to the end-effector twist 
(Whitney, 1987; Schutter and Brussel, 1988; Seraji, 1994). It can be designed to achieve 
a wrench response with low or no error, low overshoot, and rapid rise time. Admittance 
control focuses more on desired wrench tracking as compared to impedance control 
where pose and twist are tracked. Such systems are more suitable where the system 
demands maintaining a constant reaction wrench on making a contact with the object 
surface, e.g., grinding, polishing, buffing, etc. 

Figure 4 Admittance control model 

 

3.4 Hybrid control 

Hybrid position/force control combines two independent control systems into a single 
controller based on two complimentary orthogonal spaces on displacement and force, as 
defined in Mason (1981). A hybrid control system was proposed in Raibert and Criag 
(1981) which was later extended to operational space by Khatib (1987). The same system 
is used here with a more generic representation of position and force, i.e., pose and 
wrench, respectively. The 6 × 6 diagonal compliant selection matrix S determines the 
subspace for which the wrench or the pose is to be controlled. Both cannot be 
simultaneously controlled (Saha, 2014; Craig, 2004). The diagonal element sii is set to 1, 
if the ith degree-of-freedom of the end-effector is to be wrench controlled. The 
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commanded torque acts simultaneously on the decoupled pose and wrench subspace due 
to corresponding errors. The algorithm takes input of both the desired pose and wrench 
trajectories. Hybrid control is more suited for robots that are designed to work for precise 
positioning as well as wrench tracking control in contact. 

Control laws for the pose and wrench are typically chosen as proportional-integral-
derivative (PID) controllers. The system takes torque as input from its actuators and gives 
the end-effector pose as output, where the wrench is sensed through a proximal 
force/torque sensor at its end-effector. The environment interaction model (18) generates 
the reaction wrench and also sets the wrench compliance selection matrix S elements to 
one for pose constrained directions. Thus, the model enters into wrench control mode 
along the pose constrained direction and pose control mode along remaining direction(s). 
The net torque is due to the combined contributions of torques due to pose and wrench 
tracking errors, namely, τpos and τf respectively. The total torque τ is then given by: 

pos f othersτ τ τ τ  (27) 

where τothers is the torque due to joint damping, external wrench and due to gravitational 
force, given by (17), (19) and (46), respectively. Figure 5 shows the implementation of 
the hybrid control. 

Figure 5 Hybrid control model 

 

4 Modelling of a RP robot 

In order to test the force control algorithms discussed in Section 3 in the absence of a real 
robot, particularly when the robot moves at relatively higher speeds, its dynamic model 
described in Section 2 can be used. A RP planar robot model analogous to (Raibert and 
Criag, 1981) was considered, which is shown in Figure 6. Such consideration will allow 
us to validate the simulation results generated in our work. The Denavit-Hartenberg (DH) 
parameters of the RP robot is given in Table 1. Note here that the definitions of the DH 
parameters are adopted from Saha (2014), which are given in Appendix for easy 
reference to the readers. 
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Figure 6 RP robot model (see online version for colours) 

 

Table 1 DH parameters of the RP robot 

Link Joint offset Joint angle Link length Twist angle 
i bi(m) θi(rad.) ai(m) i(rad.) 
1 0 θ1 (JV*) 1 = 0.079 –π/2 

2 b2(JV) 0 0 π/2 

Note: Length of link #2, l2 = 1.0 m, and *JV ≡ joint variable. 

4.1 Derivation of the dynamic model 

The two-link 2-DOF planar RP robot is shown in Figure 6. Its independent joint variables 
are θ1 and b2. Correspondingly, the vector of joint variables is given by θ = [θ1, b2]T. The 
joint rate vector is 1 2[ , ] .Tθ b� ��θ  The physical link lengths are a1 and l2, and the masses 
are m1 and m2. The mass centres are assumed to be located at the middle of the links. The 
kinematic constraints, as defined in (6) and (7), are derived as: 
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 (28) 

where [e1]1 ≡ [0 0 1]T, [e2]1 ≡ [–sin θ0 cos θ1 0]T, [d1]1 ≡ [r1]1 ≡ [d1 cos θ1 d1 sin θ1 0]T, 
and [d2]1 ≡ [–d2 sin θ1 d2 cos θ1 0]T, where d1 = a1 / 2 and d2 = b2 – l2 / 2. Moreover, the 
symbol [ꞏ]k is used to represent a vector/matrix quantity in frame k. The elements of the  
2 × 2 GIM I are then evaluated from (9) as follows: for i, j = 2, the calculation of i22 is 
given by: 

