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Abstract: In this paper, a new fractal theory-based acoustic emission (AE) 
signal processing method is proposed. It is found that both the curve lengths 
and fractal dimensions (FDs) of AE signal are related with damage evolution. 
The AE tests of pseudo-static experiment of a reinforced concrete column 
(RCC), a reinforced nano-concrete column and a concrete-filled glass fibre 
reinforced polymer (GFRP) tube are then performed for validation. For each 
specimen, several piezoelectric ceramic (PZT) patches and one AE sensor are 
bonded at different positions of the specimen surface to monitor the AE signals. 
The results show that the fractal theory-based damage method can assess 
damage evolution effectively. In addition, the damage can be localised 
approximately by the diversity of damage assessing index values from various 
PZT detectors. 
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1 Introduction 

In the last decades, developing automated sensor-based structural health monitoring 
(SHM) systems for accurately detecting, locating and assessing damage has received 
much attention. The efforts to implement SHM systems have been rewarded by an 
increasing number of sensors developed. Compared with other sensors used in SHM such 
as fibre optical sensors, piezoelectric ceramic (PZT) sensors have revealed to be a useful 
sensor for SHM of civil structures which has the advantages of simplicity, low cost, quick 
response and high reliability. 

Generally, there are two major types of piezoelectric-based SHM approaches: active 
monitoring and passive monitoring. The active monitoring approach needs actuators. It 
contains two major methods: electro-mechanical impedance method and wave 
propagation method. The impedance-based health monitoring approach was first 
proposed by Sun et al. (1995). In the method, a PZT patch can be used as both an actuator 
and a sensor based on its electro-mechanical coupling property. The method utilises the 
dependence of the electrical impedance of the PZT patch, on the mechanical properties of 
a structure. Wave propagation method studies the elastic wave generated by actuators 
embedded in or bonded on the structures, which propagates within the structure and 
received by the sensors. This method was first proposed by Chang of Stanford University 
(Roh and Chang, 1999; Wang and Chang, 1999). Song et al. (2007) embedded 
piezoceramic transducers in the concrete structure and utilised this method for damage 
detection of a long reinforced concrete bridge bent-cap. 

For the piezoelectric-based for passive monitoring, PZT has the character of high 
impedance and it is feasible to measure the dynamic and mechanical variable of a 
structure. As passive monitoring method of practical interest, acoustic emission (AE) 
tests usually employ PZT material as mechanical and electrical transducers to monitor 
metallurgical transformation, dislocation movements, plastic yielding and micro-cracking 
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of structures, etc. AE is a naturally occurring phenomenon of elastic waves generated 
when there is a rapid release of energy in a material or on its surface (Fang and Berkovits, 
1995), for example as a result of plastic deformation and crack formation. AE monitoring 
is an effective non-destructive technique (Dhale and Khan, 2013) for detecting, locating 
and assessing damage on steel (Wang et al., 2015; Nemati et al., 2015), concrete (Nor  
et al., 2011; Pazdera et al., 2017) and FRP structures (Li et al., 2011; De Oliveira and 
Marques, 2008), etc. 

In AE signal processing, signal measurement parameters are typically used, and the 
most widely used measurement parameters include counts, amplitude, duration, rise time 
and the measured area under the rectified signal envelope (alternatively counts energy). 
Recently, with the advance of signal processing and computer technology, waveform-
based AE detection becomes practical. These introductions of these technologies were 
inspired by conventional signal processing methods, such as spectrum analysis, artificial 
intelligent methods (Prosser, 1995; Ali et al., 2016), wavelet transform (Ni and Iwamoto, 
2002; Liu et al., 2015) and data fusion (Niri et al., 2012), which has the potential to detect 
and characterise damage more accurately. Poddar and Giurgiutiu (2017) investigated the 
detectability of the crack length from the recorded AE signal in plate structures based on 
the wave propagation physics. 

