Mobile botnets detection based on machine learning over system calls
by Victor G. Turrisi Da Costa; Sylvio Barbon Junior; Rodrigo S. Miani; Joel J.P.C. Rodrigues; Bruno Bogaz Zarpelão
International Journal of Security and Networks (IJSN), Vol. 14, No. 2, 2019

Abstract: Mobile botnets are a growing threat to the internet security field. These botnets target less secure devices with lower computational power, while sometimes taking advantage of features specific to them, e.g., SMS messages. We propose a host-based approach using machine learning techniques to detect mobile botnets with features derived from system calls. Patterns created tend to be shared among applications with similar actions. Therefore, different botnets are likely to share similar system call patterns. To measure the effectiveness of our approach, a dataset containing multiple botnets and legitimate applications was created. We carried out three experiments, namely finding out the best time-window, and performing feature selection and hyperparameter tuning. A high performance (over 84%) was achieved in multiple metrics across multiple machine learning algorithms. An in-depth analysis of the features is also presented to help future work with a solid discussion about system call-based features.

Online publication date: Fri, 07-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Security and Networks (IJSN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com