22 2 22 2 22
Ti mp M B p�  (29) 

where 2
2 2

2
.

m
I O

M M
O 1

�  Similarly, the element of the GIM, i21 = i12 is expressed 

as: 

21 2 21 1 2 12
Ti m ap M B p�  (30) 

Finally, the element i11 is given by: 
22 2 2

11 1 1 1 2 2 2 21 1 2 1/ 3 /12 / 2Ti m a m l m a b lp M p  (31) 

where 1 1 2 2121
TM M B M B� �  and 1

1
1

.
m

I O
M

O 1
 Assuming the links to be slender 

solid bars, I1 and I2 are given by: 

2 2
1 1 2 21 22 3

1 1diag.[0 1 1] and diag.[1 0 1]
12 12

m a m lI I  (32) 

Next, h can be derived using (8) as the two-dimensional vector given below: 

2 2 2 2 1
2

2 2 2 1

2 / 2
/ 2

m b l b θ
m b l θ

h C
� �

�
�θ  (33) 

For calculating , i i iN r r� � ω  and i i id d� ω  were used. In case of the prismatic joint 
these vectors are also the functions of the joint displacement b2. 

4.2 Jacobian and gravity torques 

Here, the 2 × 2 Jacobian matrix Jv of the RP robot is derived using the knowledge of 
Appendix as: 

1 1 2 1 1

1 1 2 1 1

sin cos sin
cos sin cosv

a θ b θ θ
a θ b θ θ

J  (34) 

The torque due to gravity τg was then derived from the knowledge of Appendix as: 
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2 1 1 2 2 1 1 1 1

2 1

cos / 2 sin cos / 2
cos

g
m g a θ b l θ m ga θ

m g θ
τ  (35) 

This completes the dynamic equations of motion for the RP robot, which is given by 
,I h��θ τ  where the other contributions to τ, namely, τq, τv, τE, τqv, τa, τpos and τf, 

depend on the type of force control law desired, as derived in Section 3. 

4.3 Simulation of force controllers 

For the simulation of stiffness, impedance, admittance and hybrid controllers, the robot 
was commanded to stay in its initial position and a moving plane was made to collide 
against the end-effector from the right as shown in Figure 6. This allowed an easy testing 
of the control behaviours. The reaction force should rise proportionally to the end-
effector displacement if the robot is to behave like a spring in stiffness control. However, 
in case of hybrid control the robot may be commanded for both position and force. The 
simulation was done similarly with the other controllers so as to have an easy 
comparison. Once the controlling torque was calculated as discussed in Section 3, using 
(20), (22), (26) and (27), the system may be expressed in the state-space form as: 

1 2
1

2

( ) ( )
( )

( ) ( )
t t

t
t

y y
y

y I h
� �

�
� τ

 (36) 

where y1(t) = θ and y2(t) = 2 ( ) .y t �θ  This was integrated numerically using in-built 
function ODE45 of MATLAB®, which is based on the explicit Runge-Kutta (4, 5) 
formula or the Dormand-Prince pair (Dormand and Prince, 1980). The controller models 
were built using MATLAB/Simulink blocks as available in Udai and Saha (2012). Due to 
space constraints they are not shown here, but it can be downloaded from website 
(http://www.web.iitd.ac.in/saha/todownload/ieee-tro-force-control.zip). 

5 Control simulation of RP robot 

This section reports the simulation results of different controllers and their performances. 
For simulation, a typical value for the stiffness of the moving plane along its normal was 
taken as 9 × 105 N/m for all the controllers and no stiffness was considered along other 
directions. 

5.1 Stiffness controller 

The end-effector of the robot was fixed to a position at (0.332 m, 0.3842 m, 0), i.e.,  
[pe]1 ≡ [0.332 0.3842 0]T with the initial joint positions as θ ≡ [–32°, 0 m]. Since a planar 
2-DOF robot is used only for positioning purposes, no orientation aspect was considered 
during simulation. In order to understand the behaviour of the end-effector as a spring 
(Raibert and Criag, 1981), the plane situated at a distance of 0.35 m from the base frame 
of the robot, as shown in Figure 6, was moved with a constant velocity of vx = –0.05 m/s 
for 1 s. The simulation results are shown in Figure 7. The plane makes contact with the  
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end-effector after 0.3606 s, as evident from Figure 7(a), and moves the end-effector to the 
left of X by 0:032 m at 1 s, which is shown in Figure 7(b). As clear from Figure 7(a), the 
end-effector encounters an impact where the reaction force is surged. Thereafter, the 
reaction force increases linearly like a spring with time to 25 N at time equal to 1 s. The 
various constants used during the simulation are: 