It is found that the AE signals typically are fractals, and thereby the fractal theory has 
been explicitly introduced in AE signal processing in recent years. Silva et al. (2005) 
presented several fractal indices, which are related to the Hurst analysis, detrended 
fluctuation analysis, minimal cover analysis. The box-counting dimension analysis was 
employed to characterise the different failure modes. Paparo and Gregori (2004) 
demonstrated the correlation between the fractal dimensions (FD) and the order of the 
space distribution of the prime AE sources. Li et al. (2011) also investigated a FD-based 
damage index for damage quantification and failure warning of FRP cables. 

The main contributions of this study are demonstrated as follows: firstly, the fractal 
analysis of signal is presented and the fractal theory-based damage assessing index is 
proposed through the fractal analysis. Then, the AE tests on pseudo-static experiment of 
three specimens are performed for validation, where several AE-PZT patches are bonded 
to the different places of the surface of the specimens to monitor the AE signals. It will be 
demonstrated that the proposed damage assessing index can assess damage evolution as 
well as the damage locations effectively. The differences of the damage evolution among 
the three types of specimens will also be discussed in the paper. 

2 Method 

2.1 Fundamentals of the method 

To compute FD of a signal, the FD arithmetic proposed by Higuchi (1988) is adopted in 
this study, which is suitable for analysing an irregular time series. We first define the 
length of time series of an AE signal, X, as (Higuchi, 1988) 
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where N refers to the number of sampling points; k and m are the interval time and initial 
time, respectively; [ ] denotes the Gauss notation. The average value over k sets of Lm(k) 
is given by: 

1

1( ) ( )
k

m
m

L k L k
k =

= ∑  (2) 

This is because for any time interval k, k sets of new time series can be generated, where 
each starts from the initial time m (m = 1, 2, …, k). 

If the average value L(k) has linear relationship with k–FD, we consider the signal X as 
fractal, that is 

( ) FDL k b k −= ⋅  (3) 

where b is the curve length of the original signal: 
1
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The quantity b is related with the fluctuation amplitude of a signal. 
Then, FD can be derived from equation (3), as 

( )ln ( ) ln( ) ln( )FD L k b k⎡ ⎤= − −⎣ ⎦  (5) 

It is indicated that FD is the slope of the straight line. It is known any signal can be 
denoted by the following function 
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where Aj is the amplitude at frequency ωj, then the curve length of the signal can be 
obtained by using equation (3) and the FD value can be computed from the following 
form: 
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 (7) 

where n is a constant value. Equation (7) indicates that for two signals with the same 
frequency distribution and the relative amplitudes at each frequency component in the 
two signals are the same, the FD values for the two will be identical. In other words, the 
FD values are only dependent on the relative amplitudes of each frequency component 
contained in a signal. 
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In equation (7), we set 
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Figure 1 Time series of signals (a) X1, (b) X2, (c) X3 and (d) X4 
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The property that the signal is fractal is valid over the time scales 0 Δ .
j

πk t
ω

< ≤  It is 

seen that the bigger value of ωj, the larger value of λ will be. As FD = ln λ, higher 
frequencies also produce larger value of FD. 

The characteristic that higher frequency components will induce larger FD values of a 
signal will be demonstrated by using several harmonic signals. Assuming that signals X1, 
X2, X3 and X4 [see Figures 1(a), 1(b), 1(c) and 1(d)] are expressed as follows (see  
Figure 1): 
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Obviously, the first three signals contain two frequency components of 1 Hz and 2 Hz, 
and the relative amplitude ratio between the high and low frequency components are 1/2 
for the first two signals, and 1/4 for signal X3. While for signal X4, the two frequency 
components are 1.5 Hz and 2.5 Hz, and the relative amplitude ratio between the high and 
low frequency components are 1/2. 

Figure 2 Fractal analysis results of the four signals in Figure 1 
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The sampling frequency for all the four signals is all 100 Hz. From the fractal analysis in 
Figure 2, the four signals are fractal when the time intervals are from 1 to 10. From 
equation (4), the b values for the four signals are computed as 5.3326, 6.0258, 5.8597 and 
5.6139, respectively; and the FD values are 1.0354, 1.0354, 1.0241 and 1.0671 for the 
four signal by using equation (5). It is easily concluded that the b values are related with 
the fluctuating intensity of a signal which is time domain information; while the FD 
values are related with the frequency distribution of each signal which is frequency 
domain information. Therefore, the damage evolution of a structure can be quantified 
effectively by these two quantities of AE signal. 

2.2 FD-based damage assessment index 

As damage develops in a structure, the accumulated elastic energy in the structural 
material or on its surface will be released rapidly. For a time period, the time series of AE 
signal can be divided into several segments and a FD-based damage assessment index is 
defined as follows: 

( )
( )

( )
( )

b FDi is
i

i i

σ σ
J

b FD
= +  (10) 

where σb and b  are the standard deviation and mean of the b values for all signal 
segment, respectively; while σFD and FD  are the standard deviation and mean of the FD 
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values for all signal segment, respectively. For the whole damage evolution period of a 
structure, a cumulative damage assessment index can be further defined as 

( )
( )

( )
( )1 1 1

( )
j j j

b FDi iC S
i

i ii i i

σ σ
J j J

b FD= = =

= = +∑ ∑ ∑  (11) 

where j = 1, 2, …, N; N is the total amount of time periods considered in the whole 
damage evolution period. 

3 Experimental validation 

3.1 Experimental setup 

In order to verify the applicability and efficacy of the proposed FD-based damage index 
for AE signals, experiments on three specimens are conducted. Experimental set-up and 
loading regime are presented in the following. 

3.1.1 Specimens 

In the experiment, the test specimens are columns, including one reinforced concrete 
column (RCC), one reinforced nano-concrete tube (NMRCn4) and one glass fibre 
reinforced polymer (GFRP) tube filled with concrete (GFRPC). 

The GFRP tube fabricated by filament-wound with e-glass fibres/epoxy resin in the 
hoop direction with 5 plies (0.385 mm per ply), is 1,580 mm height and 150 mm inner 
diameter. The e-glass fibres used are RO99 2200 P122 manufactured by Beijing  
Saint-Gobain Vetrotex Glass Fiber Co. Ltd. The matrix is normally-used diphenol 
propane epoxy resin solidified by the diethylene triamine and the volume percentages of 
the fibres and epoxy are 45%. 

Figure 3 Sizes of test specimens and PZT detector localisations 

 



   

 

   

   
 

   

   

 

   

   66 Y. Huang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

The GFRP tubes are filled with concrete to form the test specimens. For loading, 
reinforced concrete beams at the upper and bottom ends of GFRP tubes are casted to 
embed the both ends of GFRP tubes into the RC beams. The column has a total height of 
1,600 mm and a clear height of 550 mm. The GFRP tubes are fully embedded into the 
reinforced concrete beams with only 10 mm left from the top and bottom surfaces of the 
reinforced concrete beams. The detailed information of the test specimens is illustrated in 
Figure 3, where the three specimens have the same sizes and sensor placements. 

After the assembly of columns, concrete with 28-day cylinder strength of 63.7 MPa 
was filled into the composite columns. For comparison, one RCC and one reinforced  
nano-concrete tube with the same size were fabricated at the same time. The column has 
four longitudinal bars with a diameter of 12 mm, and hoop reinforcements at intervals of 
60 mm. The longitudinal ratio of reinforcement of the column is 2.56%. The details of the 
test specimens are shown in Table 1. 
Table 1 Outline of details of the test specimens 