Nms
rad

Ns
m

50 0 0 0.01 0 0
N m0 1000 0 , 0 0.01 0 ,
m N

0 0 0 0 0 0

200 0
0 200

pp Fp

vq

K K

K

 (37) 

The linear variation of the force with the end-effector displacement shown in Figure 7(a) 
demonstrates that the robot end-effector is equivalent to a physical spring. It may be 
observed in Figure 7(b) that the end-effector moves with the plane once the contact is 
established at 0.3606 s. Figure 7(c) shows the variation of the joint torque and force 
during the robot-plane interaction with the stiffness controller. 

Figure 7 Performance of the RP robot with stiffness and impedance controllers, (a) end-effector 
force with stiffness and impedance controllers (b) end-effector position with stiffness 
and impedance controllers (c) joint torque and force with stiffness and impedance 
controller (see online version for colours) 
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Figure 7 Performance of the RP robot with stiffness and impedance controllers, (a) end-effector 
force with stiffness and impedance controllers (b) end-effector position with stiffness 
and impedance controllers (c) joint torque and force with stiffness and impedance 
controller (continued) (see online version for colours) 
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5.2 Impedance controller 

As the model now requires to be tested with the variation of velocity, the vertical plane 
was moved with a constant acceleration of –0.2 m/s2 so that the velocity changes linearly 
from 0 to –0.2 m/s during 1 s. The end-effector’s desired position was taken as  
[pe]1 ≡ [0.3184, 0.3955, 0]T with initial joint positions as θ ≡ [–30°, 0] and zero velocity, 
i.e., [0, 0]�θ . Note that the end-effector and joint positions were taken different from 
that of the stiffness control to avoid any overlapping of the plots. It may be observed in  
Figure 7(a) that the reaction force surges to 81.84 N on impact at 0.5796 s and then 
damps down before increasing again linearly with the velocity of the end-effector to 40 N 
at 1 s. This is in agreement with the impedance controller characteristics. The initial surge 
and jitter during impact may be reduced by slowly approaching the end-effector and by 
optimising the control gains. The gains for the simulation were taken as: 

300 0 0 100 0 0
N Ns0 100 0 and 0 100 0
m m

0 0 0 0 0 0
pp vpK K  (38) 

The end-effector follows the moving plane once the contact is established at 0.5796 s, 
which is also depicted in Figure 7(b). The joint torque and force required to generate the 
robot-plane interaction under impedance control are shown in Figure 7(c). 

5.3 Admittance controller 

For admittance control, a desired reaction force and the end-effector position pe were set 
at 20 N and [pe]1 = [0.3184 0.3955 0]T. The moving plane was initially at 0.35 m from the 
end-effector, which was made to approach with a constant velocity of vx = –0.01 m/s. The 
plane makes the initial contact at 0.215 s, as seen in Figure 8(a). It initially shoots up due 
to impact and finally maintained a constant reaction force of 20 N, as desired, within  
0.5 s. The values of various constants like joint control gains Kvp and Kvq for the position 
error and to accommodate joint damping, respectively and the admittance Ap were taken 
as: 

m
NsNms Nms

rad rad
Ns Ns
m m

0.03 0 0
100 0 30 0

, , 0 0 0
0 100 0 30

0 0 0
vp vq p

N
m

K K A  (39) 

The end-effector seeks to attain the desired force of 20 N even if it was desired to 
maintain the initial position. Hence, the movement occurs even before the end-effector 
makes contact with the plane as depicted in Figure 8(b). Once the contact was 
established, the plane moves with the end-effector so as to maintain the desired contact 
force. The end-effector position is not clearly maintained while the plane keeps moving. 
Corresponding joint torque and force required to attain the required control behaviour are 
shown in Figure 8(c). 
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Figure 8 Performance of the RP robot with admittance and hybrid controllers, (a) end-effector 
force with admittance and hybrid controllers (b) end-effector position with admittance 
and hybrid controllers (c) joint torque and force with admittance controller (see online 
version for colours) 
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Figure 8 Performance of the RP robot with admittance and hybrid controllers, (a) end-effector 
force with admittance and hybrid controllers (b) end-effector position with admittance 
and hybrid controllers (c) joint torque and force with admittance controller (continued) 
(see online version for colours) 