Specimen Type Number Steel tube GFRP tube 

CFFTn6 concrete-filled GFRP 
tube 

1 N/A 1.925 mm/5 plies/ 
0.385 mm per ply 

RCn4 reinforced concrete 1 N/A N/A 
NMRCn4 reinforced nano-concrete 1 N/A N/A 
Specimen Winding mode Compression 

ratio 
Shear 

span ratio 
Confinement coefficient 

CFFTn6 [90]5 0.6 1.83 0.341 
RCn4 N/A 0.4 1.83 N/A 
NMRCn4 N/A 0.4 1.83 N/A 

3.1.2 Test setup and loading regime 

The specimens are tested using the pseudo-static test facility. Firstly, they are applied a 
sustained axial load. In this study, two axial compression ratios are selected, which are 
0.4 and 0.6, as listed in Table 1. The axial loads are corresponding 450 kN and 675 kN, 
respectively. Then, the specimens are applied reciprocating horizontal lateral loads with 
the loading method of force-displacement double-control, and the horizontal loads are 
controlled by force before the yielding of the specimen. Once the specimen reaches 
yielding, the horizontal loads are then switched to be controlled by displacement until 
failure of the specimen. The axial load is recorded by force sensor; the horizontal force is 
recorded by the actuator self and the displacement are collected by displacement 
transducer LVDT. The measurement system is shown in Figure 3. 

The AE signals generated from the damage occurring and development of specimen 
are monitored by PZT patches. Four PZT patches are bonded on the surface of each 
column. Two are located at the upper end and front side of the column (the distance of 
the two PZT patches along the height of the column is 10 cm). Another two are attached 
at the bottom end back side of the column (the distance between these two PZT patches is 
also 10 cm), as shown in Figure 3. The sampling frequency for the AE monitoring is 
20,000 Hz. 
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3.2 Results and discussion 

3.2.1 AE signal received by PZT patches 

In Figure 4, the time-history curves of AE signals of RCN4 specimen for early stage 
(horizontal load range is 0–Δy, Δy denotes the yielding displacement) and latter stage of 
damage evolution are shown. It is seen that AEs are released moderately and the 
amplitudes are small at early stage; but at latter stage the AEs are released acutely and the 
amplitudes are generally much larger. 

Figure 4 Time-history curves of AE signals, (a) early stage of damage evolution (b) latter stage 
of damage development 

  
(a) (b) 

In Figure 5, the results of fast Fourier transform (FFT) of time-history signals in Figure 4 
are presented. It is observed that the energy of the AE signal at latter stage is 
concentrated at low frequency range; while at early stage, the energy distribution for 
different frequency components is more like a uniform distribution. Therefore, the FD 
values at latter stage should be smaller than that at early stage. Note that there are three 
peaks appearing at the low frequency range of the early stage in Figure 5(a), this is 
presumably produced by the fibre fracture in the specimen. 

Figure 5 FFT of AE signals in Figure 4, (a) early stage of damage evolution (b) latter stage of 
damage development 
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Figure 6 The log curve length ln(L(k)) versus log time interval ln(k) for seven equal-length time 
series at different damage evolution stages (a) very mild damage occurring, (b) mild 
damage development and (c) acute damage development 
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Notes: The markers denote the log L(k) values for various selected time intervals k and 
each type of markers corresponds to a time series truncated. For each type of 
marker, the fitting line is provided to fit the markers of log L(k) versus log k. 

3.2.2 FD values of AE signals 

In Figure 6, three different damage evolution stages of RCn4 specimen are analysed 
using fractal theory in equation (1)–(5). The AE time series of equal length of 5 seconds 
are truncated for FD calculation. The time interval values k are set from 1 to 40, and the 
corresponding L(k) values are computed for each k. In each figure, several fitting lines are 
also provided to fit the logarithm values of L(k) versus log k. As strictly strait lines are 
obtained, the AE signals investigated here are fractals. 