 
(c) 

5.4 Hybrid controller 

The plane, which initially was at 0.35 m from the robot base, was made to move with a 
uniform velocity of 0.05 m/s towards the robot’s end-effector. This is about eight times 
higher velocity than that reported in Raibert and Criag (1981), which was 0.0065 m/s. 
The robot was commanded to remain stationed at [pe]1 = [0.3184 m 0.3955 m 0]T with the 
joint angles θ = [–30°, 0 m] and zero velocities, i.e., θ = [0, 0]. As seen in Figure 8(a), the 
plane collides with the end-effector at 0.6321 s where the reaction force surges to 16.3 N. 
The system gradually converges to the desired force of 10 N at 0.68 s, i.e., 0.05 s after the 
contact was established. 

The system successfully entered into the force control mode along the perpendicular 
to the plane upon making contact at 0.6321 s with the plane while maintaining position 
control mode along the remaining orthogonal directions. The force and the position 
behaviour are well comparable to the one obtained in Raibert and Criag (1981). Note that 
the jitters in the force values of Figure 8(a) are probably due to non-optimised control 
gains, as pointed out for stiffness control. Figure 8(b) shows the end-effector position 
variation with time. The behaviour is different from admittance controller because the 
hybrid controller simultaneously servos for desired force as well as position. The joint 
torque and force varied so as to maintain the required controller behaviour. As can be 
seen from Figure 8(a), the end-effector maintains the desired reaction force with jitters, 
the same is reflected on the joint torque and force, and, hence is not shown here to avoid 
clumsy plots. However, one can quickly generate it using the MATLAB model of 
website (http://www.web.iitd.ac.in/saha/todownload/ieee-troforce-control.zip). 
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5.5 Comparison with SimMechanics models 

In order to compare and demonstrate the use of different dynamic model, namely, the one 
based on MATLAB’s SimMechanics, and also to validate the results obtained in  
Section 5, the RP robot model was also created in SimMechanics. While the simulation 
time shown in Figures 7 and 8 are exactly same for the DeNOC and SimMechanics 
models, the CPU times taken by them were different. Table 2 shows the CPU times taken 
by different controllers while DeNOC and SimMechanics models were used. The 
comparison shows a clear advantage of the customised DeNOC-based force controller 
models over the generic SimMechanics-based block diagrams. 
Table 2 CPU times for force control simulations of the RP and KUKA KR5 Arc robot 

 Controller  Dynamics RP robot  KUKA robot 
model model time (s) time (s) 

A Stiffness DeNOC 1.63 36.39 
Control SimMechanics 2.58 62.44 

B Impedance DeNOC 1.09 18.14 
Control SimMechanics 1.80 20.09 

C Admittance DeNOC 2.84 18.52 
Control SimMechanics 4.03 17.84 

D Hybrid DeNOC 34.47 208.23 
Control SimMechanics 39.00 314.23 

Note: CPU platform: Intel i7 Processor, 2.667 GHz, MATLAB 2013a/Simulink 
v8.1/SimMechanics v4.2. 

6 Control simulation of an industrial robot 

Inspired by the better performance of the DeNOC-based dynamic modelling for control 
simulation of the RP robot, as explained in Section 5.5, control simulation of a 6-DOF 
industrial robot, namely, KUKA KR5 Arc was carried out to test how a control 
simulation, namely, stiffness controller performs in terms of both CPU time and accuracy 
of the results. The CAD model of the KUKA KR5 Arc was downloaded from KUKA 
Robotics Website (http://www.kuka-robotics.com/usa/en) and imported to Autodesk® 
Inventor. Mass properties of the robot were obtained from the CAD model with their 
density approximated so as to match the total mass of the real robot, i.e., KUKA KR5 
Arc. Figure 9 shows the architecture of the KUKA KR5 Arc robot whose DH parameters 
and the inertia parameters are given in Tables 3 and 4, respectively. For the control 
simulation of KUKA KR5 Arc, a generic version of the DeNOC-based formulation, 
namely, acronym for recursive dynamic simulator (ReDySim) (Saha et al., 2013) was 
used. Moreover, both position and orientation controllers were used. The end-effector 
reaction force variation with the moving plane is shown in Figure 10(a), which is similar 
to Figure 7(a), as expected for the stiffness controller. Figure 10(b) shows the joint 
torques for the first three joints, whereas joint torques for the last three joints range within 
±1.0 Nm with initial surge of ±8.0 Nm. Due to almost similar pattern of the plots they are 
not shown. The mean value of joint torque was 0.142 Nm, –0.534 Nm, and 0.0 Nm for 