It is demonstrated that at the stage with very mild damage occurring (Δmax / Δy < 1), 
the straight lines of ln(L(k)) versus ln(k) for different time series overlap with each other 
[Figure 6(a)]. This is due to the fact that only mild AEs occur at this stage. As damage 
continue to develop but still be slight (Δmax / Δy = 1), the approximate lines of ln(L(k)) 
versus ln(k) for different time series do not overlap but still be parallel [Figure 6(b)], 
implying that the FD values are still the same but the b values are district. Note that the 
two stages above correspond with the early stage of damage development in Figures 5 
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and 6. When damage develops acutely (Δmax / Δy = 3), it is seen that the curves of 
log(L(k)) versus log(k) for different time series are reticular [see Figure 6(c)], because 
both the FD and b values are difference for various time series. Note that the first two 
stages and the last stage above correspond with the early and latter stage of damage 
development in Figures 5 and 6. 

Figure 7 The average values of FD and b for the whole experiment process for specimens,  
(a) RCn4, (b) NMRCn4 and (c) CFFT 
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Note: Δmax is the maximal displacement for the loading process; Δy is the yielding 
displacement. 
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Figure 8 The profile of FD-base AE assessing index for a whole loading process of different 
specimens, (a) RCn4 (b) NMRCn4 (c) CFFT 
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The average values of FD and b of the time series measured by PZT2, PZT 3 and PZT4 
during the loading process are also shown in Figure 7. It is seen that the mean values of 
FD have decreasing but b have increasing trends for all specimens, indicating as damage 
develops the AE frequency distribution becomes lower but the fluctuation intensity goes 
up. This is consistent with the results in Subsection 3.2.1. 

3.2.3 Damage assessment of the whole loading and unloading process 

In Figure 8, the damage assessing index curves for a whole loading and unloading 
process (the first cycle and Δmax / Δy = 2) are shown. It is demonstrated that the whole 
loading and unloading process can be distinguished into four periods by observing the 
changing trend. The first period is the first half part of loading process. At this period, the 
values of JS are small because there are little cracks taking place for the origination of 
AEs. The second stage is the latter half part of the loading process. The values of JS are 
very large which indicates that a large amount of AEs are generated and released rapidly, 
corresponding to intense damage development. The third period is the first half part of 
unloading process where the values of JS are very small. The fourth is the second half 
unloading process, and the values of JS are generally larger than those of the third period 
because of the closing and friction of the fracture surface. In a word, the value changes of 
index JS are enable to characterise the damage occurrence and evolution of the structure. 
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Figure 9 Comparison between the P – Δ curve and JS – Δ curve for different specimens,  
(a) RCn4 (b) NMRCn4 (c) CFFT 
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3.2.4 Comparison of the proposed damage assessment indices with other 
damage indices 

3.2.4.1 Comparison between the P – Δ curve and damage assessing index curve 

The load-displacement P – Δ curve and JS – Δ curve of the loading process are compared 
in Figure 9. It is seen that an abrupt increase of the damage assessing index JS coincide 
with the descending segment of the P – Δ curve. The reason behind this is that both the 
descending segment of the P – Δ curve and the abrupt increase of warning index denote 
an obvious loss of stiffness in the structure. Therefore, the damage assessing index JS has 
the ability to warn structure failure. It is also seen for index JS, different time are needed 
to reach the warning location (abrupt increase of JS) for the three specimens. The warning 
time for CFFT is the longest, denoting the CFFT has the best ductility among the three. 

3.2.4.2 Comparison between Park-Ang damage index and cumulative damage 
assessing index 

The Park-Ang damage index (Park and Ang, 1985), which is widely used in concrete 
structures under earthquake ground motions, is defined as: 
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where δu denotes the ultimate deformation under monotonic loading; Qy is the calculated 
yield strength; dE is the incremental absorbed hysteretic energy; δM refers to the 
maximum deformation and β is a non-negative parameter. 