   

 

   

   
 

   

   

 

   

   100 A.D. Udai and S.K. Saha    
 

    
 
 

   

   
 

   

   

 

   

       
 

joints 4, 5 and 6, respectively. Figure 11(a) shows the end-effector position variation for  
1 s of simulation, which shows that the end-effector moves in the sagittal plane along 
with the plane once the contact is established. The orientation of the end-effector is 
maintained precisely, as can be seen in Figure 11(b). Various matrices associated to the 
stiffness controller were taken as: 

kNm kN
rad m

kNms
rad

rad. m
Nm N

diag.[1, 1, 1] , diag.[30, 1, 1] ,

diag.[111111] ,

diag.[000] , diag.[0.0111]

pψ pp

v

Fψ Fpand

K K

K

K K

 (40) 

In order to validate and compare the results with another dynamic model, namely, the 
SimMechanics, the Inventor model was also imported to SimMechanics environment 
using SimMechanics CAD translator tool CAD translator website (http://www. 
mathworks.com/products/simmechanics/download cad.html), where the joint constraints, 
sensors and actuators blocks were attached. The completed robot model in SimMechanics 
was then integrated to the controllers and plots for end-effector forces were obtained. 
Figure 12 shows the simulation model of KUKA KR5 Arc and the moving plane in the 
MATLAB/SimMechanics environment. The results showed a close match with those 
obtained using the DeNOC-based ReDySim shown in Figure 10 and Figure 11. The CPU 
time taken by the DeNOC-based ReDySim and SimMechanics for 0.5 s of simulation are 
given in Table 2. Hence, there is a clear advantage of using customised dynamic model 
based on say, the DeNOC-based modelling. Note here that other control simulations, i.e., 
impedance, admittance, and hybrid, were also performed for the KUKA KR5 Arc robot. 
They are not discussed here mainly to avoid the repetitions of similar steps as done for 
the stiffness controller. Control models for KUKA KR5 Arc robot can be downloaded 
from website (http://www.web.iitd.ac.in/saha/todownload/ieee-tro-force-control.zip). 

Figure 9 Architecture of KUKA KR5 arc robot 
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Table 3 DH Parameters of KUKA KR5 Arc robot 

Link Joint offset Joint angle Link length Twist angle 
i bi(m) θi(rad.) i(m) i(rad.) 

1 0.4 θ1(JV*) 0.18 π/2 
2 0 θ2(JV) 0/6 0 
3 0 θ3(JV) 0.12 π/2 
4 0.62 θ4(JV) 0 π/2 
5 0 θ5(JV) 0 –π/2 
6 0.115 θ6(JV) 0 0 

Note: *JV – joint variable. 

Table 4 Assumed inertia parameters of KUKA KR5 Arc robot 

Link Mass CG location Inertia tensor 
i mi(kg) ci(m) Ici(kgm2) 

1 26.980 0.089
0.006
0.323

 
0.322 0.018 0.145
0.018 0.467 0.014
0.145 0.014 0.478

 

2 15.920 0.447
0.174

0.389
 

0.541 0.0 0.005
0.0 0.552 0.017
0.005 0.017 0.044

 

3 25.852 0.868
0.008

0.356
 

0.775 0.009 0.025
0.009 0.750 0.007

0.025 0.007 0.208
 

4 4.088 0.899
0.008
0.110

 
0.010 0.002 0.0
0.002 0.020 0.0

0.0 0.0 0.024
 

5 1.615 0.9
0.010
0.252

 
0.002 0.0 0.0

0.0 0.004 0.0
0.0 0.0 0.004

 

6 0.016 0.9
0.0
0.330

 
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

 

Notes: Mass of the base: 52.402 kg, Total mass of the robot ≈127.0 kg. The vector ci is 
for robot at θ = [0, 0, 90, 0, 0, 0]T. 
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Figure 10 Performance of KUKA KR5 Arc robot with stiffness controller, (a) end-effector force 
(b) joint torques (see online version for colours) 
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Figure 11 End-effector pose of KUKA KR5 Arc robot with stiffness controller, (a) end-effector 
position variation with time (b) end-effector orientation variation with time (see online 
version for colours) 
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(b) 
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Figure 12 Simulation model of KUKA KR5 in the MATLAB/SimMechanics environment  
(see online version for colours) 

 

7 Conclusions 

This paper presents a framework for a test bench: 

1 to test several force control algorithms say, to compare their performances 

2 to tune their controller gains 

3 to test a new control or dynamic algorithm by replacing the appropriate blocks 

4 to use as a good teaching/learning tool for force control algorithms. 

Such a comprehensive tool, which can be downloaded from website 
(http://www.web.iitd.ac.in/saha/todownload/ieee-tro-forcecontrol.zip), is generally not 
found in the literature. Hence, this is considered as the key contribution of this paper. In 
order to develop such a tool, the DeNOC-based dynamic modelling technique was used 
resulting in faster simulation compared to those based on MATLAB. This suggests that 
more and more complex controllers with complex robotic systems can be simulated using 
DeNOC matrices with relative ease. 

8 The robot Jacobian 

The Jacobian of a robot is a 6 × n matrix that relates the Cartesian velocities of the  
end-effector, i.e., the twist denoted by te, with the joint-rates �θ  defined after (5) as: 

et J �θ  (41) 
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where the matrix J is evaluated using (5), (6), and (7). Note that the  
end-effector being the nth link of the robot its end-point velocity can be easily derived 
from the last block row of (5) as: 

e n nt R t  (42) 

where n
n

1 O
R

r 1 1
and .n ln dt N N �θ  

In (42), rn × 1 is the 3 × 3 cross-product matrix associated with the vector rn, as 
indicated in Figure 1. Moreover, the 6 × 6n matrix Nln ≡ [Bn1 Bn2ꞏꞏꞏ1] is nothing but the 
last block row of the matrix Nl of (6). Comparing this to (42): 

n ln dJ R N N  (43) 

Expansion of (43) in terms of the three-dimensional vectors can then be expressed as: 

1 2

1 1 2 2

ω n

v e e n ne

J e e e
J

J e a e a e a
…
…

 (44) 

which is available in any text book on robotics, e.g., in Saha (2014). Here, aie is the 
vector joining ith joint to the end-effector, as indicated in Figure 1. The vectors ei and aie 
can be easily obtained using forward kinematic transformation matrices and some vector 
manipulations. 
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Appendix 

Gravity torque 

Given the position vector of the ith joint as oi and that for the centre of mass be ci, the 
torque due to gravity at the ith joint may be given by Udai et al. (2012) as: 

n
T

i j i j i
j i

mc o g eτ  (45) 

where mj is the mass of the link #j and g is the acceleration due to gravity. A gravity 
compensation vector of torque which is required to balance the robot against the 
gravitational forces may be formulated as: 

1 2, , , T
g nτ τ τ"τ  (46) 

where τi is given by (45), which is used in Section 3 for control simulation. 

DH parameters 

In the literature, there are many variations in the definition of DH parameters, e.g., in 
Craig (2004); Saha (2014), and others. The one used here is from Saha (2014). Referring 
to Figure 1, the manipulator consists of n + 1 links, namely, the base #0 and n moving 
links denoted as #1, #2, ..., #n, coupled by n pairs numbered as 1, 2, …., n, respectively. 
As shown in Figure 1, the ith pair couples the (i – 1)st link with the ith one. Moreover the 
coordinate system Xi, Yi, Zi is attached to the (i – 1)st link. The DH parameters are then 
defined as: 

1 Zi is the axis of the ith pair. Its positive direction can be chosen arbitrarily. 

2 Xi is defined as the common perpendicular to Zi–1 and Zi, directed from the former 
to the latter. The origin of the ith frame, Oi, is the point where Xi intersects Zi. If 
these two axes intersect, the positive direction of Xi is chosen arbitrary. The origin, 
Oi, coincides with the origin of the (i – 1)st frame, Oi–1. 

3 the distance between Zi and Zi+1 is defined as ai, which is non-negative. 
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4 the Zi coordinate of the intersection of the Xi+1 axis with Zi is defined as bi, which 
thus can be either positive or negative. For prismatic joint, bi is variable. 

5 the angle between Zi and Zi+1 is defined as i, and is measured about the positive 
direction of Xi+1 

6 the angle between Xi and Xi+1 is defined as θi, and is measured about the positive 
direction of Zi. For revolute joint, θi is variable. 

Since no (n + 1)st link exists the above definition do not apply to the (n + 1)st frame and it 
can be chosen at will. 