Figure 10 Results of Park-Ang damage index D and index JC of PZT sensors for different 
specimens, (a) RCn4 (b) NMRCn4 (c) CFFT 
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In Figure 10, the values of damage index D and JC for each loading process (the 
displacement is positive) are shown. It is easily found as Δmax / Δy = 3 for RCn4 
specimen and Δmax / Δy = 4 for specimen NMRCn4 specimen, the Park-Ang damage 
index D ≥ 1, which signifies the total failure of a structure. What is interesting is that at 
this time the index JC show an abrupt increase. Therefore, the two damage indexes 
behave a similar change trend for each specimen and the proposed damage assessing 
index JC is also an effective index to quantify accumulative damage development as the 
Park-Ang damage index. 
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3.2.5 Damage localisation 

For damage localisation purpose, a pencil lead broken on an FRP blade was performed to 
study the influence of the propagate distance between the damage occurring locations and 
sensors on damage assessing index J. A pencil lead of approximately 3 mm long and 2B 
hardness was broken at various locations along the length direction of the blade, then the 
damage assessing indices J of a fixed sensor can be obtained as shown in Figure 11. 

Figure 11 The influence of the distance between the damage occurring place and sensor locations 
on (a) the index value J and (b) the two factors of index J 
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It is seen that as the pencil lead broken places become farther from the received sensor, 
the values of damage assessing index J become smaller, because both the two factors 

FDσ FD  and bσ b  decrease. This is because the AE wave energy is diffused, diffracted 
and dissipated as the wave spread around. The abrupt frequency components of the AE 
signal become smoother, which results in the smaller values the standard deviations of 
FD and b. By utilising the effect of the signal travel distance on the damage index, it is 
feasible to employ damage assessing index J to localise damage by AE signal. Note that 
the largest distance between the damage and sensors is 40 m in Figure 11, which is much 
larger than the specimen size in Figure 3, thereby the conclusion drawn from Figure 11 
can be utilised in damage localisation for the specimens in Figure 3. 

For validation of the effectiveness of damage localisation, a loading process of 
NMRCn4 specimen was performed. The specimen had severe damage close to sensor 2, 
which had a small piece of concrete falling off from the specimen as shown in  
Figure 12(a). In Figure 12(b), the values of the damage assessing index of sensors 1–4 are 
demonstrated. It is found sensor 2 and sensor 3 have the largest and smallest values, 
which is consistent with our prediction, because their locations are closest and farthest 
from the falling piece of concrete, respectively. Note that, in the test, it is feasible for us 
to judge the distances of the possible damage from various sensors approximately by 
employing the proposed damage assessing index, which is not the exact damage location 
information. 
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Figure 12 Damage assessing index J at a given loading process of the specimen of NMRCn4 for 
different AE-PZT sensors (see online version for colours) 
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4 Conclusions 

AE is an effective SHM technique for detecting, locating and characterising structural 
damage. In this paper, it was found that not only FD, but also the signal lengths are 
related with the damage evolution, because they present the frequency and tine domain 
information, respectively. Based on the analysis, a FD-based damage assessing index was 
proposed. 

The AE tests on pseudo-static experiments of a RCC, a reinforced nano-concrete 
column and a concrete-filled GFRP tubes were performed for validation. For each 
specimen, there were several PZT patches bonded on different positions of the specimen 
surface to monitor AE signals of the structure. The AE signal analysis results showed that 
the proposed damage assessing index can assess damage evolution effectively. From the 
comparison studies, it is found the changing trend of the proposed damage assessing 
index are consistent with those of the load-displacement curve and Park-Ang damage 
index, and thereby it has the ability to warn structure failure. The distances of damage 
away from the sensors have been compared from the diversity of the values of the 
proposed damage assessing index since AE signals weaken more as the spread paths 
become longer. Overall, the experimental results demonstrate that the fractal  
theory-based damage assessing method is promising to be applied for practical AE 
monitoring and signal processing. 
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